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Abstract 

Background

Binary diagnostic tests are commonly used in medicine to answer a 
question about a patient’s clinical status, most commonly, do they or 
do they not have some disease. Recent advances in statistical 
methodologies for performing inferential statistics to compare 
commonly used test metrics for two diagnostic tests have not yet 
been implemented in a robust statistical package.

Methods

Up-to-date statistical methods to compare the test metrics achieved 
by two binary diagnostic tests are implemented in the new R package 
testCompareR. The output and efficiency of testCompareR is 
compared to the only other available package which performs this 
function, DTComPair, using a motivating example.

Results

testCompareR achieves similar results to DTComPair using statistical 
methods with improved coverage and asymptotic performance. 
Further, testCompareR is faster than the currently available package 
and requires fewer pre-processing steps in order to produce accurate 
results.
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Conclusions

testCompareR provides a new tool to compare the test metrics for two 
binary diagnostic tests compared with the gold standard. This tool 
allows flexible inputs, which minimises the need for data pre-
processing, and operates in very few steps, so that it is easy to use 
even for those less experienced with R. testCompareR achieves results 
comparable to those computed by DTComPair, using optimised 
statistical methods and with improved computational efficiency.

Plain Language Summary  
testCompareR is a new package for the statistical programming 
language R which compares the performance of two binary diagnostic 
tests. Binary diagnostic tests are tests which give either a positive or 
negative outcome. A good example is the lateral flow test commonly 
used to diagnose COVID-19, but they are widely used in medicine.  
 
testCompareR is faster and more efficient than existing options like 
DTComPair, with comparable accuracy and fewer pre-processing 
requirements. This means it's easier to use, especially for those new 
to R. testCompareR is a valuable option for researchers and clinicians 
needing to compare test metrics from two binary diagnostic tests.
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Introduction
The determination of disease status based upon some diagnostic test is a fundamental principle in medicine. 
Tests may be straightforward, for example the presence or absence of crepitations on lung auscultation, 
or highly complex, such as the identification of specific changes in a patient’s genetic code, but very often  
clinicians are seeking to answer a simple question with a dichotomous answer: does this patient have or not  
have the disease in question?

Accordingly, very many tests have been developed which seek to provide a simple and interpretable binary result, 
either by identifying a target which is disease specific and the presence or absence of which confirms or refutes 
the diagnosis, or by providing some threshold value above (or below) which the patient can be considered  
positive for the disease1–3.

Binary diagnostic tests such as these rarely, if ever, perform perfectly. During development, diagnostic tests are 
often compared to a gold standard; a reference test or clinical diagnosis which defines true disease status for an 
individual. From this we can derive the fundamental performance characteristics, such as sensitivity, specifi-
city, positive and negative predictive values and likelihood ratios. As for any other estimated quantities, principled  
comparison of these test metrics for two different tests requires the use of statistical inference.

Although the comparison of test metrics has been the subject of much academic inquiry, to the best of our knowl-
edge, there is only one package for the open-source statistical programming language R4 which performs this 
function. The DTComPair package5 uses well-established statistical methods to perform statistical inference  
when comparing test metrics. The package is available from the Comprehensive R Archiving Network (CRAN).

A newer program, compbdt, has also been published in an open-access journal6. This program uses the most 
up-to-date statistical methods. However, the code is presented as one large function and is therefore unavail-
able on CRAN. This limits the useability of the program, as users are required to search the statistical literature  
and be sufficiently proficient with R to import and run the function.

We sought to develop a new R package which performs both descriptive and inferential statistics for the  
commonly used test metrics, combining the optimised statistical methods of compbdt with the useability  
and availability of DTComPair.

Because the target users of this package are clinicians involved in the development and evaluation of diagnostic 
tests, not statisticians or computational scientists, we defined a list of features to maximise usability. Specifically,  
the new package is designed to:

•    Take a data frame or matrix as an argument containing all commonly used binary operators (eg. yes/no,  
y/n, pos/neg, 1/0, etc.).

•    Return output following a single function call.

•    Display a contingency table (confusion matrix) summarising the raw data.

•    Allow users to select whether this matrix has margins displaying row and column sums.

•    Return the prevalence of the condition in question (according to the reference standard) and a confidence  
interval based on the cohort studied.

•    Allow the user to select which pairs of test metrics they are interested in (e.g. sensitivity/specificity) and  
exclude those which are not relevant to their hypothesis.

•    Return a matrix for each selected test metric displaying point estimates for both tests, alongside standard  
errors and confidence intervals.

•    Return test statistics and p-values for differences between the selected test metrics for each of the two  
tests

•    Handle multiple testing using standard correction methods.

•    Offer the user the option of continuity correction if McNemar’s test is indicated.
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Table 1. Contingency table evaluating a test against a 
gold standard.

Test

+ -

Gold 
standard

+ True positive (TP) False positive (FP)

- False negative (FN) True negative (TN)

•    Allow the user to input test names to facilitate interpretation.

•    Provide an optional function which interprets the output (in plain English) for the user.

•    Provide an additional function for summarising descriptive statistics for one test.

Here we introduce testCompareR, a new R package which calculates the performance metrics for two diag-
nostic tests by comparing them against a user-provided gold standard test, then compares the performance  
metrics of those two binary diagnostic tests to one another, all subject to a paired experimental design.

Methods
Implementation
Statistical methods
Calculating the test metrics
Each of the test metrics is calculated using well-established and standardised formulas7–9, based upon standard  
contingency tables comparing the gold standard and the test results (Table 1).

Diagnostic accuracies (sensitivity and specificity)

                                                              
TP TNSe Sp

TP FN TN FP
= =

+ +

Predictive values

                                                              
TP TNPPV NPV

TP FP TN FN
= =

+ +

Likelihood ratios

                                                               
1

1

Se SePLR NLR
SpSp
−= =

−

Estimating confidence intervals
The diagnostic accuracies and predictive values are binomial proportions, for which several methods exist 
to estimate confidence intervals. Yu et al. (2014, see 10) proposed a modification of the Wilson interval and  
demonstrated superior performance compared to other commonly used intervals.

The likelihood ratios are not binomial proportions, but rather ratios of two independent binomial proportions. 
A comprehensive review and simulation of methods to estimate confidence intervals for the ratios of binomial  
proportions demonstrated that an approximation to the score method had superior performance11.

These methods are implemented within the testCompareR package. For detailed mathematical descriptions,  
see ‘Mathematical descriptions’ at the end.

Hypothesis testing
Diagnostic accuracies
Simulation studies have demonstrated that the best methods for comparing diagnostic accuracies obtained from  
paired data vary depending on prevalence and total number of participants12.
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As a rule of thumb, in cases where prevalence is low (<10%) and the total number of participants is less than  
100, the Wald test should be used to test two null hypotheses12:

                                                                               0 1 2:H Se Se=

                                                                              0 1 2: pH S Sp=

Where either condition remains unmet the optimal method involves first testing the global null  
hypothesis:

                                                                  0 1 2 1 2: and pH Se Se S Sp= =

                                                                   1 1 2 1 2: or pH Se Se S Sp≠ ≠  

The Wald test statistic forms the basis of this test. If the global null hypothesis is not rejected then  
neither individual null hypothesis should be considered unmet. When the global null is rejected then  
individual hypothesis tests are performed to determine whether the sensitivities are significantly different, or  
the specificities or both. When the total number of participants is less than or equal to 100, or greater than or equal  
to 1000, then the Wald test statistic performs best according to Roldán-Nofuentes and Sidaty-Regad12. In cases  
where total number of participants is between 100 and 1000 then McNemar’s test should be used12. In the  
testCompareR package, McNemar’s test is performed with continuity correction by default.

Predictive values
In a manner similar to that seen for diagnostic accuracies, the approach to hypothesis testing for the predictive 
values relies upon the Wald test statistic to first perform a global hypothesis test13. If the global hypothesis is 
rejected, the causes of significance are investigated using a weighted generalised score statistic, as described  
by Kosinski14.

Likelihood ratios
The testCompareR package also uses global hypothesis testing to compare the likelihood ratios. The global 
hypothesis test considers the natural logarithm of the ratios of the positive likelihood ratios and negative likeli-
hood ratios before calculating the Wald test statistic15. Where the global null is rejected the cause of significance is  
determined by applying the same statistical methods individually.

Installation
testCompareR is available from CRAN and can be installed via the install.packages() function. This 
version should be the preferred version for most users. The development version with the most current features  
is available from GitHub.

# install from CRAN
install.packages("testCompareR")

# install development version
if(require("devtools")) {
  install_github("kajlinko/testCompareR")
} else {
  install.packages("devtools")
  require("devtools")
  install_github("kajlinko/testCompareR")
}

Data preparation
Flexible data entry is one of the key features of testCompareR. This minimises the number of pre-processing 
steps required by the user. In fact, for users not proficient with R, pre-processing could be handled entirely  
within spreadsheet or database software. There are only two steps which are imperative.

Firstly, positive and negative results must be coded according to a list of acceptable values. This list is  
relatively extensive, incorporating commonly used synonyms for coding positive and negative results in the English 
language (see Table 2). There is no requirement for consistency, which may benefit researchers performing  
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secondary data analyses using data collated from multiple sources. Additionally, the package handles cases and  
white space so that researchers do not have to manually or computationally re-code their data.

Secondly, the structure of the data as presented to the package must conform to four rules:

1)    The data must be input as a data frame (or matrix) with three columns.

2)    The first column should contain values for test 1, the second for test 2 and the third column should  
contain the gold standard results.

3)    The data need to be paired, i.e. the results on each row are for the same test sample or individual.

4)    The observations on each individual row are independent, i.e. no biological or technical replicates,  
which violate the assumption of independence.

Failure to comply with rule 1 will result in an error. However, failure to comply with rules 2, 3 and 4 may  
produce sensible-looking results which do not answer the question asked by the researcher. Users should  
therefore take extra care to ensure their data have been organised appropriately before implementing the  
analysis.

testCompareR currently expects complete data to be provided to the functions. The user is required to decide 
how to deal with missing values (e.g. complete case analysis, single value imputation, multiple imputation). If  
in doubt, users of the package should discuss their individual situation with an experienced statistician.

Mathematical descriptions
Here we describe the mathematical equations for each of the confidence intervals calculated in the  
testCompareR paper.

First, we must define the contingency table which compares both tests under evaluation against the gold standard.  
This defines the fundamental values which will be used in subsequent calculations (see Table 3).

Sensitivity (Yu et al. interval):

                                   

4 2
1 / 21 / 2 1 / 2

24
1 / 21 / 2

53/ ˆ ˆ ˆ0.5 ( 0.5) (1 )
4i ii

zs z zsSe Se Se
s zs z

αα α

αα

−− −

−−

+
+ − ± − +

++

where z
1–α/2

 is the 100(1 – α/2)th percentile of a standard normal distribution.

Specificity (Yu et al. interval):

                                   
4 2

1 /21 /2 1 /2
4 2
1 /2 1 /2

53/ ˆ ˆ ˆ0.5 ( 0.5) (1 )
4i ii

zr z z
Sp r Sp Sp

r z r z
αα α

α α

−− −

− −

+
+ − ± − +

+ +

where z
1–α/2

 is the 100(1 – α/2)th percentile of a standard normal distribution.

Table 2. List of acceptable values when coding data from 
binary diagnostic tests. Values in inverted commas indicate 
character strings. Integer values are denoted without quotation 
marks. The acceptable values are not case sensitive, e.g. “pos”, 
“Pos”, “POS” would all be acceptable for positive result coding.

List of acceptable values

Positive "positive", "pos", "p", "yes", "y", "+", "1", "true", "t", 1

Negative "negative", "neg", "no", "n", "-", "0", "2", "false", "f", 0, 2
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Positive predictive value (Yu et al. interval):

                  

4 2
11 1 /2 / 2 1 / 2

11 1 14 2
11 1 /2 /21

53/ ˆ ˆ ˆ0.5 ( 0.5) (1 )
4

zn z znPPV PPV PPVnn z z
αα α

α α

−− −

− −

⋅
⋅

⋅⋅

+
−+ ± − +

++

                 

4 2
1 11 /2 / 2 1 / 2

12 2 24 2
11 1 /2 /21

53/ ˆ ˆ ˆ0.5 ( 0.5) (1 )
4

zn z znPPV PPV PPVnn z z
αα α

α α

−− −

− −

⋅
⋅

⋅⋅

+
−+ ± − +

++  

where n
1
. = n

11
 + n

10
 and n.

1
 = n

11
 + n

01
.

Negative predictive value (Yu et al. interval):

                 

4 2
10 1 /2 / 2 1 / 2

01 1 14 2
0 01 /2 /21

53/ ˆ ˆ ˆ0.5 ( 0.5) (1 )
4

zn z znN N NP PV PVV nn z z
αα α

α α

−− −

− −

⋅
⋅

⋅ ⋅

+
−+ ± − +

++

                

4 2
11 /2 / 20 1 / 2

02 2 24 2
00 1 /2 /21

53/ ˆ ˆ ˆ0.5 ( 0.5) (1 )
4

zn z znN N NP PV PVV nn z z
αα α

α α

−− −

− −

⋅
⋅

⋅⋅

+
−+ ± − +

++

where n
0
. = n

00
 + n

01
 and n.

0
 = n

00
 + n

10
.

Positive likelihood ratio (approximation to the score method):

          

2 2
/21 2 2/21

/21 1 1 1 1 1 111 1 1 1 1 1 1

2
/211 11

( 2 ) (1 ) ( )2 4

( )(1 )

z zn s ns r s rr s r z s r s r nSe Sp ss rr

zr s rns Sp

α α
α

α

− −
−

−

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

′  + + − ± + − − + − 

 − −− 

� �� � �� � � �� � � � � � � � �� ��

�� � �� �  

where s
1
. = s

1
. + 0.5, r1. = r

1
. + 0.5, s = s + 1, r = r + 1, n = n + 2, Se

1
 = s

1
./s and Sp

1
 = r

0
./r.

Regarding PLR
1
, if the lower limit of the confidence interval is less than s

1
./(n – r

1
.) or greater than �1PLR   

then the lower limit is given by: 

                                             
2 2
1 /2 1 /2

1 /21 1 1 1 2

2 2
1 1 /2

(1 ) (1 )
2 4

(1 )

z zzs Sp s Sp Se

S Sp z

α α
α

α

− −
−

−

⋅ ⋅ −− + − + −

− +

   

 

Equally, if the upper limit is greater than (n – s
1
.)/r

1
. or less than �1PLR  then the upper limit is given by:

                                                 

2 2
1 /2 1 /2

1 1 /21 1 11

2
1

( 1)
2 4

(1 )

z zzr Se r Se Sp

r Sp

α α
α

− −
−⋅ ⋅ +++ + −

−

   



Table 3. Table of fundamental values. Each value represents the number 
of individuals meeting the conditions. For example, s11 represents the 
number of individuals for whom the gold standard, Test 1 and Test 2 are all 
positive.

Test 1 + Test 1 - Column 
totalsTest 2 + Test 2 - Test 2 + Test 2 -

Gold standard
+ s11 s10 s01 s00 ss

- r11 r10 r01 r00 rr

Row totals n11 n10 n01 n00 n
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Replacing x
1
. with x.

1
 where x represents any of the fundamental values s, r or n and Se

1
 and Sp

1
 with Se

2
 and Sp

2
, 

respectively, will return the values for � 2PLR .

Negative likelihood ratio (approximation to the score method):

           

2 2
/21 2 2/21

1/20 0 0 0 0 0 0 0 01 0 1 0 0

2
/210 01

( 2 ) (1 ) ( )2 4

( )

z zn s n n Ses r s rr s r z s r r Sps ss rr

zr s rnsSp

α α
α

α

− −
−

−

⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

 −+ + − ± + − + − 

 − − 

              

     

where s
0
. = s

0
. + 0.5, r

0
. = r

0
. + 0.5, s = s + 1, r = r + 1, n = n + 2, Se

1
 = s

1
./s and sp

1
 = r

0
./r.

Regarding NLR
1
, if the lower limit of the confidence interval is less than s

0
./(n – r

0
.) or greater than 1

ˆNLR  then the  
lower limit is given by:

                                                 

2 2
1 /2 1 /2

0 1 / 2 0 1 11

22
1 /21

( 1)
2 4 ,

z zzs s Sp SeSp

sSp z

α α
α

α

− −
−

−

⋅ ⋅+ + −+ −

+

  



Equally, if the upper limit is greater than (n – s
0.
)/r

0
. or less than 1

ˆNLR  then the upper limit is given by:

                                            

2 2
1 /2 1 /2

0 1 / 2 0 1 11

2
1

( )( 11 )
2 4 .

z zz Spr r SeSe

rSp

α α
α

− −
−⋅ ⋅ − −+− + +  

  

Replacing x
0
. with x.

0
 where x represents any of the fundamental values s, r or n and Se

1
 and Sp

1
 with Se

2
  

and Sp
2
, respectively, will return the values for 2

ˆNLR .

Using the package
The package consists of three main functions.
compareR(): This is the workhorse function of the package. It takes as its argument a data frame or matrix, 
which should be appropriately formatted (see ‘Data preparation’). Internal functions then ensure data are  
correctly coded, before calculating output values according to the methodologies previously described. A range  
of optional parameters allow users to customise the output:

•    alpha An alpha value, i.e. significance level. Defaults to 0.05.

•    margins A Boolean value indicating whether the contingency tables should have margins containing  
summed totals of rows and columns. Defaults to FALSE.

•    multi_corr Method for multiple comparisons. Uses p.adjust.methods. Defaults to “holm”.

•    cc A Boolean value indicating whether McNemar’s test should be applied with continuity correction.  
Defaults to TRUE.

•    dp Number of decimal places of output in summary tables. Defaults to 1.

•    sesp A Boolean value indicating whether output should include sensitivity and specificity. Defaults to 
TRUE.

•    ppvnpv A Boolean value indicating whether output should include positive and negative predictive  
values. Defaults to TRUE.

•    plrnlr A Boolean value indicating whether output should include positive and negative likelihood  
ratios. Defaults to TRUE.

•    test.names A character vector of length two giving the names of the two different binary diagnostic  
tests. Defaults to c(“Test 1”, “Test 2”).

The output from the compareR() function is a multilevel list object of class compareR. Users can access  
individual results using standard R indexing. The list structure is visually described in Figure 1.
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Figure 1. A diagrammatic representation of the multilevel list output from the compareR() function.
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interpretR(): The interpretR() function provides a means for clinicians to quickly understand the  
significance of their results, without having to manually dissect the multilevel list output from compareR().  
By passing the interpretR() function the output from compareR() the user is provided with a readout  
in the console in plain English.

summariseR(): When a clinician is evaluating only one test, the summariseR() function will quickly calcu-
late and display the descriptive statistics. Although this is not difficult to perform manually, the summariseR()  
function is fast and convenient, even with large datasets. Like compareR(), summariseR() allows flexible  
input, which can prevent researchers having to manually re-code their data. Users should note that unlike  
compareR(), summariseR() requires a data frame or matrix with two columns, evaluated test and gold  
standard test, as input.

Operation
At the time of writing, the testCompareR package can be run on any operating system that supports  
R version 4.3.0 or later.

Results
Evaluation
We calculated the results for the Coronary Artery Surgery Study (cass) dataset using testCompareR,  
DTComPair and compbdt. This dataset looks at exercise stress testing and history of chest pain as two tests  
for coronary artery disease as determined by coronary angiography (the gold standard)16. It has become a standard  
for testing in statistical research regarding test metrics. The results are shown in Table 4.

Both testCompareR and DTComPair both achieve similar results. Given that the mathematical basis 
of testCompareR and compbdt is the same, we see almost identical results. However, the test statis-
tics for the individual hypothesis tests of the diagnostic accuracies (sensitivity and specificity) are distributed 
approximately according to the chi-squared distribution, which is reflected in the testCompareR package.  
The original compbdt program mistakenly treats these test statistics as if they were distributed according to the  
normal distribution which can lead to differences between results (see e.g. results for the diagnostic accuracy of  
Test 1 in Table 4).

Performance evaluation
To evaluate the performance of the package we used the microbenchmark package17 to repeatedly  
compute the test metrics, calculate confidence intervals and perform inferential tests on the cass dataset using  
testCompareR, DTComPair and compbdt. Each set of calculations was repeated 100 times and the time  
elapsed for each test was recorded. The results are shown in Table 5 and Figure 2A.

A certain amount of pre-processing was required in order that the data conformed to the requirements of each  
package or program. The code describing this pre-processing is included with this paper.

Our results demonstrate that the compareR() function returns the results considerably quicker than either 
DTComPair or compbdt. This performance advantage is maintained even when compareR() is wrapped 
by the interpretR() function. Further testing of the individual functions from DTComPair and the inter-
nal functions of testCompareR demonstrated that the cause of the difference between the two packages is the  
method for comparing the likelihood ratios, shown in Figure 2B. The method used by DTComPair is based on 
logistical regression, whereas the method used by testCompareR is based on an approximation of the score 
statistic, which is simpler to compute requiring only solving of a second-degree equation. Simulation to estimate  
the power and type 1 error rate for this approximation across a large range of scenarios found that it performs well  
in most reasonable use cases15.

Use cases
To demonstrate the use of the testCompareR package we will use the Coronary Artery Surgery Study (cass)16  
data set which is included with the package.

First, examining the data we see that the data frame contains three columns, exercise relating to an exer-
cise stress test, cp relating to a history of chest pain (each used here as tests for coronary artery disease), and  
angio, which reports the outcome of the gold standard test – coronary angiography. Here, we can see that the data  
are already coded as zeros and ones.
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Table 4. Outputted values for each of the test metrics by package/program. DTComPair 
we were unable to retrieve prevalence from DTComPair’s standard functions. For likelihood ratios 
testCompareR and compbdt report SE, whereas DTComPair reports SE.log, therefore they are not 
directly comparable. Se - sensitivity, SE - standard error, LCI - lower confidence interval, UCI - upper 
confidence interval, p - p value, Sp - specificity, PPV - positive predictive value, NPV - negative 
predictive value, PLR - positive likelihood ratio, NLR - negative likelihood ratio.

Disease prevalence

Prevalence SE LCI UCI

testCompareR 69.81 1.56 66.68 72.77

compbdt 69.81 1.56 66.68 72.77

Diagnostic accuracies: Test 1

Se SE LCI UCI p Sp SE LCI UCI p

testCompareR 82.57 1.54 79.36 85.39 0 74.14 2.7 68.56 79.09 0.92

DTComPair 82.57 1.54 79.55 85.58 0 74.14 2.7 68.85 79.44 0.83

compbdt 82.57 1.54 79.36 85.39 0 74.14 2.7 68.58 79.09 0.99

Diagnostic accuracies: Test 2

Se SE LCI UCI p Sp SE LCI UCI p

testCompareR 91.12 1.15 88.61 93.15 74.9 2.67 69.36 79.79

DTComPair 91.12 1.15 88.86 93.38 74.9 2.67 69.67 80.14

compbdt 91.12 1.15 88.61 93.15 74.9 2.67 69.36 79.79

Predictive values: Test 1

PPV SE LCI UCI p NPV SE LCI UCI p

testCompareR 88.07 1.36 85.17 90.50 0.37 64.78 2.75 59.25 69.98 0

DTComPair 88.07 1.36 85.41 90.73 0.37 64.78 2.75 59.39 70.18 0

compbdt 88.07 1.36 85.17 90.50 0.37 64.78 2.75 59.25 69.98 0

Predictive values: Test 2

PPV SE LCI UCI p NPV SE LCI UCI p

testCompareR 88.07 1.36 85.17 90.50 64.78 2.75 59.25 69.98

DTComPair 88.07 1.36 85.41 90.73 64.78 2.75 59.39 70.18

compbdt 88.07 1.36 85.17 90.50 64.78 2.75 59.25 69.98

Likelihood ratios: Test 1

PLR LCI UCI p NLR LCI UCI p

testCompareR 3.19 2.61 3.95 0.37 0.23 0.2 0.28 0

DTComPair 3.19 2.59 3.93 0.37 0.23 0.2 0.28 0

compbdt 3.19 2.61 3.95 0.37 0.23 0.2 0.28 0

Likelihood ratios: Test 2

PLR LCI UCI p NLR LCI UCI p

testCompareR 3.63 2.96 4.50 0.12 0.09 0.15

DTComPair 3.63 2.94 4.48 0.12 0.09 0.15

compbdt 3.63 2.96 4.50 0.12 0.09 0.15
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Table 5. Time to compute 
descriptive and inferential 
statistics. Times computed using  
the cass dataset for individual  
packages/programs using a Windows 
10 x64 laptop with 16GB RAM 
and an 11th Gen Intel(R) Core(TM) 
i7-1165G7 @ 2.80GHz processor. 
testCompareR was run in R 4.3.0 via 
Rstudio 2023.12.1+402.

Mean (ms) SD (ms)

compareR 14.1 7.8

interpretR 20.5 11.4

DTComPair 114.2 38.1

compbdt 3,578.4 1,752.3

Figure 2. A) Comparison of computational time for testCompareR, DTComPair and compbdt. Each package was run 
100 times. B) Comparison of testCompareR and DTComPair, by function. testCompareR compares the likelihood ratios 
more quickly than DTComPair because it uses a method based on an approximation of the score statistic, which 
requires only solving of a second degree equation. The DTComPair method is based upon logistical regression. Each 
function was run 100 times.

rbind(head(cass), tail(cass))
    exercise cp angio
1          1  1     1
2          1  1     1
3          1  1     1
4          1  1     1
5          1  1     1
6          1  1     1
866        0  0     0
867        0  0     0
868        0  0     0
869        0  0     0
870        0  0     0
871        0  0     0
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To compare the two tests, pass the data to the compareR() function. This returns a multilevel list, as previ-
ously described. To avoid an unnecessary lengthy output in the example we have set the parameters ppvnpv  
and plrnlr to FALSE which allows us not to execute these tests.

results <- compareR(cass, ppvnpv = FALSE, plrnlr = FALSE)
results

$cont
$cont$`True Status: POS`
          Test 2
Test 1     Positive Negative
  Positive      473       29
  Negative       81       25
 
$cont$`True Status: NEG`
          Test 2
Test 1     Positive Negative
  Positive       22       46
  Negative       44      151
 
$prev
           Estimate  SE Lower CI Upper CI
Prevalence     69.8 1.6     66.7     72.8

$acc
$acc$accuracies
$acc$accuracies$`Test 1`
            Estimate  SE Lower CI Upper CI
Sensitivity     82.6 1.5     79.4     85.4
Specificity     74.1 2.7     68.6     79.1

$acc$accuracies$`Test 2`
            Estimate  SE Lower CI Upper CI
Sensitivity     91.1 1.2     88.6     93.1
Specificity     74.9 2.7     69.4     79.8

$acc$glob.test.stat
[1] 25.662

$acc$glob.p.value
[1] 2.676497e-06

$acc$glob.p.adj
[1] 2.676497e-06

$acc$sens.test.stat
[1] 23.64545

$acc$sens.p.value
[1] 0

$acc$sens.p.adj
[1] 0

$acc$spec.test.stat
[1] 0.01111111

$acc$spec.p.value
[1] 0.9911348
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$acc$spec.p.adj
[1] 1

$other
$other$alpha
[1] 0.05

$other$equal
[1] FALSE

$other$zeros
[1] 0

$other$Youden1
[1] 0.5671028

$other$Youden2
[1] 0.6602336

$other$test.names
[1] "Test 1" "Test 2"

attr(,"class")
[1] "compareR"

Values in this list can be accessed via standard indexing.

results$acc$accuracies # returns matrices summarising diagnostic accuracies
$`Test 1`
            Estimate  SE Lower CI Upper CI
Sensitivity     82.6 1.5     79.4     85.4
Specificity     74.1 2.7     68.6     79.1

$`Test 2`

            Estimate  SE Lower CI Upper CI
Sensitivity     91.1 1.2     88.6     93.1
Specificity     74.9 2.7     69.4     79.8

Finally, if the user prefers to see an interpretation of the output in plain English, including highlighted values  
where results are significant, they can pass the output of compareR() to interpretR().

interpretR(results)
----------------------------------------------------------------------------
----
CONTINGENCY TABLES
----------------------------------------------------------------------------
----

True Status - POSITIVE
          Test 2
Test 1     Positive Negative
  Positive      473       29
  Negative       81       25
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True Status - NEGATIVE
          Test 2
Test 1     Positive Negative
  Positive       22       46
  Negative       44      151
 
----------------------------------------------------------------------------
----
PREVALENCE (%)
----------------------------------------------------------------------------
----

           Estimate  SE Lower CI Upper CI
Prevalence     69.8 1.6     66.7     72.8

----------------------------------------------------------------------------
----
DIAGNOSTIC ACCURACIES
----------------------------------------------------------------------------
----

 Test 1 (%)
            Estimate  SE Lower CI Upper CI
Sensitivity     82.6 1.5     79.4     85.4
Specificity     74.1 2.7     68.6     79.1

 Test 2 (%)
 
            Estimate  SE Lower CI Upper CI
Sensitivity     91.1 1.2     88.6     93.1
Specificity     74.9 2.7     69.4     79.8

Global Null Hypothesis: Se1 = Se2 & Sp1 = Sp2
Test statistic:  25.662  Adjusted p value:  2.676497e-06 ***SIGNIFICANT***

Investigating cause(s) of significance

Null Hypothesis 1: Se1 = Se2
Test statistic:  23.64545  Adjusted p value:  0 ***SIGNIFICANT***

Null Hypothesis 2: Sp1 = Sp2
Test statistic:  0.01111111  Adjusted p value:  1

testCompareR is elegant in its simplicity. Several parameters permit customisation of the output, but they 
are not elaborated here as they are not essential to understand the workings of the package (the interested reader 
is referred to the testCompareR package documentation files). Further details can be found within the  
package vignette, which contains examples for all modifiable parameters.

Discussion
Despite the common use of binary diagnostic tests in medicine only one package, DTComPair, provides 
methods to compare the test metrics between two binary diagnostic tests using paired data5. This package 
requires the user to be computationally literate, as several function calls are necessary to extract the outputs that 
would normally be published when comparing the performance of two tests. Additionally, though the package  
implements well-established traditional methods, the evidence suggests that newer methods provide better  
coverage in the case of confidence intervals and better asymptotic performance in the case of hypothesis tests10–15.  
Here we have shown with an example dataset that the newer methods for comparing the likelihood ratios between  
two tests achieve comparable results, but are more computationally efficient.
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The compbdt program requires the user to find the program in the statistical literature, copy or down-
load the code, load the function, preprocess the data and then run the function. Customisations to the out-
put require the user to update the code. The output is in the form of a lengthy console readout, which can make 
downstream analyses challenging. By re-structuring the internal mechanisms, we have dramatically increased 
computational speed while providing additional features: testCompareR can be installed directly from  
CRAN; accepts a dataframe as an argument; requires minimal preprocessing; and users can customise the output 
through a range of well-documented optional arguments. The user can choose whether to receive their output 
in list form, allowing them to access individual elements for downstream analysis via indexing, or as a plain  
English summary, facilitating rapid interpretation of the results.

testCompareR adds to the arsenal of tools for researchers who wish to rapidly develop and evaluate diagnos-
tic tests. By minimising the number of steps required for analysis, testCompareR frees up valuable time for  
laboratory and clinical research.
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