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Abstract 

New treatments that circumvent the pitfalls of traditional antivenom therapies are critical 

to address the problem of snakebite globally. Numerous snake venom toxin inhibitors have 

shown promising cross-species neutralization of medically significant venom toxins in vivo and 

in vitro. The development of high-throughput approaches for the screening of such inhibitors 

could accelerate their identification, testing, and implementation, and thus holds exciting 

potential for improving the treatments and outcomes of snakebite envenomation worldwide.  

Energetics-based proteomic approaches, including Thermal Proteome Profiling (TPP) and 

Proteome Integral Solubility Alteration (PISA) assays, represent “deep proteomics” methods for 

high throughput, proteome-wide identification of drug targets and ligands. In the following 

study, we apply TPP and PISA methods to characterize the interactions between venom toxin 

proteoforms in Crotalus atrox (Western Diamondback Rattlesnake) and the snake venom 

metalloprotease (SVMP) inhibitor marimastat. We investigate its venom proteome-wide effects 

and characterize its interactions with specific SVMP proteoforms, as well as its potential 

targeting of non-SVMP venom toxin families. We also compare the performance of PISA 

thermal window and soluble supernatant with insoluble precipitate using two inhibitor 

concentrations, providing the first demonstration of the utility of a sensitive high-throughput 

PISA-based approach to assess the direct targets of small molecule inhibitors for snake venom. 
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Introduction 

Snakebite is a global public health problem that disproportionately affects impoverished 

communities in rural tropical and subtropical regions. Annual estimates suggest that snakebite 

affects 1.8–2.7 million people worldwide, causing >138,000 deaths and leaving an even larger 

number of victims suffering permanent disabilities (1), which has led to the designation of 

snakebite as a neglected tropical disease by the World Health Organization (WHO; 2,3). Snake 

venoms are complex toxic cocktails of proteins and peptides derived from more than a dozen 

gene families, many of which have undergone duplication to generate multiple functionally 

diverse paralogs and associated proteoforms in the venom of a single species (4–6). While 

substantial variation exists in the relative mass and functional activity of venom proteins and 

peptides, most of these toxins have evolved to target and disrupt numerous bodily systems (7–

10). Adding to the complexity of snake venoms, the most medically relevant toxin families tend 

to be the most diverse with many paralogs and associated proteoforms displaying moderate-to-

high sequence similarity but in many cases exhibiting a spectrum of distinct biological effects 

(7,9,11–13). One of these families, snake venom metalloproteases (SVMPs), is ubiquitous across 

snake species (but is particularly abundant in viperid venoms) and is responsible for many of the 

life-threatening pathologies that result from snake envenomation, including local and systemic 

hemorrhage, and tissue destruction (14–18). 

The substantial morbidity and mortality resulting globally from snakebite may seem 

surprising considering that antivenoms (whole IgG molecules, Fab or F(ab′)2 fragments from 

venom-immunized animals) are often highly effective at recognizing and neutralizing the major 

toxic components of a venom (19,20). A major challenge to antivenom efficacy, however, is the 

significant variation in venom composition that occurs at phylogenetic (21–26), ontogenetic (27–
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30), and geographic or population scales (31–36). As a consequence, antivenoms are most 

effective against the snake species whose venom was utilized during production and are often 

inadequate at recognizing venom components of different or even closely related snake species 

(25). Further, geographic venom variation may even result in poor neutralization within the same 

species when snakes used in antivenom production were sourced from a different location (33). 

Antivenoms also tend to be more effective at neutralizing systemic effects, but less effective at 

neutralizing anatomically localized manifestations of envenomation, which can result in 

permanent tissue damage and disfigurement (1,37–41). The storage, accessibility, and 

administration of antivenom also pose significant practical challenges in rural areas where it is 

needed most (10,37,42–48). These hurdles are further compounded by the excessive effort and 

cost of producing antivenoms for any one geographically-relevant set of venomous snake 

species.   

While the use of polyvalent antivenoms has been the mainstay treatment for snake 

envenomation, the development of non-immunological treatments that circumvent the limitations 

of antivenoms has been prioritized as a goal to address the impacts of snake envenomation 

globally by the WHO (3). Recent applications of small molecule inhibitors against medically 

significant toxins have yielded promising preclinical results and these inhibitors have broad 

potential as supplemental therapies in combination with standard treatments (37,49–54). These 

inhibitors have a number of advantages over current antivenom therapies including better 

peripheral tissue distribution, higher shelf stability, a higher safety profile, the ability for pre-

hospital oral or topical administration, and greater affordability (55). The use of novel high-

throughput approaches for the testing of venom toxin inhibitors and the identification of their 
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targets could accelerate the implementation of effective small molecule inhibitors, with the long-

term potential of improving the treatment and outcome of snakebite envenomation globally.  

Numerous studies have examined the effects of various small molecule inhibitors on the 

biological activities of venoms in vitro and the neutralization capacity of these inhibitors in vivo 

(49–51,53,56–59). A repurposed low-specificity matrix metalloprotease inhibitor, marimastat, has 

shown effective neutralization of SVMP-rich venoms across multiple venomous snake species 

by preventing both local and systemic toxicity (53), decreasing hemotoxic venom effects 

(50,51,53,60,61), reducing SVMP-induced cytotoxicity (56,60), and inhibiting extracellular matrix 

degradation (62). Because marimastat has previously progressed to clinical trials as a cancer 

treatment, its safety profile has already been determined, accelerating its development as a 

potential snakebite treatment (63,64). When administered with other small molecule inhibitors, 

marimastat has shown in vivo neutralization of lethal toxicity and dermonecrosis in murine 

models (50,56). Each of these studies assesses the downstream effects of inhibitor action in vivo 

or in vitro by measuring changes to biological activity or survival; however, to our knowledge no 

studies exist using a direct assessment of venom-wide target-ligand interactions between venom 

toxins and small molecule inhibitors. 

Thermal Proteome Profiling (TPP) is a prominent energetics-based proteomic approach 

for identifying the molecular targets of drugs. TPP builds upon the concept that a protein’s 

physicochemical properties are altered through interactions with extrinsic factors (e.g., other 

proteins, therapeutic drugs, metabolites) making it more or less resistant to thermal-induced 

denaturation (65,66). Traditional TPP assays were centered on the principle that unbound proteins 

tend to denature and become insoluble when subjected to increasing temperatures, whereas 

proteins stabilized through interactions with extrinsic factors often exhibit increased thermal 
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stability and remain in solution (65,67–69). Identifying and quantifying such solubility changes 

via mass spectrometry can be used to infer direct or indirect interactions between a given 

compound and its protein targets (70).  

Recently, the Proteome Integral Solubility Alteration (PISA) assay has emerged as a 

powerful strategy that retains the breadth and sensitivity of TPP but with a significant reduction 

in sample preparation and analysis time (70,71). PISA represents a “deep proteomics” method for 

high throughput proteome-wide target identification of ligands, with improved target discovery 

and higher statistical significance for target candidates (70–72). In general, PISA experiments 

measure changes in protein precipitation that can be induced by altering temperature (73), 

solvent concentration (74), mechanical stress (75), or ion concentration (76). In a thermal PISA 

assay, samples are subjected to heat across a temperature gradient (as in TPP) but are 

subsequently pooled prior to analysis (70,71). Rather than generating melt curves to determine 

exact melting temperatures, PISA compares overall abundance of each measured peptide 

between controls and treatments to detect differences in melting properties when a compound of 

interest is added. This methodology allows multiple variables to be altered simultaneously (e.g., 

concentration, temperature) in a high-throughput manner. It has recently been shown that heat-

treating within a smaller temperature window can improve sensitivity and target discovery with 

PISA (77). TPP, PISA, and related methods derived from the same principles have been used to 

discover drug targets, antibiotic targets, mechanisms of antibiotic resistance, and in the high-

throughput screen of compound libraries (65,66,69,78,79). In our specific context, these proteomic 

techniques applied to the development of envenomation treatments hold strong potential to 

provide rapid and high-throughput characterization of small molecule venom toxin inhibitors by 
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determining their direct targets across diverse venom toxin protein families, accelerating 

identification of novel inhibitors.  

Here, we apply TPP and PISA methods to characterize the physical interactions between 

the SVMP inhibitor marimastat and toxin proteoforms of Crotalus atrox (Western Diamondback 

Rattlesnake) venom. First, we determined toxin proteoform presence and abundance in the 

venom of this well-studied species and used TPP to characterize the venom meltome by 

determining venom protein family-level and specific proteoform-level thermal characteristics. 

Next, we performed PISA experiments within two different thermal windows to assess protein 

solubility changes upon inhibitor addition to identify specific proteoform targets of the small 

molecule inhibitor marimastat. Because of the previously characterized differences in signal-to-

noise ratio between supernatant and pellet in PISA experiments (80,81), we investigate and 

compare the targets identified in both the soluble and insoluble fractions. Our results demonstrate 

that a PISA-based approach can provide rapid, highly sensitive, and robust inferences for the 

unbiased proteome-wide screening of venom and inhibitor interactions.  

Methods 

Venom and inhibitors 

Crotalus atrox (Western Diamondback rattlesnake) venom was obtained by manual 

extraction from snakes housed at the University of Northern Colorado (UNC) Animal Facility 

(Greeley, CO), in accordance with UNC-IACUC protocols. Venoms were lyophilized and stored 

at -20°C until use. Venoms were reconstituted at a concentration of 2 mg/mL and protein 

concentration was determined on a Nanodrop™ using the Absorbance 280 program. The small 

molecule matrix metalloprotease inhibitor marimastat ((2S,3R)-N4-[(1S)-2,2-Dimethyl-1-
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[(methylamino)carbonyl]propyl]-N1,2-dihydroxy-3-(2-methylpropyl)butanediamide, >98%, Cat 

no.: 2631, Tocris Bioscience) was reconstituted in ddH20 at a concentration of 1.5 mM and 

stored at −20°C.  

Venom gland transcriptomics 

An adult C. atrox (separate from those used for venom extraction) was collected in 

Portal, AZ under collecting permit 0456, and maintained in the UNC Animal Facility. Four days 

following manual venom extraction, the C. atrox was humanely euthanized and venom glands 

removed (IACUC protocol no. 9204). Approximately 70 mg of tissue, originating from both left 

and right venom glands, was homogenized. Total RNA was isolated from homogenized venom 

gland tissue using the previously described TRIzol (Life Technologies, C.A. U.S.A.) protocol for 

venom glands (82,83). A NEBNext Poly(A) mRNA Magnetic Isolation Module (New England 

Biolabs, MA, U.S.A) was used to select mRNA from 1 µg of total RNA, and the NEBNext Ultra 

RNA library prep kit (New England Biolabs, MA, U.S.A) manufacture’s protocol followed to 

prepare the sample for Illumina® RNA-sequencing (RNA-seq). During library preparation, 

products within the 200-400 bp size range were selected by solid phase reversible 

immobilization with the Agencourt AMPure XP reagent (Beckman Coulter, C.A., U.S.A.) and 

PCR amplification consisted of 12 cycles. Final quantification of the RNA-seq library was done 

with the Library Quantification Kit for Illumina® platforms (KAPA Biosystems, M.A, U.S.A.). 

The C. atrox venom gland RNA-seq library was then checked for proper fragment size selection 

and quality on an Agilent 2100 Bioanalyzer, equally pooled with eight other unique barcoded 

RNA-seq libraries and sequenced on 1/8th of an Illumina® HiSeq 2000 platform lane at the UC 

Denver Genomics core to obtain 125 bp paired-end reads. 
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 To produce a comprehensive venom gland transcriptome database for C. atrox, two 

RNA-seq libraries were de novo assembled, the first from the C. atrox RNA-seq library detailed 

above and the second from a Texas locality C. atrox with reads available on the National Center 

for Biotechnology Information server (SRR3478367). Low quality reads were trimmed and 

adaptors removed using Trimmomatic (84) with a sliding window of 4 nucleotides and a 

threshold of phred 30. Reads were then assessed with FastQC (Babraham Institute 

Bioinformatics, U.K.) to confirm that all adapters and low-quality reads were removed before de 

novo assembly. Three de novo assemblers were used in combination to produce a final, high-

quality assembly: i). first, a Trinity (release v2014-07-17) genome-guided assembly was 

completed using default parameters and Bowtie2 (v2.2.6) (85) aligned reads to the C. atrox 

genome (provided by Noah Dowell (86)), ii) a second de novo assembly was completed with the 

program Extender (k-mer size 100) (87), performed with the same parameters as used for other 

snake venom glands (88), and with merged paired-end reads, merged with PEAR (Paired-End 

read mergeR v0.9.6; default parameters) (89), as seed and extension inputs, iii) a third de novo 

assembly was completed with VT Builder using default settings (90). From a concatenated fasta 

file of all three assemblies, coding contigs were then identified with EvidentialGene 

(downloaded May 2018) (91) and redundant coding contigs and those less than 150 bps were 

removed with CD-HIT (92,93). Reads were aligned with Bowtie2 to coding contigs and 

abundances determined with RSEM (RNA-seq by Expectation-Maximization; v1.2.23) (94). 

Contigs less than 1 TPM (Transcript Per Million) were filtered out, and the remaining contigs 

annotated with Diamond (95)  BLASTx (E-value 10-05 cut-off) searches against the NCBI non-

redundant protein database. Transcripts were identified as venom proteins after each was 

manually examined to determine if the resulting protein was full-length, shared sequence identity 
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to a currently known venom protein, and contained a shared signal peptide sequence with other 

venom proteins within that superfamily. This transcript set was also filtered through ToxCodAn 

(96) as a final toxin annotation check, and the resulting translated toxins used as a custom 

database for mass spectrometry. Sequenced reads are available under NCBI accession 

SRR26583170, bioproject PRJNA1033617. These sequences were combined with those utilized 

in Calvete et al., (2009), and duplicate sequences removed.  

Venom Meltome Generation 

Thermal profiling assays were carried out following previously described methods 

(78,97). Venom (1 μg/μL) was assayed in duplicate and divided into 10 aliquots of 20 μL and 

transferred to 0.2 mL PCR tubes. Each aliquot was individually heated at a single temperature 

over the range of 37° to 75°C (37, 40, 45, 49, 52, 57, 62, 66, 69, 75°C) for 3 min in a Bioer 

LifeECO™ thermal cycler (Figure 1a). Samples were allowed to aggregate at 25°C for one 

minute and then placed on ice. Precipitated proteins were removed by centrifugation at 4°C in 

1.5 mL Eppendorf™ tubes (ThermoScientific #3451) at 21,000 x g (14,000 RPM) for 45 min in 

an Eppendorf™ 5430 R centrifuge with an Eppendorf™ FA-45-30-11 rotor and the supernatant 

was carefully removed with gel loading pipet tips (Fisher brand®) and subjected to sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and sample preparation for 

mass spectrometric analysis. 

Inhibitor PISA Assays 

  Venom (1 μg/μL) was incubated with two previously explored concentrations of 

marimastat, 15 μM or 150 μM (53,61), or a vehicle control (ddH2O) for 30 min at 37°C. Each 

sample was then divided into 12 aliquots of 20 μL in 0.2 mL PCR tubes. Each aliquot was 
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individually heated at a different temperature from 40 to 70°C for 3 min in a Bioer LifeECO™ 

Thermal cycler (Figure 1b), allowed to cool at 25°C for one min, and placed on ice. An equal 

volume of sample from each temperature point was pooled and centrifuged at  21,000 x g for 45 

min at 4°C to separate the soluble fraction from insoluble denatured proteins (70).  

Previous PISA performance assessment has demonstrated higher sensitivity in the 

precipitated fraction which showed a greater fold change in abundance compared to supernatant 

(Peng et al., 2016). Because of these previously characterized differences in performance 

between supernatant and pellet, we investigated both fractions (80,81). The volume 

corresponding to 30 μg of soluble protein (based on controls) was taken from all samples (98) 

and prepared for mass spectrometry and 20 μg was used for gel electrophoresis. PISA assays for 

each condition were performed in triplicate. Because selection of a narrower temperature 

window for heat denaturation has been shown to increase sensitivity of the PISA assay (77), we 

also performed a temperature gradient denaturation with five temperatures (selected based on 

SVMP family-level Tm values) from 56 to 60°C. Samples were pooled and processed as 

described above. 

High-Performance Liquid Chromatography (HPLC) 

One mg of venom incubated with either 150 μM marimastat or a vehicle control (ddH2O) 

was subjected to reverse phase HPLC after heat treatment using a Waters system, Empower 

software, and a Phenomenex Jupiter C18 (250 × 4.6 mm, 5 µm, 300 Å pore size) column as 

outlined in Smith and Mackessy (99). Proteins/peptides were detected at 280 nm and 220 nm 

with a Waters 2487 Dual λ Absorbance Detector. Fractions corresponding to each peak were 

collected and then frozen at -80ºC overnight, lyophilized, and then separated with SDS-PAGE as 
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previously described (99). Percent peak area and peak height at 280 nm were recorded as a proxy 

for relative toxin abundance. 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE materials were obtained from Life Technologies, Inc. (Grand Island, NY, 

USA). Dithiothreitol (DTT)-reduced venom (20 µg) or lyophilized protein (approximately 5 µg – 

reverse-phase high-performance liquid chromatography (RP-HPLC) fractionated) was loaded 

into wells of a NuPAGE Novex Bis-Tris 12% acrylamide Mini Gel and electrophoresed in MES 

buffer under reducing conditions for 45 min at 175 V; 7 µL of Mark 12 standards were loaded 

for molecular weight estimates. Gels were stained overnight with gentle shaking in 0.1% 

Coomassie brilliant blue R-250 in 50% methanol and 20% acetic acid (v/v) and destained in 30% 

methanol, 7% glacial acetic acid (v/v) in water until background was sufficiently destained 

(approximately 2 hours). Gels were then placed in storage solution (7% acetic acid, v/v) for 

several hours with gentle shaking at room temperature and imaged on an HP Scanjet 4570c 

scanner. Protein families were identified based on previously published reports and 

electrophoretic patterns for numerous rattlesnake venoms and several purified venom enzymes 

(100–102). 

Sample preparation for Liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

The volume of supernatant corresponding to 30 μg of venom proteins in the non-heat 

denatured control was dried in a vacuum centrifuge and redissolved in 8 M urea/0.1 M Tris (pH 

8.5) and reduced with 5 mM TCEP (tris (2-carboxyethyl) phosphine) for 20 min at room 

temperature. Samples were then alkylated with 50 mM 2-chloroacetamide for 15 min in the dark 

at room temperature, diluted 4-fold with 100 mM Tris-HCl (pH 8.5), and trypsin digested at an 
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enzyme/substrate ratio of 1:20 overnight at 37°C. To stop the reaction, samples were acidified 

with formic acid (FA), and digested peptides were purified with PierceTM C18 Spin Tips 

(Thermo Scientific #84850) according to the manufacturer's protocol. Samples were dried in a 

vacuum centrifuge and redissolved in 0.1% FA. 

Electrophoretic protein bands subjected to LC-MS/MS were excised from Coomassie-

stained gels, destained, and subjected to in-gel reduction, alkylation, and overnight trypsin 

digestion as previously described (103). Following the overnight digestion, samples were 

acidified with 5% formic acid (FA) and tryptic peptides were extracted in 30 µl of 50% 

acetonitrile /1% FA. Digests were dried in a vacuum centrifuge and redissolved in 0.1% FA for 

mass spectrometry. 

 Nano liquid chromatography tandem mass spectrometry 

Nano Liquid Chromatography tandem mass spectrometry (Nano-LC-MS/MS) was 

performed using an Easy nLC 1000 instrument coupled with a Q-Exactive™ HF Mass 

Spectrometer (both from ThermoFisher Scientific). Approximately 3 μg of digested peptides 

were loaded on a C18 column (100 μm inner diameter × 20 cm) packed in-house with 2.7 μm 

Cortecs C18 resin, and separated at a flow rate of 0.4 μL/min with solution A (0.1% FA) and 

solution B (0.1% FA in ACN) under the following conditions: isocratic at 4% B for 3 min, 

followed by 4%-32% B for 102 min, 32%-55% B for 5 min, 55%-95% B for 1 min and isocratic 

at 95% B for 9 min. Mass spectrometry was performed in data-dependent acquisition (DDA) 

mode. Full MS scans were obtained from m/z 300 to 1800 at a resolution of 60,000, an automatic 

gain control (AGC) target of 1 × 106, and a maximum injection time (IT) of 50 ms. The top 15 

most abundant ions with an intensity threshold of 9.1 × 103 were selected for MS/MS acquisition 
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at a 15,000 resolution, 1 × 105 AGC, and a maximal IT of 110 ms. The isolation window was set 

to 2.0 m/z and ions were fragmented at a normalized collision energy of 30. Dynamic exclusion 

was set to 20 s.  

 Analysis of mass spectrometry data 

         Fragmentation spectra were interpreted against a custom protein sequence database, 

comprising 570 entries generated from the assembly of C. atrox venom gland transcriptome data 

(described above) combined with UniProt entries of all toxins found in the C. atrox venom 

proteome (104), reverse decoys and contaminants, and using MSFragger v3.8 within the 

FragPipe (v20.0) computational platform (105,106). Cysteine carbamidomethylation was selected 

as a fixed modification, oxidation of methionine was selected as a variable modification, and 

precursor-ion mass tolerance and fragment-ion mass tolerance were set at 20 ppm and 0.4 Da, 

respectively. Fully tryptic peptides with a maximum of 2 missed tryptic cleavages were allowed 

and the protein-level and peptide-level false discovery rate (FDR) was set to < 1%. The relative 

abundance of major snake venom toxin families was compared across samples using sum-

normalized total spectral intensity (107). 

Analysis of TPP data 

Protein melting curves were generated by fitting sigmoidal curves to relative protein 

abundances using the Protein Stability Analysis Pod (ProSAP) package (108). The temperature at 

which relative protein abundance reached 50%, Tm (melting temperature), was determined in 

ProSAP by normalizing intensity to the lowest temperature (37°C), followed by normalization to 

the most thermostable proteins as previously described (81). Duplicates were averaged to 
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determine the average Tm of all identified venom toxins. Venom proteins failing to reach 50% 

denaturation even at higher temperatures were classified as non-melting proteins. 

Analysis of PISA data 

PISA data was analyzed as previously described (71,107). Briefly, PISA uses the ΔSm 

value or soluble abundance ratio (SAR) as opposed to the Tm to determine differences in thermal 

stability (70). ΔSm represents the difference in integral abundance of a protein in treated 

compared to untreated samples. We performed a two-tailed Student’s t-test with unequal 

variance to calculate p-values (p<0.05). Changes to venom protein abundance were visualized 

using volcano plots based on log2SAR values and -log10 transformed p-values. Proteins with a 

log2SAR value ≥ 0.5 or ≤ -0.5 and a -log10 transformed p-value ≥ 1.3 (p<0.05) were identified as 

toxins with a significant shift in solubility. All figures were made with BioRender.com.  

Results 

Crotalus atrox venom proteome 

Previous characterization of the C. atrox venom proteome revealed the presence of at 

least 24 proteins belonging to eight different venom toxin protein families (Figure 2a; (104)) and, 

more recently, the presence of 31 SVMP genes in C. atrox with 15 to 16 expressed SVMPs (109). 

SVMPs and snake venom serine proteases (SVSPs) were the two most abundant protein families 

representing nearly 70% of the venom proteome. L-amino acid oxidase (L-AAO), Phospholipase 

A2 (PLA2), disintegrins, and cysteine-rich secretory proteins (CRISPs) comprise most of the 

remaining 25% of C. atrox venom proteins, whereas vasoactive peptides, endogenous SVMP 

inhibitors, and C-type lectins (CTL) comprised the remaining small fraction of venom 

Jo
urn

al 
Pre-

pro
of



components comprising <2% of the venom proteome. Utilizing the protein database generated 

from protein sequences of proteins identified by Calvete et al. (104) combined with protein 

sequences derived from a C. atrox venom gland transcriptome, we detected 46 unique 

proteoforms with at least one unique peptide in C. atrox venom (Figure 2b). Venom toxins with 

the highest number of distinct proteoforms detected included 13 CTLs, 13 SVMPs, nine SVSPs, 

and three PLA2s (Figure 2b). We identified only one unique proteoform of more abundant 

proteins including L-AAO and CRISP and only one proteoform for minor components 

bradykinin-potentiating peptide (BPP), glutaminyl-peptide cyclotransferase (GPC), 

hyaluronidase (HYAL), nerve growth factor (NGF), phospholipase B (PLB), and vascular 

endothelial growth factor (VEGF). 

RP-HPLC analysis revealed a complex toxin profile of C. atrox venom similar to that of 

Calvete et al., 2009 (Figure 2c). We used SDS-PAGE of peak fractions (Figure S1) combined 

with the peak elution times and identified masses in Calvete et al. (104) to confirm peak 

identities. BPP’s eluted between 8 and 15 min with co-elution of disintegrins and SVMP 

inhibitors. PLA2 eluted at 27, 30, and between 39-44 min, CRISP eluted at 29 min, SVSP eluted 

between 32 – 36 min, L-AAO eluted at 46 min, and SVMPs eluted between 51-56 min (Figure 

2c). 

C. atrox venom meltome 

With the goal of demonstrating the utility of applying a PISA workflow for identifying 

venom protein interactions with a small molecule inhibitor, we first assessed the effects of 

thermal stress on the venom proteome. Venom was subjected to increasing temperatures ranging 

from 40 to 75°C, allowed to cool at room temperature, followed by separation and removal of 
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aggregates from each temperature point by centrifugation. The soluble fractions were then 

visualized by gel electrophoresis (Figure 3a) and prepared for LC-MS/MS. SDS-PAGE analyses 

of these fractions indicate that the entire venom proteome appeared to exhibit some degree of 

denaturation between the temperatures tested with clear differences in denaturation observed 

across venom protein families (Figure 3a). For example, L-AAO, HYAL, SVMPs, and CTLs 

appeared more thermally sensitive while SVSP, CRISP, PLA2, and disintegrin families exhibited 

greater stability at higher temperatures. 

Next, we assessed the thermal stability of venom proteins across the 10 different 

temperature points by LC-MS/MS. An equal volume of each soluble fraction was collected and 

subjected to reduction, alkylation, trypsin digestion, and LC-MS/MS. Fragmentation spectra 

were interpreted against our C. atrox-specific custom venom proteome sequence database, and 

we used the ProSAP package (108) to determine melting points for each venom protein family. 

When normalized to thermostable proteins, most venom proteins show decreasing abundance 

with increasing temperature, with the majority of proteins reduced in abundance at temperatures 

above 62°C (Figure 3b). The distribution of toxin melting temperature (Tm) values ranged from 

47.8-74.3°C (Figure 3c and 3d; Table S1). Most toxins had Tm’s between 50-60°C (Fig 3d; n=22) 

or 60-70°C (n=28), and only 11 proteoforms were still thermostable with no calculable Tm at 

75°C (BIP, BPP, VEGF, 4 PIII-SVMPs, and 4 SVSPs; Fig 3d). The five toxins with the lowest 

Tm’s included four CTLs (average Tm =49.3°C, stdev=1.1°C; Figure 3c and 3e) and the single 

hyaluronidase proteoform (Tm =50.6°C). CTLs Tm values as a whole ranged from 47.8-63.1°C 

(ave= 56.0°C, stdev=5.3°C). PLA2s had an average Tm of 61.2°C (stdev=8.3°C; Figure 3c and 

3f).  The different SVMP subfamilies differed slightly in their melting range but were not 

significantly different (p=0.77; Figure 3c). PI-SVMP proteoforms had an average Tm of 56.8°C 
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(stdev=0.03°C), PIIs averaged 59.3°C (stdev=5.7°C; Figure 3c), and PIII’s averaged 59.7°C 

(stdev=6°C; Figure 3g). SVSPs had the highest average Tm (63.9°C, stdev=5.5°C), and made up 

a large proportion of the proteins that were thermostable above 75°C (Figure 3b). The single L-

AAO proteoform identified melted at 61.7°C. In general, melting temperatures were reproducible 

between replicates with an average standard deviation of 1.17°C between replicates. These 

results demonstrate protein family-level differences in thermal stability, in that all proteoforms of 

some families denatured (i.e., CTL, SVMP I) when subjected to heat, while others appear 

resistant to thermal perturbation (SVSPs).  These results indicate that a significant proportion of 

the venom proteome is amenable to thermal denaturation. 

Venom-wide interactions with marimastat 

After establishing that venom proteins are susceptible to thermal denaturation, we next 

assessed if a PISA strategy could be applied to elucidate small molecule-venom protein 

engagement. For this, we applied the PISA assay, an approach where samples across the entire 

temperature gradient of the same treatment are pooled prior to preparation and mass 

spectrometric analysis (66,70,71). With traditional PISA, the abundance of the protein(s) in the 

soluble fractions of the pooled samples is then used to assess the effect of a compound on its 

solubility (70). For highly thermostable proteins, monitoring supernatant alone is likely not 

effective in thermal-shift-based methods (81). Because increases in protein solubility upon 

compound binding also result in decreased protein abundance within the precipitated pellet, 

quantifying protein abundance in the precipitate pellet can also identify protein targets (81). 

Further, because of different observed signal-to-noise ratios, soluble and pelleted materials may 

perform differently in PISA assays to identify significant thermal shifts (80,81). Utilizing 

precipitated material to measure changes in protein solubility can additionally reduce the false 
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discovery rate (FDR) and improve sensitivity of the assay. Based on this logic, we utilized both 

supernatant and precipitated material to investigate the effects of marimastat.  

PISA assays were performed on marimastat, an inhibitor of matrix metalloproteases that 

has shown significant inhibitory activity against SVMPs (50,51,53,56,60–62). Crotalus atrox 

venom was incubated with marimastat (15 μM and 150 μM) or vehicle (ddH2O) for 30 min at 

37°C. Following incubation, each sample was divided into 12 aliquots and subjected to 

increasing temperatures from 40 to 70°C. Equal aliquots per temperature point were then pooled, 

protein aggregates were separated by centrifugation, and the soluble and insoluble fractions of 

the vehicle and inhibitor-treated venoms were prepared for downstream analysis.  

 When filtering criteria were applied (p<0.05, and log2SAR >0.5), the lower concentration 

of marimastat (15 μM) caused five of 21 SVMP proteoforms (PIII 28348, PIII 28325, PII 25887, 

PII 23541, and VAP 1) to display a stabilizing shift in treated supernatant compared to untreated 

supernatant (Figure 4a). In addition to these five proteoforms, two additional SVMPs (PII 23556 

and PII 27392) were more abundant in the supernatant of venom treated with 150 μM of 

marimastat (Figure 4b; Table S2). 

Next, we compared the pellets of untreated venom to venom treated with both 

concentrations of marimastat. When filtering criteria were applied at the low concentration, only 

four SVMPs (Atro B, Atro-D, SVMPIII 27520, and SVMPIII 28348) were detected at 

significantly lower abundance in the treated pellet compared to the control pellet, indicative of a 

stabilizing effect of marimastat (Figure 4c). These same proteoforms, in addition to SVMP PII 

23541, were also significantly reduced in the pellet of the higher marimastat concentration 

(Figure 4d). The presence of positive outliers identified in both the supernatant and negative 
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outliers in the precipitate of treated venom indicates an overall stabilizing effect of marimastat on 

venom targets.    

Validation of inhibitor interactions 

         To validate our PISA results showing the stabilizing effects of marimastat on SVMPs, we 

performed SDS-PAGE and RP-HPLC on non-heat-denatured venom and venoms treated with 

marimastat or vehicle. The toxin family composition of the peaks and bands altered by the 

addition of marimastat was confirmed by mass spectrometry (Tables S3-S4). In the heated 

marimastat-treated venom, gel bands A and B were composed predominantly of PIII 27501 and 

VAP2B (band A) and PII 23556, Atro E and Atro B (band B; Figure 5a). Band C was composed 

of acidic PLA2, band D of PLA2 Cax-K49, CTL 22443, and PLA2 Cvv-N6, and band E was 

predominantly CTL 21182, CTL 22444, and PLA2 Cax-K49. SDS-PAGE analysis of the heat-

denatured and undenatured control venom shows a clear reduction in the size and intensity of 

SVMP-PIII (~50kDa; band A), SVMP P-I/II (~20kDa; band B), and CTL/PLA2 gel bands (~10-

14kDa; bands C-E) in response to thermal treatment (Figure 5a). This reduction in SVMP and 

CTL/PLA2 band size and intensity in response to heat appears to be partially to fully recovered 

when venom is incubated with 150 μM marimastat (Fig. 5a). 

RP-HPLC peaks eluting between 51 to 54 minutes were identified by mass spectrometry 

as SVMPs, with VAP2B, PIII 27501, P-III ACLD, PII 23556, PIII 28348, PII 23566, and Atro E 

representing the dominant proteoforms (Figure 5b). These continued to be the dominant 

proteoforms with the exception of Atro E in both the heated control and marimastat-treated 

venoms. The 27-minute, 29-minute, and 30-minute peaks were composed predominantly of the 

basic PLA2 Cax-K49, CRISP, and basic PLA2 Cvv-N6 respectively (Figure 5c). These remained 
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the dominant proteoforms in the heated control venom and marimastat-treated venom, with the 

exception of marimastat-treated peak 30 where CRISP became the dominant proteoform 

followed by PLA2 Cvv-N6.  

The stabilizing effect of marimastat on some venom proteins is further demonstrated by 

analysis of RP-HPLC, which shows partial recovery in the chromatographic peak area and peak 

height of SVMP and two PLA2 peaks in the marimastat-treated venoms compared to the controls 

(Fig 5b-c). After heat treatment, SVMPs lose 44% of their original peak area, but marimastat 

treatment results in only a 7% decrease in peak area after melting (Figure 5b). The PLA2 proteins 

eluting at 27 minutes decreases by 75% when venom is heat-treated and only 26% when venom 

is treated with marimastat, while the PLA2 eluting at 30 minutes is virtually absent in the heated 

control venom but only loses 52% abundance when heat-treated with marimastat (Figure 5c). 

Peak heights of PLA2 (27 minutes), PLA2 (30 minutes), and SVMPs decrease by 81%, 100%, and 

57% respectively after melting; however, with marimastat peak height only decreases by 21%, 

48%, and 21% respectively (Figure 5b-c).  

VAP2B is the dominant proteoform in C. atrox venom (Figure 5b; Table S3-S4) and was 

the second most abundant proteoform in the SVMP fractions and gel bands of treated venom. 

However, it was not detected as a stabilized outlier in either supernatant or pellet in the current 

PISA experiments performed with the temperate range of 40 to 70°C. Thus, we aimed to increase 

the sensitivity of the PISA assay with a narrower thermal window determined by the Tm values 

previously calculated for the target toxin family. 

Venom-wide interactions with marimastat in a narrowed thermal window PISA 
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While PISA is advantageous because it reduces the analysis time and sample preparation 

while still being effective at target discovery, it may sacrifice sensitivity compared to TPP 

experiments due to the pooling of all temperature points, and melting temperature selection can 

have a drastic effect on thermal behavior in PISA experiments (77,81). To investigate this, we 

compared the performance of a broad thermal window (40-70°C) to a narrower window (56-

60°C), selected based on the mean and standard deviation of Tm’s of SVMPs, the target venom 

toxin family. We performed PISA assays with the same concentrations of marimastat, with a 

narrower temperature window from 56-60°C with 5 temperature points of each sample replicate, 

which has been shown to improve the overall sensitivity of the PISA assay in target 

identification (77). 

When samples were heat treated with a narrower window of temperatures, the lower 

concentration of marimastat displayed three of 21 SVMP proteoforms (PIII 28348, PIII 28325, 

PII 23541) at a greater abundance in treated supernatant compared to untreated supernatant 

(Figure 6a; Table S4). At the higher concentration, seven of 21 proteoforms were higher in 

supernatant of treated venom: VAP1, PIII 28348, PIII 28325, PII 23556, PII 23541, PIII 28771, 

PIII 27392 (Figure 6b). In the pellets of samples treated with a narrower range of temperatures, 

11 of 21 proteoforms (VAP2B, PIII 28348, Atro D, PIII 27501, PII 23541, Atro B, PIII 27461, 

PIII 27520, PIII 28771, PII 23648, PIII 27392) demonstrated an increase in solubility in the 

pellet of the lower concentration of marimastat condition (Figure 6c). These same proteoforms 

plus PII 23556 were reduced in the pellet at the higher concentration of marimastat (Figure 6d). 

Heat-treatment comparison 
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Next, we compared the performance of a broad thermal window (40-70°C) and a 

narrower thermal window (56-60°C) to the results gathered from our validation experiments 

(Figures 4-6). At both temperature ranges when venom was treated with marimastat, principal 

component analysis (PCA) shows clustering of the replicates based on treatment condition, with 

the two marimastat-treated groups separating from the vehicle-treated samples (Figure 7a-d). 

These results indicate that both concentrations of marimastat interact with venom protein targets 

and alter the solubility of venom proteins compared to the control group. However, pellet 

replicates (Figures 7b, d) cluster more tightly together in both conditions than in supernatants 

with greater separation among the treatment groups (Figures 7a, c). The highest amount of 

variance explained (97%) by the top two principal components was in the narrow window pellet, 

though all plots had a high percentage of sample variance explained (>86%). The number of 

significantly stabilized proteins found in the supernatant (p<0.05, log2SAR ≥ 0.5) after treatment 

with marimastat at a broad melting window were 12 and 14 for 15 μM and 150 μM, respectively 

(Figure 7e). The percentage of SVMPs among the identified proteins was 42% and 50%. At the 

narrower melting window, four and nine proteins were identified in 15 μM and 150 μM 

treatments, respectively, but SVMPs comprised 75% and 78% of identified proteins. In general, 

pellets of both melting windows appeared to perform better regardless of concentration. The 

precipitated pellet from 150 μM-treated venom heated at the narrower thermal window identified 

the most SVMP proteoforms of any treatment group. Though the broader temperature window 

precipitate identified fewer SVMP proteoforms, SVMPs were the only venom toxin family 

proteoforms identified, while the supernatant appeared to contain more, potentially off-target, 

non-SVMP identifications. The broad melting window identified four and five SVMP 
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proteoforms, while the narrow window pellets identified 11 and 12 for 15 μM and 150 μM, 

respectively (Figure 7e).  

Performance of specific SVMP proteoform identification between melting windows 

varied significantly at both concentrations, with only one common proteoform at 15 μM (Figure 

7f) and two at 150 μM (Figure 7g). At both concentrations, the narrow window pellets had the 

highest number of uniquely identified SVMP proteoforms. When soluble abundance ratios 

(log2SAR) of supernatant and pellets are compared, the narrower thermal window performs 

significantly better at identifying the target and off-target proteoforms that meet significance 

criteria in both supernatant and pellet. When only proteins meeting significance criteria for both 

supernatant and pellet were compared, the broad window performed poorly, identifying only two 

SVMPs (PIII 28348, PII 23541) with significant stabilizing shifts (Figure 7h). The narrower 

window identified six SVMP proteoforms with significant stabilizing shifts (VAP1, PII 23556, 

PIII 28348, PIII 28771, PII 23541, PIII 27392) (Figure 7i). Off-target proteins that met 

significance criteria for both conditions included hyaluronidase, and, using the narrower window, 

three SVSPs and VEGF. 

Coefficients of variance (CVs) 

To determine consistency of label-free quantification (LFQ) measurements and ensure 

that observed alterations are reliable, coefficients of variance (CVs) were calculated for each 

venom protein across the different replicates in each group. These individual protein CVs were 

then averaged to determine the mean variance for each analysis group. In general, CVs were low 

across replicate groups, with an average intra-group CV of 17.2% for all venom proteins, 

including all analysis groups and both narrow and wide melt range data. Average intra-group 
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CVs were lowest for the high marimastat supernatant (10.33%), high marimastat pellet (10.68%), 

and low marimastat pellet (13.69%) groups. Average CVs were greater for the low marimastat 

supernatant (26.61%), control supernatant (18.57%), and control pellet (23.33%) groups. 

However, all comparisons used to draw conclusions maintain significance despite this 

variability. 

SVMP comparisons and target identification 

Because the narrower temperature window appears to identify more target proteoforms 

with less noise, we utilized this narrow window approach to re-analyze interactions between 

SVMPs and marimastat. More SVMP proteoforms were identified as significant with a narrower 

window when analyses of the supernatant and pellet were combined (Figure 7e-g), and analyses 

of the pellet identified more SVMP proteoforms than the supernatant within the narrower 

thermal window (Figure 8a). Specifically, analysis of the narrow-range pellet identified highly 

abundant proteins also identified in the validation assays but not identified using the broad 

thermal window (e.g., VAP2B). Hierarchical clustering analysis comparing supernatants and 

pellets at both concentrations shows an inverse relationship between relative intensity of each 

proteoform in the pellet vs. the supernatant (Figure 8b). When these conditions are compared to 

controls, we resolved three patterns of various proteoforms: 1) proteoforms that showed a 

positive shift (trend towards stabilization) in the supernatant at both concentrations of 

marimastat; 2) proteoforms that disappear from the pellet after marimastat treatment but do not 

necessarily increase in SAR in the supernatant (trend towards stabilization); and 3) proteoforms 

that increase in pellet SAR after treatment (Figure 8c). Finally, correlation analysis performed 

with the SAR values of proteoforms supernatants and pellets of the narrow thermal window 

identified three clusters of proteoforms with similar shifts in thermal behavior: 1) a cluster 
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containing the proteoforms that were stabilized by marimastat (e.g., VAP2B, 27501, 23556, 

27392) that represent the strongest targets of marimastat, 2) a cluster containing atrolysin B, 

atrolysin D, and PIII 27520 which appeared to decrease in abundance in both supernatants and 

pellets after marimastat treatment, and 3) a cluster that did not appear to be thermally stabilized 

by marimastat including atrolysin A, PII 24293 (Figure 8d). The strongest target list includes 

proteoforms identified in the validation protein gel (e.g., VAP2B, PIII 27501, PII 23556, PIII 

28348, PIII 27392, and PII 23648), and those identified as most abundant in the SVMP HPLC 

peaks (VAP2B, PIII 27501, PII 23556, PIII 28348, PIII 27461).  

While the most abundant proteoforms were identified as significant in analysis of the 

pellet but not in the corresponding supernatant there does appear to be more noise in the pellet 

data indicated by the number of non-target proteins that reached significance with a p<0.05, 

log2SAR ≥ 0.5 (upright right quadrants; Fig. 4c, d and 6c, d). This could be due to differences in 

solubilization of proteins in the pellet indicating that the soluble fraction analysis is more reliable 

in quantification. However, to examine the validity of analyzing the pellet for identifying high 

abundance targets, we use VAP2B as an example. In the case of VAP2B, the stabilizing effect of 

marimastat is only evident in the pellet, and both 15 μM and 150 μM concentrations have 

significantly lower levels of the precipitated toxin (p=0.003, p=0.0013, respectively, Figure 8e). 

A less abundant proteoform, PIII 28348, showed an increase in solubility that was detected in 

both the pellet and the supernatant at both concentrations of marimastat (Figure 8f). In the pellet, 

abundance of PIII 28348 was significantly lower at both concentrations than in the untreated 

control (p=0.0004, p=0.0014, respectively), and significantly higher in the supernatant compared 

to control (p<0.0001).  

Off-target effects 
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Based on recovery of peak area in PLA2 and CTL-containing peaks and gel bands in 

marimastat-treated venom subjected to RP-HPLC (Figure 5c), we explored the possibility of 

using PISA assays to detect off-target effects of marimastat. Interestingly, at both concentrations 

with the wider thermal window we observed changes in thermal behavior indicative of a shift 

towards stabilization of some non-target protein families, including two PLA2 proteoforms (Cax-

K49 and Cvv-N6) and four CTL proteoforms. In the gels, there was recovery of band E 

containing Cax-K49, and CTL’s 22443, 21182, and 22444. Both PLA2 proteoforms were 

repeated positive outliers in supernatants of all conditions but were not significant in any pellets. 

Various CTL proteoforms including CTL 21107, 22105, 22447, 21150, and 22232 were 

significant outliers in some conditions. When comparing only significant log2SAR values in both 

supernatant and pellet, hyaluronidase, VEGF, 2 SVSPs and 2 CTL’s (22444, 21107) were 

significantly correlated between pellet and supernatant at the narrower melt window (Figure 7i).  

Discussion 

The development and testing of alternative snakebite therapeutics that are affordable, 

stable, and easily administered is an urgent global need (1,10,47,110). Small molecule inhibitors 

currently lead the field of possible supplementary snake envenomation therapies, with phase II 

clinical trials ongoing for the PLA2 inhibitor varespladib (111) and the SVMP inhibitor DMPS 

((112); Clinical Trials.gov, 2021). Numerous inhibitors have shown promising cross-species 

efficacy in vivo and in vitro (37,50,53,57,113), indicating that they may be less vulnerable to the 

effects of venom variation than traditional antibody-based antivenoms. However, additional 

preclinical studies are needed to evaluate the neutralizing efficacy and specificity of these drugs 

alone and in combination, and the development of these drugs would be accelerated by 

implementation of high throughput screening of interactions and efficacy across many species. 
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Research on small molecule inhibitors of snake venom toxins has typically focused on in vitro 

and in vivo functional assays based on the known or likely biological activities of toxins (49–

53,58,113–117). These approaches utilize a downstream measurement of the presumed 

interactions of an inhibitor with its targets (ex. reduced specific activity or increased survival). A 

previous study performed molecular docking analysis using marimastat and a purified PI SVMP 

proteoform CAMP-2 to demonstrate a direct interaction (51).  However, the PISA method 

outlined here represents both a direct and venom-wide assessment of target-ligand engagement 

and provides the opportunity to link direct target-ligand interactions with functional and 

phenotypic responses (71,72,118). 

In this study, we investigate the thermal characteristics of the C. atrox venom proteome 

and use this to develop a PISA-based assessment of the venom proteome-wide targets of the 

SVMP inhibitor marimastat. We investigate both its proteome-wide effects and determine and 

validate its interactions with specific venom proteoforms of its target toxin family (SVMPs) as 

well as possible off-target protein families. We identified a suite of marimastat proteoform-level 

targets and confirmed them by RP-HPLC and SDS-PAGE. We also compared the performance 

of soluble supernatant and insoluble precipitate at two different inhibitor concentrations for 

target identification. Our results provide a promising first assessment of the application of a 

PISA-based approach as a sensitive and high-throughput method to assess the direct targets of 

small molecule inhibitors for snake venom. Based on our experiments with PISA in this context, 

we find that analysis of the insoluble fraction from venom that was treated with a high 

concentration of marimastat, but a narrow thermal window for PISA, provided more sensitive 

target data with the least noise compared to other tested methods.  

Jo
urn

al 
Pre-

pro
of



Previous research has shown that small molecule inhibitor efficacy in vitro may not 

always translate to in vivo efficacy. For example, the SVMP inhibitor prinomastat and the metal 

chelator dimercaprol showed moderate to high SVMP inhibitory activity in vitro but failed to 

confer any protection towards crude venom in in vivo assays (60). Furthermore, studies have 

highlighted cross-species variation in neutralization effects of potential inhibitors, which has 

significant implications for the application of inhibitors as broadly effective pre-hospital 

treatments of envenomation by potentially diverse species (58). Dimercaprol showed promise in 

murine models as an SVMP inhibitor against Echis ocellatus venom (119), however, it lacked 

this protective effect in vivo against Dispholidus typus venom (60), likely due to the high levels 

of divergence in venom composition between these distantly related species. While some 

inhibitors have demonstrated neutralization capacity of specific biological effects (such as 

anticoagulation) caused by venoms of divergent species, they may vary in effectiveness across 

species because of lineage-specific variation in venom toxin sequence, activity, or relative 

abundance or because the same biological effects may arise due to the action of different toxin 

families altogether (58,60). Knowledge of the snake species-specific venom-wide and 

proteoform-specific efficacy of inhibitors has the potential to significantly improve our ability to 

predict cross-species neutralization and to unravel the disparity between in vitro and in vivo 

results. 

Before PISA could be widely applied for the screening of a large number of potential 

inhibitors against snake venom, a number of considerations must be addressed. By pooling a 

wide range of temperature points, PISA data in particular may suffer from reduced screening 

sensitivity, depending on the specific thermal properties of various proteins (77). Venom toxins 

appear to have significantly higher Tm values than human cell types, which ranged from 48 to 
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52°C (97). Some potential snake venom toxin families of interest (i.e., SVSPs and CRISPs) 

display high thermal tolerance likely due to increased frequency of disulfide bonds and other 

post-translational modifications, such as sulfation, glycosylation, and amidation, among others 

(120). Further, these properties and amino acid differences between proteins of the same family 

(121) may stabilize proteins at intermediate states during thermal stress to prevent irreversible 

denaturation resulting in proteins that refold partially back to their original states (122). 

Therefore, a thermal shift assay would be less than ideal to investigate inhibitor-toxin 

interactions for such thermostable proteoforms. However, thermal-based target deconvolution 

studies are still suitable for a wide range of unique systems including the study of venom 

metalloproteins in the presence of chelating agents, for example, DMPS and dimercaprol, both of 

which have demonstrated therapeutic potential towards treating snakebite (123,124). For 

example, it was recently demonstrated that TPP with chelating agents can be used to identify 

novel metal-binding proteins (76). Based on the target family-level thermal properties 

determined by TPP, we refined our PISA assay parameters to a more sensitive thermal window 

for target identification and showed that a narrower thermal window selection can improve 

inhibitor target identification. These findings highlight how knowledge of general thermal 

properties of a toxin family of interest might be used to improve target identification, perhaps 

even for protein families with higher thermal stability.  

Our results demonstrate how analysis of the composition of both supernatants and pellets 

can be complementary, and thus be integrated to further refine inferences of molecular targets 

(80,81). In our experiments, we observed varying performances between supernatant and pellet 

data in the consistent identification of inhibitor targets, particularly of the high abundance SVMP 

proteoform VAP2B. We found that precipitated material of the narrowed thermal window 
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provided enhanced sensitivity for target deconvolution of the most abundant toxins and across 

the proteome in general. As previously noted, precipitated material produces better signal-to-

noise ratios and more apparent stability ratios compared to analysis of supernatant (80). Indeed, 

some previously investigated well-known drug targets were only identified in the precipitated 

material, with no corresponding stability ratio shift in the supernatant (80), as seen with VAP2B 

in our study. These findings indicate that pelleted material is not just complementary to 

supernatant-based results, but may also be critical for thorough target deconvolution. This is 

likely due to the continued presence of many proteins even at high temperatures as observed in 

this study and in previous studies (80). We also noted differing performances of the two tested 

marimastat concentrations on target identification, where the higher concentration provided both 

a higher number of possible SVMP targets and less noise compared to the lower concentration of 

marimastat.  

In addition to providing information about direct target interactions, PISA also allows for 

off-target effects to be investigated. Off-target binding of a drug may result in adverse effects 

that decrease (or complicate) its therapeutic utility (118,125), and small molecule drugs in 

particular tend to bind a myriad of molecular targets (126). For example, inhibitors of serine 

proteases exist that may be effective against medically significant snake venom serine proteases 

(SVSPs), but they may also cross-react with endogenous serine proteases in human plasma, 

which are critical for normal coagulation cascade activation (58). Our PISA analyses identified 

evidence of the putative interactions between marimastat and off-target toxin families, including 

CTLs and PLA2 toxins, which were also supported by our liquid chromatography and gel 

electrophoresis results. These findings are also consistent with prior studies that have shown 

marimastat and another SVMP inhibitor, prinomastat, can reduce PLA2-based anticoagulant 
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venom effects (54). CTLs have been shown to complex with SVMPs  (127) suggesting that there 

could be a stabilizing effect in conjunction with SVMPs. PLA2s are medically significant 

enzymes that tend to be fairly ubiquitous and abundant across diverse snake venoms (24,128–

130). Though we did not detect any reduction in PLA2 activity in marimastat-treated samples 

(data not shown), off-target effects should be considered when investigating small molecule 

inhibitors of snake venom toxins, as they may demonstrate effects on other medically significant 

targets and/or contribute to unexpected outcomes in vivo. 

Multiple snake venom gene families have undergone substantial gene family expansion, 

diversification, and neofunctionalization that has in many cases resulted in elevated rates of 

nonsynonymous substitutions in regions of these proteins that determine biological function (12). 

This trend has been observed in SVMPs (131), SVSPs (132), PLA2s (133,134), and 3FTXs (135), 

and has resulted in large multi-gene toxin families with similar structure but a wide array of 

biological functions and pharmacological effects which can also vary substantially across species 

(5,9,11,13,136). Indeed, this diversity of proteoforms within and across species presents an 

extreme challenge for the development of effective therapeutics to target the effects of these 

diverse and species-specific toxin cocktails. A major step to addressing this challenge has 

resulted in efforts to identify the most bioactive and medically relevant toxic proteins and 

proteoforms in venom using “omics” technologies, which has been referred to as 

“toxicovenomics” (137–140). A PISA-based approach in combination with toxicovenomics has 

the potential to take the key next step to address this complex problem through the screening of 

molecules that may neutralize the action of venom toxins across a wide variety of species that 

display high variability of medically significant venom toxin families, proteoforms, and 

activities. PISA and other high-throughput approaches provide promising paths forward for 
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screening of large numbers of commonly studied and currently unexplored inhibitors against a 

wide scope of venoms for more rapid development of alternative snakebite therapies.  

Data availability 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE partner repository with the dataset identifier PXD046399. The data is 

currently private and can be accessed using the following credentials: username: 

reviewer_pxd046399@ebi.ac.uk; password: ZIqVORR6  
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Figure Legends 

Figure 1. TPP (a) and PISA (b) workflows. a) In TPP experiments, samples are heated between 

40 – 70°C and centrifuged to pellet denatured proteins. Samples are reduced, alkylated, and 

trypsin digested and analyzed with LC-MS/MS for protein identification. Melting curves are 

generated in ProSAP using unique intensity for each protein identified. Tm = melting temperature 

of 50% of population. b) In PISA, venom is incubated for 30 minutes at 37°C with an inhibitor 

or alone. Samples are heated from 40-70°C and pooled before centrifuging to pellet insoluble 

material. Samples are prepared as mentioned above and analyzed via LC-MS/MS for protein 

identification. To identify inhibitor targets, unique intensity is used to calculate SAR values for 

each protein followed by identification of significant outliers. 

Figure 2. Crotalus atrox venom proteome characterization. a) Toxin family abundances in C. 

atrox venom modified from Calvete et al., 2009. b) The number of proteoforms identified in C. 

atrox venom in the present study organized by family. c) RP-HPLC separated C. atrox venom. 

For peak identification fractions were analyzed with mass spectrometry and SDS-PAGE and 

compared to known masses from Calvete et al., 2009. SVMP=Snake venom metalloprotease, 
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CTL=C-type lectin, SVSP=snake venom serine protease, Dis=disintegrin, PLA2 =phospholipase 

A2, BPP=Bradykinin potentiating peptide, CRISP=cysteine rich secretory protein, L-AAO=L-

amino acid oxidase, SVMPi= SVMP tripeptide inhibitor, PLB= Phospholipase B, NGF=nerve 

growth factor, HYAL=hyaluronidase, GPC=glutaminyl-peptide cyclotransferase, 

VEGF=vascular endothelial growth factor. 

Figure 3. C. atrox meltome characterization. a) SDS-PAGE of C. atrox venom heated at 

temperatures between 37-70°C for 3 minutes. b) Heatmap showing the soluble fraction of most 

toxin proteoforms relative to 37°C in C. atrox venom at 40, 45, 49, 52, 57, 62, 66, 69, and 75°C. 

Heatmap colors represent the number of standard deviations away from the mean of the protein’s 

intensity in each row of the heatmap. c) Distribution of melting temperatures organized by 

family. Dotted lines represent median and quartile ranges. d) Distribution of melting 

temperatures for all toxins identified. Nonmelters (NM) are classified as proteoforms for which 

Tm could not be calculated when heated to a maximum temperature of 75°C. e) Representative 

melting curve of a CTL (Crotocetin). Abundance is normalized to 37°C f) Representative 

melting curve of a PLA2 (Cvv-N6). Abundance is normalized to 37°C. g) Representative melting 

curve of an SVMP (PIII 28325). Abundance is normalized to 37°C. 

Figure 4. C. atrox venom-wide interactions with two concentrations of marimastat with 

temperature window from 40-70°C. a) Volcano plot comparing soluble supernatant of heat-

treated venom + marimastat (15 μM) to heat-treated venom alone. X indicates SVMP 

proteoforms, red=positive outliers, blue=negative outliers, grey=not significant. b) Volcano plot 

comparing soluble supernatant of heat-treated venom + marimastat (150 μM) to heat-treated 

venom alone. c) Volcano plot comparing insoluble precipitate of heat-treated venom + 
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marimastat (15 μM) to heat-treated venom alone. d) Volcano plot comparing insoluble 

precipitate of heat-treated venom + marimastat (150 μM) to heat-treated venom alone.  

 Figure 5. Validation assays of inhibitor interactions. a) SDS-PAGE comparison of heat-treated 

venom to heat-treated venoms incubated with 150 μM of marimastat with a thermal window of 

40-70°C. Note the recovery in band size and intensity of SVMP and PLA2 bands in marimastat-

treated samples. The left side indicates molecular mass standards in kDa. b) Enlarged HPLC-

separated SVMP peak overlay comparing abundance of non-heat-treated venom (black), heat-

treated venom (red), and venom heat-treated after incubation with 150 μM of marimastat (blue). 

Note the recovery of peak area in the inhibitor-treated sample. c) Enlarged HPLC-separated 

PLA2 peak overlay comparing abundance of non-heat-treated venom (black), heat-treated venom 

(red), and venom heat-treated after incubation with 150 μM of marimastat (blue). Note the 

recovery of PLA2 peak area in the inhibitor-treated sample. 

Figure 6. C. atrox venom-wide interactions with two concentrations of marimastat with 

temperature window from 56-60°C. a) Volcano plot comparing soluble supernatant of heat-

treated venom + marimastat (15 μM) to heat-treated venom alone. X indicates SVMP 

proteoforms, red=positive outliers, blue=negative outliers, grey=not significant. b) Volcano plot 

comparing soluble supernatant of heat-treated venom + marimastat (150 μM) to heat-treated 

venom alone. c) Volcano plot comparing insoluble precipitate of heat-treated venom + 

marimastat (15 μM) to heat-treated venom alone. d) Volcano plot comparing insoluble 

precipitate of heat-treated venom + marimastat (150 μM) to heat-treated venom alone. 

Figure 7. Comparison of a broad (40-70°C) to a narrow (56-60°C) PISA thermal window. PCA 

plot comparing replicates of soluble supernatant of a) heat-treated venom + 15 μM marimastat to 
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heat-treated venom alone and b) heat-treated venom + 150 μM marimastat to heat-treated venom 

alone. SN= supernatant, Pell= pellet, Con= control. PCA plot with 95% confidence intervals 

comparing replicates of insoluble precipitate of c) heat-treated venom + 15 μM marimastat to 

heat-treated venom alone and d) heat-treated venom + 150 μM marimastat to heat-treated venom 

alone. SN= supernatant, Pell=pellet. SN= supernatant, Pell= pellet, Con= control.  e) Number of 

SVMP and non-SVMP proteins identified with significant thermal shifts toward stabilization (p-

value<0.05 log2SAR>0.5) after 15 μM or 150 μM marimastat treatment in supernatants and 

pellets heat-treated at a broad (40-70°C) or a narrow (56-60°C) thermal window. 

SN=supernatant, P=pellet. Venn diagrams of SVMP proteins identified with significant thermal 

shifts toward stabilization (p-value<0.05, log2SAR>0.5) in supernatants and pellets heat-treated 

at a broad (40-70°C) or a narrow (56-60°C) thermal window after f) 15 μM or g) 150 μM 

marimastat treatment. SN= supernatant, Pell=pellet. Scatter plot showing log2SAR values 

calculated from 150 μM marimastat-treated venom vs. vehicle treatment heated at from h) 40-

70°C or i) 56-60°C that meet significance criteria in both supernatant (SN) and precipitate 

(Pellet) group. Largest outliers of SVMP and non-SVMP proteoforms are labeled. 

SN=supernatant. Black=SVMP proteoforms, grey=non-SVMP toxins. SN= supernatant, 

Hyal=hyaluronidase, ACLD=PIII SVMP ACLD, CTL= C-type lectin.  

Figure 8. Effects of marimastat treatment and a narrow thermal window on SVMP proteoforms 

only. a) Number of proteins identified in supernatant (SN) and pellet of narrow thermal window 

that meet significance criteria (p-value<0.01, log2SAR>0.5) b) heatmap of sum-normalized 

intensity values in supernatant or precipitate of SVMPs from 15 μM or 150 μM marimastat 

treated venom. Heatmap colors are scaled by row to better visualize variation in sum-normalized 

intensity between classes. c) heatmap of sum-normalized intensity values in supernatant or 
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precipitate of SVMPs from 15 μM or 150 μM marimastat treated venom or vehicle control 

showing concentration-dependent shifts in abundance. Heatmap colors are scaled by row to 

better visualize variation in sum-normalized intensity between classes. d) Correlation plot of 

SAR values showing strongest marimastat targets based on effects of marimastat treatment on 

SVMP proteoform intensity. Comparison of concentration-dependent intensity shifts between 

precipitate and supernatant of e) the most abundant SVMP proteoform VAP2B and f) a less 

abundant SVMP proteoform PIII 28348 at both concentrations of marimastat at the narrow 

thermal window. 

 

Supplemental Material 

Table S1. Venom toxin melting temperatures from TPP experiments. 

Table S2. Calculated -log10 (p-value) and log2 SAR (soluble abundance ratio) of all SVMP 

proteoforms for all PISA experiments.  

Table S3. Validation assay reverse phase HPLC fractions of crude untreated C. atrox venom and 

SDS-PAGE gel band protein identification with LC-MS/MS analysis. 

Table S4. Validation assay reverse phase HPLC fractions of marimastat-treated and untreated 

PISA samples.  
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• A significant proportion of the snake venom proteome is amenable to thermal 

denaturation. 

• The proteome integral solubility alteration assay can identify venom protein targets of 

small molecule inhibitors. 

• Both the supernatant and pellet provide useful and complementary information for target 

deconvolution. 

• Optimizing the thermal window based on the melting temperatures of the target protein 

can significantly improve results.   
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Smith et al. investigate the utility of the proteome integral solubility alteration (PISA) assay for 

elucidating venom protein interactions with a small molecule inhibitor. Thermal proteome 

profiling experiments performed on the venom proteome of the Western Diamondback 

rattlesnake (Crotalus atrox) demonstrate that much of the venom proteome is amenable to 

thermal denaturation. Further, PISA was performed to identify specific SVMP proteoforms that 

are targeted by the matrix metalloprotease inhibitor marimastat. Our results demonstrate that a 

PISA-based approach can provide rapid, highly sensitive, and robust inferences for the unbiased 

proteome-wide screening of venom and inhibitor interactions. 
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