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With the spread of resistance to long-established insecticides targeting
Anopheles malaria vectors, understanding the actions of compounds newly
identified for vector control is essential. With new commercial vector-control
products containing neonicotinoids under development, we investigate
the actions of 6 neonicotinoids (imidacloprid, thiacloprid, clothianidin,
dinotefuran, nitenpyram and acetamiprid) on 13 Anopheles gambiae nicotinic
acetylcholine receptor (nAChR) subtypes produced by expression of combi-
nations of the Agα1, Agα2, Agα3, Agα8 and Agβ1 subunits in Xenopus laevis
oocytes, the Drosophila melanogaster orthologues of which we have pre-
viously shown to be important in neonicotinoid actions. The presence of
the Agα2 subunit reduces neonicotinoid affinity for the mosquito nAChRs,
whereas the Agα3 subunit increases it. Crystal structures of the acetylcholine
binding protein (AChBP), an established surrogate for the ligand-binding
domain, with dinotefuran bound, shows a unique target site interaction
through hydrogen bond formation and CH-N interaction at the tetrahydro-
furan ring. This is of interest as dinotefuran is also under trial as the toxic
element in baited traps. Multiple regression analyses show a correlation
between the efficacy of neonicotinoids for the Agα1/Agα2/Agα8/Agβ1
nAChR, their hydrophobicity and their rate of knockdown of adult female
An. gambiae, providing new insights into neonicotinoid features important
for malaria vector control.
1. Introduction
Malaria is endemic to many regions of sub-Saharan Africa, as well as several
parts of Southeast Asia and South America. Currently, chemotherapy,
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immunization by the RTS, S vaccine against the Plasmodium falciparum parasite, the deployment of insecticide-treated nets (ITNs)
and indoor residual spraying (IRS) targeting mosquito vectors of the genus Anopheles are important strategies for disease control
[1]. The insecticide-based measures alone averted 600 million malaria cases between 2000 and 2015 [2], but this trend of falling
cases has plateaued and reversed recently, partly due to the increased insecticide resistance (IR) [1] of mosquito vectors. By
2022, global malaria cases rose to greater than 200 million [1], leading to more than 600 000 deaths.

To date, Anopheles insecticidal control has relied heavily on pyrethroids[3] which modulate insect sodium channels, and IR has
developed through target site mutations [4–7], enhanced metabolism [8–10], thickening and chemical component changes of
vector cuticle [11], as well as increased expression of the sensory appendage protein (SAP2) with its potential capacity to bind pyr-
ethroids [12]. One approach being taken by control programmes is exploiting proven insecticides with alternative modes of action
that have not previously been used in public health. Among such insecticidal candidates, clothianidin, a neonicotinoid insecticide,
is being explored for IRS use and is found to be effective on pyrethroid-resistant strains of Anopheles mosquitoes [13].

Neonicotinoids are a major insecticide class, displaying high selectivity to insects over vertebrates and have been widely used
in pest control (figure 1a) [14–19]. They are modulators of insect nAChRs [14–19], exhibiting partial, full and super agonist actions
on native insect [20,21] and recombinant insect nAChRs [22,23] and act as antagonists at low concentration [22,24], underpinning
sublethal effects. Neonicotinoids bind to the orthosteric sites (normally occupied by the neurotransmitter ACh) of nAChRs at
α/non-α or α/α subunit interfaces formed by seven loops (A, B, C, D, E, F and G) in the long N-terminal, extracellular domain
(figure 1b,c) [15,25–27]. Several amino acids involved in nAChR-neonicotinoid interactions have been identified [28–33]. Of par-
ticular importance are the basic residues in loops D and G, which contribute to the selective actions of neonicotinoids on insect
nAChRs [28,30,33].

With increased neonicotinoid use, potential adverse effects on non-target organisms such as pollinators have been described
[15,34] and in areas where neonicotinoids are also widely used in agriculture, a low level of resistance has been reported in
Anopheles [35,36]. The use of certain neonicotinoids is now restricted for agricultural pest control in the EU [15,34]. Nevertheless,
the targeted deployment of clothianidin for IRS based vector control is under investigation, because using neonicotinoids indoors
could severely reduce exposure to pollinators, a persistent problem with neonicotinoids. For example, Fludora Fusion (a deltame-
thrin/clothianidin combined treatment from Bayer) and Sumishield 50WG (a clothianidin formulation from Sumitomo Chemical)
are prequalified by the WHO pesticide evaluation scheme [37]. Moreover, dinotefuran is being trialed as the lethal component of
attractive toxic sugar bait strategies targeting outdoor biting mosquitoes [38]. Hence, elucidating the molecular mechanism of
action of clothianidin, dinotefuran and other neonicotinoids on their molecular targets in the Anopheles malaria vectors is urgently
needed to predict and allow monitoring for target site resistance that could emerge.

Until recently, it had been challenging to express functional insect nAChRs robustly in cell lines and Xenopus laevis oocytes,
thereby limiting our understanding of neonicotinoid actions on insect nAChRs. The discovery that a thioredoxin-related trans-
membrane protein (TMX3) was key to enabling robust functional expression of insect nAChRs in X. laevis oocytes [16,39,40]
led to the characterization of the agonist and antagonist actions of imidacloprid, thiacloprid and clothianidin on fruit fly Drosophila
melanogaster, honeybee Apis mellifera and bumblebee Bombus terrestris nAChRs [39]. Fascinatingly, all three neonicotinoids not only
activated the pollinator nAChRs at nanomolar concentrations or higher, directly inducing death, but significantly suppressed the
receptor response to ACh at picomolar concentrations (much lower than field-relevant concentrations) [39]. Such sublethal effects
of some neonicotinoids can influence the microglomerular density of mushroom bodies [41] and Kenyon cells [42], as well as
nAChR response amplitude and subunit combination [43], memory, circadian behaviour, sleep and foraging rhythms [44–46],
counselling caution in their continued use for crop protection.

In D. melanogaster, Dα1, Dα2, Dα3, Dβ1 and Dβ2 subunits coexist in certain neurons and comprise neonicotinoid-sensitive
nAChR subtypes [39,47], while Dα5−Dα7 subunits form different nAChR subtypes. For example, the Dα5/Dα6 nAChR is not
responsive to imidacloprid but is sensitive to spinosad [48]. We found that the toxicity of neonicotinoids is the result of complex
actions on diverse nAChR subtypes. Lowering the expression of the Dα2 nAChR subunit resulted in hyper-sensitivity to neonico-
tinoids in adult males and females of D. melanogaster [47]. However, there is no information on how subunits and neonicotinoid
structures affect target site actions and toxicity in the Anopheles malaria vectors.

Hence, we investigated the agonist actions of the IRAC class 4A commercial neonicotinoids (imidacloprid, thiacloprid, clothia-
nidin, acetamiprid, dinotefuran and nitenpyram; figure 1a) excluding thiamethoxam, a precursor of clothianidin [49], on 13
An. gambiae nAChRs which were coexpressed by combinations of An. gambiae α1 (Agα1, alternatively referred to as Agamα1
[50]), Agα2, Agα3, Agα8 and Agβ1 subunits with the aid of cofactors AgRIC-3, AgUNC-50 and AgTMX3 in X. laevis oocytes.

As these studies uncovered a unique agonist action of dinotefuran on An. gambiae nAChRs, we then determined the X-ray
crystal structure of this particular compound bound to the AChBP, an established surrogate for the nAChR ligand binding
domain (LBD) [51,52]. We report the diverse actions of neonicotinoids on heterologously expressed An. gambiae nAChRs, new find-
ings on the mechanism of action of dinotefuran, new insights into the contributions of nAChR subunits and neonicotinoid
structural features on vector target-site actions, as well as data on the rate of progress of neonicotinoid knockdown in adult
female mosquitoes.
2. Results and discussion
2.1. Functional expression of An. gambiae nAChRs in X. laevis oocytes
In D. melanogaster, the Dα1, Dα2, Dα3, Dβ1 and Dβ2 nAChR subunits are predominantly expressed in the brain and ventral nerve
cord [47]. Of these subunits, Dβ2 shares 83% amino acid sequence identity with the An. gambiae Agα8 subunit; a finding similar to
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the case in honeybees, where Amα8 shows 75% identity with Dβ2 [53]. Hence, we tested whether the orthologous An. gambiae
Agα1, Agα2, Agα3, Agα8 and Agβ1 subunits form functional nAChRs in X. laevis oocytes with the aid of cofactors AgTMX3,
AgRIC-3 and AgUNC-50 (electronic supplementary material, table S1 provides abbreviations for the nAChR subunits and



Figure 1. (Continued.) Neonicotinoids, their targets (nAChRs) and the functional expression of An. gambiae nAChRs in X. laevis oocytes, with the aid of cofactors
AgRIC-3, AgUNC-50 and AgTMX3, measured by their responses to the neurotransmitter ACh. (a) Structure of neonicotinoids in IRAC group 4A. Imidacloprid and
thiacloprid possess an ethylene bridge (E-bridge), while others have no E-bridge. (b) Top left edge and side-views of a nAChR structure where helices, loop
and sheets are coloured cyan, magenta and red, respectively. The figure was illustrated by PyMol software (Schrödinger, USA) using the protein data base file
2BG9. The orthosteric site (ACh and neonicotinoid binding domain) is arrowed. (c) Schematic representations of the orthosteric sites formed at α/non-α and
α/α subunit interfaces. Loops A, B, C, D, E, F and G involved in the interactions with ACh and neonicotinoids are shown. Basic residues (arginines) in loops
D and G underpinning electrostatic interactions with the nitro or cyano groups (see panel A for the functional groups) are highlighted. (d ) Responses to
100 µM ACh recorded from X. laevis oocytes injected with the subunit cRNAs together with the cofactor cRNAs. (e) Current amplitude of the responses
100 µM ACh of X. laevis oocytes injected with the subunit and cofactor cRNAs. Each box plot represents the 75 and 25% percentiles of data and horizonal
line in each box indicates the median of data (n = 10 oocytes, from two frogs). Asterisks * and ** indicate that the differences are significant at levels of
p < 0.05 and < 0.01, respectively (one-way ANOVA, Kruskal–Wallis test). The Agβ1 subunit is essential for the functional expression and the Agα1 subunit enhanced
the amplitude of the ACh-induced response. ( f ) Heatmap representation of pEC50 values of ACh for the 13 An. gambiae nAChRs. White area means that the value
could not be determined because the nAChR was not robustly expressed in the oocytes. The expressed nAChRs display diverse ACh sensitivity.
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cofactors used in this study and their cDNA accession numbers). These cofactors were deployed as in other insect species (fruit fly,
honeybee and bumblebee) where their orthologues have proved to be vital for robust functional nAChR expression [39]. We found
that 13 An. gambiae nAChR subtypes responded to bath-applied 100 µM ACh (figure 1d; electronic supplementary material, S1)
and the Agβ1 nAChR subunit was vital for robust function, as was the case for fruit fly, honeybee and bumblebee orthologous
nAChRs [39], thus confirming a critical role for the β1 subunit in forming functional mosquito heteromeric nAChRs (figure 1d,
e). Also, it should be noted that the Agα1 subunit plays a critical role in enhancing the current amplitude of the response to
ACh, indicating the presence of structural features in this subunit contributing to this effect (figure 1d,e).

Using nonlinear regression of concentration-response data, we determined ACh affinity for the receptor subtypes by measuring
pEC50 (= –log EC50), where EC50 is the concentration (M) giving half the maximal response (electronic supplementary material,
table S2). The pEC50 values for ACh varied markedly with subunit combinations, with those containing Agα3 and lacking
Agα1 and Agα2 subunits exhibiting the highest affinity (figure 1f; see Material and methods, and electronic supplementary
material, table S3, for statistical analyses using one-way ANOVA).

2.2. Diverse neonicotinoid actions on recombinant An. gambiae nAChRs
Next, we evaluated the affinity (pEC50) and efficacy (Imax) of 6 neonicotinoids (imidacloprid, thiacloprid, clothianidin, acetamiprid,
dinotefuran and nitenpyram; figure 1a) for the 13 ACh-responsive An. gambiae nAChRs subtypes (figure 2a; electronic supplemen-
tary material, S2–S7 for nAChR responses to neonicotinoids; electronic supplementary material, table S2 for agonist activity
indices; electronic supplementary material, table S4 for statistical analyses). Based on pEC50 values, thiacloprid and imidacloprid
tended to show higher affinity than the others for each nAChR (electronic supplementary material, table S2), while acetamiprid
and clothianidin exhibited moderate affinity. By contrast, based on Imax values, acetamiprid, clothianidin, dinotefuran and niten-
pyram tended to show higher efficacy than imidacloprid and thiacloprid for nAChRs. We also noted that dinotefuran and
nitenpyram were super agonists (defined by an Imax greater than 1, i.e. the peak current amplitude of the nAChR response to
these two neonicotinoids is greater than that of ACh observed at saturating concentrations) in the case of Agα2-containing
nAChR subtypes (figure 2a; electronic supplementary material, table S2). Imax may reflect the efficacy of several nAChRs. However,
the Agα1/Agα2/Agβ1, Agα1/Agα3/Agβ1 and Agα1/Agα8/Agβ1 nAChRs largely represent their own features in terms of the
interactions with neonicotinoids distinct from the feature of Agα1/Agβ1 nAChR (see following results) since the contributions
of the Agα2/Agβ1, Agα3/Agβ1 and Agα8/Agβ1 nAChRs to the total ligand induced-nAChR responses are very small or even
zero (figure 1e). For all the nAChR subunit combinations, the difference in expression levels would be cancelled by normalization
to the ACh-induced response amplitude. Whatever the factors underlying Imax, the notion holds that the neonicotinoid structural
features enhancing the affinity have opposite effects on efficacy.

2.3. Clustering and multivariate analyses of An. gambiae nAChR subtypes and neonicotinoid features
To understand nAChR subunit and ligand factors underpinning agonist activity, we first analysed the pEC50 and Imax values of
neonicotinoids by hierarchical two dimensional (2D) clustering when each subunit or ligand was characterized by an indicator
variable which takes 1 and 0 for the presence and absence of each factor, respectively [47] (figure 2b,c). For the pEC50 values,
neonicotinoids clustered into an ethylene bridge (E-bridge: -CH2-CH2- linkage)-containing group (imidacloprid and thiacloprid),
and those without an E-bridge (acetamiprid, clothianidin and nitenpyram). However, dinotefuran was quite distinct from the other
groups with respect to nAChR actions in that it showed the lowest affinity but high efficacy (figure 2b). Imidacloprid and thiaclo-
prid, containing the E-bridge, tended to show higher agonist affinity than those compounds lacking the bridge (figure 2b),
probably reflecting the reliance on CH-π interactions of the E-bridge hydrogens with the tryptophan in loop B.

The hierarchical 2D clustering of Imax separated the nAChR subtypes into high and low efficacy groups (figure 2c). Most
neonicotinoids exhibited high efficacy for the nAChRs containing the Agα2 subunit. Imidacloprid and thiacloprid, both possessing
the E-bridge, showed a lower efficacy than those without the bridge, probably due to the CH-π interactions preventing the
neonicotinoids from flexible binding to the orthosteric site, which twists in response to agonist binding [54]. Clothianidin and
nitenpyram both acted as super agonists on the Agα2/Agα3/Agβ1 and Agα2/Agα3/Agα8/Agβ1 nAChR subtypes (figure 2c;
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Figure 2. Concentration–agonist activity relationships for ACh and neonicotinoids (imidacloprid, thiacloprid, clothianidin, acetamiprid, dinotefuran and nitenpyram)
tested on 13 An. gambiae nAChRs expressed in X. laevis oocytes and analyses of factors governing agonist activity indices pEC50 and Imax. (a) Concentration-agonist
activity relationships for ACh and neonicotinoids. Each data plot represents the mean ± standard error of the mean (n = 5). Curves were fitted by nonlinear
regression analysis. (b,c) Two dimensional clustering of pEC50 (b) and Imax (c) values of the neonicotinoids for the 13 An. gambiae nAChR subtypes expressed
in X. laevis oocytes. Imidacloprid and thiacloprid containing the E-bridge were paired, while acetamiprid, clothianidin and nitenpyram form a separate group.
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dinotefuran which was plotted alone in the second quadrant. (e) Correlation of the agonist potency indices with the nAChR subunits and the neonicotinoids. The
blueish colour in pEC50 and reddish colour in Imax of the Agα2 subunit indicated that neonicotinoids have a lower affinity for those subtypes which include Agα2,
while increasing the efficacy. The Agα3 subunit increases the affinity while it has no clear effect on efficacy. For Imax of compounds, imidacloprid and thiacloprid
generally showed lower efficacy than clothianidin, dinotefuran and nitenpyram.
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electronic supplementary material, table S2), supporting the grouping of the no E-bridge neonicotinoids (figure 2c) observed in
affinity-based clusters, providing further support for the diversity of action of neonicotinoids on An. gambiae nAChRs.

Next, we performed principal component analyses (PCAs) for the pEC50 and Imax data sets to examine the similarity/diversity
of An. gambiae nAChR and compound features revealed by the 2D clustering. The Agα1/Agβ1, Agα1/Agα3/Agβ1 and Agα1/
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Agα8/Agβ1 nAChR subtypes are grouped together in the pEC50 data set but separated in the case of the Imax data set (electronic
supplementary material, figure S8a, tables S2 and S4). Also, the Agα2/Agα8/Agβ1 and the Agα1/Agα2/Agα8/Agβ1 nAChRs are
similar in terms of pEC50 profiles but separated in the context of Imax profiles (electronic supplementary material, figure S8a), indi-
cating that the An. gambiae nAChRs studied have their own distinctive features, including diverse pharmacological responses to the
6 neonicotinoids.

For the neonicotinoid features, PCA of the pEC50 and Imax data sets distinguished between compoundswith an E-bridge and those
without it and also placeddinotefuran in a separate category, supporting the characterization shownby the 2D clustering (figure 2d for
all the agonist activity data set (pEC50 + Imax); electronic supplementary material, figure S8b for each pEC50 and Imax set).

Finally, to test for linear correlation between data onAn. gambiae nAChR subunits and neonicotinoid features influencing the ago-
nist activity indices, we calculated the Pearson coefficients of pEC50 and Imax (figure 2e). This analysis showed that the presence of
Agα2 reduced affinity whereas the presence of Agα3 enhanced affinity (figure 2e; electronic supplementary material, table S5).
Also, thiacloprid structure increased affinity, whereas dinotefuran structure lowered it (figure 2e; electronic supplementary material,
table S5). For Imax, the Agα2 subunit increased the efficacy, while the other subunits had no significant contribution to the index.
Imidacloprid and thiacloprid showed negative correlations with Imax, whereas clothianidin, dinotefuran and nitenpyramhad positive
effects on the values in Pearson correlation analyses (figure 2e; electronic supplementary material, table S5). As such, the E-bridge
neonicotinoids, imidacloprid and thiacloprid, contrast with the non-E-bridge neonicotinoids, dinotefuran and nitenpyram, in the cor-
relations with affinity and efficacy (see red and blue colours for positive and negative correlations, respectively). Notably, clothianidin
has a significant positive effect on efficacy with no significant negative effect on efficacy for the nAChRs tested (figure 2e), supporting
its selection for managing An. gambiae.

2.4. Crystal structure of the AChBP-dinotefuran complex
In an attempt to clarify the divergent mechanism of dinotefuran’s interactions with theAn. gambiae nAChRs tested, we cocrystallized it
with the Lymnaea stagnalisAChBP (Ls-AChBP), which is not a nAChR but has beenwidely used as a surrogate for LBD in nAChR inter-
actions [51,55,56], since no insect nAChR has been crystallized to date. In this experiment, we employed the Ls-AChBPQ55Rmutant as
it mimics insect nAChRs in possessing the basic residue in loop D [32]. Dinotefuran bound to all five orthosteric sites of the protein as
observed for imidacloprid, thiacloprid, clothianidin and the nitromethylene analogue of imidacloprid [32,57] (figure 3a,b; electronic
supplementary material, table S6). Of the dinotefuran stereoisomers, only the S-isomer cocrystallized with the Ls-AChBP (figure 3c),
in line with the finding that the S-isomer was more potent than the R-isomer in binding to the housefly (Musca domestica nAChRs)
[58]. In the Q55R mutant of Ls-AChBP, the guanidine moiety of dinotefuran stacked with Tyr185 in loop C (figure 3c) as in other neo-
nicotinoids [32,57]. The nitro group interacted electrostaticallywith theArg55 in loopD andLys34 in loopG (figure 3c), confirming that
these basic residues in loop D and loop G generally play an important role in the selective insect nAChR−neonicotinoid interactions
[15]. The non-aromatic tetrahydrofuran ring is a unique structure of dinotefuran not seen in other neonicotinoids (figure 1a). The tetra-
hydrofuran ring oxygen formed a hydrogen bond viawaterwith the indole ringNHof Trp143 in loopB and themain chain carbonyl of
Met114 in loop E (figure 3c) as in the cases of the pyridine/thiazole nitrogen in the other neonicotinoids [32,57]. Nevertheless, the tetra-
hydrofuran ring hydrogens undergo CH-N electrostatic interactions, which are not seen in the crystal structures of the Q55Rmutant of
Ls-AChBP in complex with imidacloprid, thiacloprid and clothianidin [32]. Also, the guanidine NH of dinotefuran did not form a
hydrogen bond with the main chain carbonyl of Trp143 (figure 3c), as was the case for clothianidin [32]. As such, the structural infor-
mation supports the unique experimental binding interactions of dinotefuran with the An. gambiae nAChRs, with the caveat that the
AChBP is only a surrogate, albeit useful model of the nAChR LBD [32,55,57,59].

2.5. Relationship of the target site actions with the knockdown rate of neonicotinoids
Finally, we investigated the factors governing variations in the rate of insecticide knockdown in adult female mosquitoes when
exposed to fixed doses of each neonicotinoid. We determined a knockdown rate constant k from the time-dependent progress
of mosquito knockdown by fitting the data to a single exponential curve (see Material and methods for detail; see figure 4a
and electronic supplementary material, table S7 for data). We then examined correlation of log k with log P (P is 1-octanol/
water partition coefficient, electronic supplementary material, table S7) representing hydrophobicity of the neonicotinoids. We
pursued this approach because the knockdown rate of pyrethroids is well known to be relatable to compound hydrophobicity,
which affects both penetration and transport of compounds from the contact site to the target protein [60]. For the neonicotinoids
studied, the log k value appeared to have a negative correlation with log P (figure 4b), but the correlation was not significant,
suggesting the involvement of other factors in determining the knockdown rate (figure 4b). We therefore analysed variations of
log k with pEC50 or Imax values and log P by multiple linear regression, resulting in equation (2.1) as the best one with the highest
adjusted correlation coefficient r and the smallest Akaike’s information criterion [61] with a correction for small sample sizes
(AICc) [62] which estimates prediction error (the lower the AICc, the better the model) as follows.

log k ¼� 0:170(95%CI� 0:247��0:0916)logP
� 0:383(95%CI� 0:573��0:193)ImaxAga1=Aga2=Aga8=Agb1nAChR

þ 0:571ð95%CI 0:462–0:763Þ,
ð2:1Þ

adjusted r2 = 0.918, F2, 3 = 28.9 and AICc = 4.18 (figure 4c; electronic supplementary material, table S8). Running equation (2.1)
indicated that the lower the hydrophobicity and the lower the efficacy for the Agα1/Agα2/Agα8/Agβ1 nAChR, the faster the
neonicotinoids knock down the mosquitoes. Neither pEC50 nor Imax values for the other An. gambiae nAChR subtypes resulted
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Figure 3. Crystal structure of the Q55R mutant of Ls-AChBP in complex with dinotefuran. The mutation was made to mimic insect nAChR basic residues located in loop D
of the β1 subunits [15,25,27,28,30,32,34,71]. (a) Top and (b) side views of the crystal structure showing that Ls-AChBP assembles to form a homo-pentamer and that
dinotefuran bound to all the five orthosteric sites. (c) Expanded view of the interactions of dinotefuran with key amino acids at the binding site. Main chains of principal
and complementary proteins are coloured pale yellow and pale cyan, respectively. Dinotefuran and the key amino acids are represented as sticks, and carbons, nitrogens,
oxygens and sulfur are coloured white/grey, blue, red and yellow, respectively. A water molecule involved in the hydrogen bond networks is represented as a sphere and
coloured marine blue. Hydrogen bonds and electrostatic interactions represented as dotted lines are coloured cyan and orange, respectively. The CH-N interactions are
represented as a white dashed line. The X-ray crystal structure revealed that the nitro group interacted with Lys34 in loop G and Arg55 in loop D of the complementary
subunit, while its guanidine group stacked with Tyr185 in loop C. Uniquely, the tetrahydrofuran ring interacts with nitrogen of Trp143 loop C by CH-N interactions which are
not seen in the AChBP complexed with imidacloprid, clothianidin, thiacloprid and the nitromethylene analogue of imidacloprid [32].
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in significant regression with log k even if the log P term was added ( p > 0.05, electronic supplementary material, table S8),
suggesting that the Agα1/Agα2/Agα8/Agβ1 nAChR subtype, though its presence in native neurons controlling the mosquito
flight locomotion awaits evidence, plays a prominent role in the mosquito neurobiology and hence suppression of and accessibility
to this nAChR subtype determines the knockdown rate. More studies are needed to explore the detailed functional roles of the
Agα1/Agα2/Agα8/Agβ1 nAChR in the An. gambiae disease vector, but it is our working hypothesis that hydrophobicity as
well as antagonist actions of neonicotinoids are key to their ability to knockdown adult female Anopheles mosquitoes.

In conclusion, we have obtained robust, heterologous, functional expression of 13 different An. gambiae nAChR in X. laevis
oocytes and clarified nAChR subunit contributions and compound properties of 6 neonicotinoids underpinning the affinity
and efficacy of this class of nAChR-targeting compounds including one pre-approved by WHO for mosquito control. We
found that the Agα3 subunit enhanced neonicotinoid affinity, whereas the Agα2 subunit reduced it. We showed previously
that reducing the α2 subunit gene expression led to enhanced neonicotinoid sensitivity in adult D. melanogaster [47]. Thus, we
hypothesize that either reducing Agα3 gene expression, or increasing Agα2 gene expression, or both, can lead to neonicotinoid
resistance. Dinotefuran interacted directly with the mosquito nAChR likely through hydrogen bond formation and CH-N inter-
actions of the tetrahydrofuran ring, exhibiting a unique type of agonist action. Quantitative analyses pointed to compound
hydrophobicity and antagonist actions of neonicotinoids on an An. gambiae nAChR subtype governing the rate of knockdown.
These findings aid our understanding of the target-site actions of neonicotinoids including clothianidin and dinotefuran, both
of which may have a role to play in the control of the An. gambiae malaria vector.
3. Material and methods
3.1. Chemicals
ACh chloride and atropine sulfate were purchased from MilliporeSigma (USA). All the neonicotinoids (Imidacloprid, thiacloprid,
clothianidin, dinotefuran, nitenpyram and acetamiprid) were purchased from FujiFilm Wako Pure Chemical (Japan). These
reagents were used without further purification.
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Figure 4. Progress of knockdown of neonicotinoids for adult females of An. gambiae mosquitoes (An. gambiae s.l. (N’gousso strain An. coluzzi)) and the features of
neonicotinoids. (a) Time-dependent development of knockdown following treatment with the neonicotinoids. (b) Relationship of log k (k is rate of progress of knockdown
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values suggests a prominent role for the Agα1/Agα2/Agα8/Agβ1 nAChR in determining the rate of progress of the knockdown symptom in adult females of An. gambiae.
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3.2. cRNA preparation
cRNA was prepared from the pcDNA3.1 (+) plasmid vector (Thermo Fisher Scientific, USA) containing each nAChR subunit or
cofactor cDNA using mMESSAGE mMACHINE T7 ULTRA Transcription Kit (Thermo Fisher Scientific).

3.3. cRNA injection into X. laevis oocytes
The oocytes were treated with collagenase (Type IA, MilliporeSigma) in Ca2+-free standard oocyte saline (Ca2+-free SOS)
containing 100 mM NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), pH 7.6
for 40 min at room temperature. Isolated oocytes were then transferred to SOS containing 100 mM NaCl, 2 mM KCl, 1.8 mM
CaCl2, 1 mM MgCl2, 5 mM HEPES, pH 7.6. The follicle layers removed manually using forceps. 50 nl of cRNA mixtures encoding
various An. gambiae nAChR subunits, always together with three cofactors (AgRIC-3, AgUNC-50 and AgTMX3), were injected into
oocytes at concentrations 0.1 ng nl−1. Finally, oocytes were incubated in SOS supplemented with 2.5 mM sodium pyruvate,
100 units ml−1 penicillin, 100 µg ml−1 streptomycin, 20 µg ml−1 gentamycin and 4% horse serum (heat inactivated, Thermo
Fisher Scientific) at 16°C for 2–5 days prior to commencing electrophysiology experiments.

3.4. Electrophysiology
Two-electrode, voltage-clamp electrophysiology was used to investigate An. gambiae nAChRs expressed in X. laevis oocytes.
Oocytes were placed in a Perspex recording chamber and voltage clamped at a membrane potential of −100 mV and perfused
with SOS containing 0.5 µM atropine at a flow rate of 7–10 ml min−1 [39,63]. Responses to ACh and neonicotinoids were recorded
as inward currents and analysed offline using pCLAMP software (Molecular Devices, USA). Recordings were repeated at each
compound dose (n = 5 using oocytes from at least two female frogs). When comparing the peak current amplitude of the
ACh-induced response, we measured the response amplitude of 10 oocytes (5 oocytes from each of two different female frogs).

3.5. Analysis of electrophysiological data
Peak current amplitude of the response to ACh and neonicotinoids versus concentration were measured and fitted by nonlinear
regression analysis using Prism software (GraphPad Software, USA) according to the following equation.

Y ¼ Imax

1þ 10(logEC50�logX)nH
: ð3:1Þ
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In this equation, Y is peak current amplitude of the ACh or neonicotinoid response normalized to the maximum peak ampli-
tude of the ACh-induced response, where X is ligand concentration (M), nH is the Hill coefficient and Imax is normalized ACh
maximum response.

3.6. Multivariate analyses
Multivariate analyses of pEC50 and Imax values were performed using Prism software using indicator variables for subunits and
neonicotinoids. For example, to represent the Agα1/Agα2/Agβ1 nAChR, we set indicator variables 1, 1, 0, 0, and 1 for the Agα1,
Agα2, Agα3, Agα8, and Agβ1 subunits, respectively. Similarly, we assign 1 to represent a test of compounds as performed pre-
viously [47]. 2D-Hierachial clustering was performed using the R package’s gplots and RColorBrewer with Viridis color
gradient. Pearson correlation coefficients of the pEC50 and Imax values were calculated by Prism software.

3.7. Preparation of Ls-AChBP and cocrystallization with dinotefuran
The Q55R mutant of the Ls-AChBP was over-expressed in Pichia pastoris, deglycosylated and purified, as described previously [32].
The protein was cocrystallized with 1 mM dinotefuran in precipitant solution composed of 16.5–18.0% PEG4000 and 0.2 M sodium
citrate (pH 5.4) at 20°C. X-ray diffraction data were obtained at SPring-8 BL26B1 beamline at 100 K using a CCD detector RAYO-
NIX MX225HE. The diffraction dataset was first processed using XDS [64] and Aimless (CCP4: supported program) [65], and the
initial phase was determined by molecular replacement using MOLREP [66] with a protein coordinate of 2ZJU. Refinement of the
structure model was performed using REFMAC5 [67], and manual model building was performed with Coot [68] (electronic sup-
plementary material, table S6).

3.8. Bioassays on female An. gambiae
Neonicotinoid bioassays were carried out following the guidelines from the Centers for Disease Control and Prevention [69].
Briefly, neonicotinoids were dissolved and diluted to a fixed concentration of 4 µg ml−1 in acetone containing 0.11% methylated
rapeseed oil (RME). 250 ml Wheaton bottles were then coated with an even distribution of 1 ml insecticide, through inversion
and then rolling until acetone had evaporated, and then left overnight in a horizontal position. Up to 25 female 3–5-day-old
An. gambiae s.l. (N’gousso strain An. coluzzi) mosquitoes were added to each bottle, the bottle sealed with cap, and the rate of
knockdown measured over 4 h. Knockdown was counted as mosquitoes unable to stand or fly when bottle was gently agitated.
Counts were taken every 15 min for the first 2 h, and then every 30 min. Each insecticide was assayed in duplicate, and the
experiment was repeated (n = 5). For each repeat, mosquitoes were exposed to acetone (0.11% RME) treated bottles as controls.

The knockdown (KD) rate constant k (h−1) was determined according to the following equation.

KD (t) ¼ KDplateau(1� e�kt): ð3:2Þ

In equation (3.2), KD (t) and KDplateau are knocked down mosquito percentages at time t (h) and plateau, respectively.

3.9. Data analysis
Differences of agonist activities on the nAChRs (pEC50, Imax) were analysed by one-way ANOVA at a level of false discovery
rate (FDR) [70] q < 0.05. Pearson correlation coefficients were analysed by 95% confidence interval (95% CI, two-tailed),
while the multiple regression and correlation coefficients of each parameter were analysed by F-values and 95% CI
(two-tailed), respectively.

Ethics. We obtained permission for experiments using X. laevis from the animal ethics committee of Kindai University (Number KAAG-2023-008).
Also, we followed the UK Animals (Scientific Procedures) Act, 1986 since three authors are from the UK. Stage V−VI oocytes were excised under
anaesthetics using benzocaine (0.3 g l−1). Care was taken to minimize the number of female X. laevis as much as possible.

Data accessibility. The accession numbers of the A. gambiae nAChR subunits and cofactors that aid robust functional expression are as follows:
(subunits) Agα1 (XM_311918), Agα2 (XM_311921), Agα3 (XM_310786), Agα8 (XM_311925), Agβ1 (XM_309158); (cofactors) AgRIC-3
(XM_313931), AgUNC-50 (XM_312002) and AgTMX3 (XM_315438) (electronic supplementary material, table S1). The current amplitude of the
responses to ACh of the nAChRs tested are available from electronic supplementary material (figure 1e current amplitude data.csv). All data
used for multivariate analyses are available from electronic supplementary material [72].
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