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RTI’s by GC-IMS breath analysis

Trenton K. Stewart,1,2,14,* Emma Brodrick,3 Matthew J. Reed,4,5 Andrea M. Collins,6,7,8 Emma Daulton,2

Emily Adams,6 Nicholas Feasey,6 Libbe Ratcliffe,7 Diane Exley,9 Stacy Todd,7 Nadja van Ginneken,9,10

Amandip Sahota,11 Graham Devereux,6,7 E.M. Williams,12,13 and James A. Covington2
SUMMARY

Diagnosis of respiratory tract infections (RTIs), especially in primary care, is typically made on clinical fea-
tures and in the absence of quick and reliable diagnostic tests. Even in secondary care, where diagnostic
microbiology facilities are available, these tests take 24–48 h to provide an indication of the etiology. This
multicentre study used a portable gas chromatography-ion mobility spectrometer (GC-IMS) for the diag-
nosis of bacterial RTIs. Breath samples taken from 570 participants with 149 clinically validated bacterial
and 421 non-bacterial RTIs were analyzed to distinguish bacterial from non-bacterial RTIs. Through the
integration of a sparse logistic regression model, we identified a moderate diagnostic accuracy of 0.73
(95% CI 0 $ 69, 0 $ 77) alongside a sensitivity of 0 $ 85 (95% CI 0 $ 79, 0 $ 91) and a specificity of 0 $ 55
(95% CI 0 $ 50, 0 $ 60). The GC-IMS diagnostic device provides a promising outlook in distinguishing bac-
terial from non-bacterial RTIs and was also favorably viewed by participants.

INTRODUCTION

Worldwide, respiratory tract infections (RTIs) are a major cause of morbidity andmortality and the leading infection type in clinical medicine.1

These infections of the respiratory tract, include the sinuses, throat, airways, or lung parenchyma.2 While lower respiratory tract infections

(LRTIs) affect the airways below the larynx including the lung tissue (parenchyma), upper respiratory tract infections (URTIs) occur in the struc-

tures in/above the larynx.2 These infections frequently have a viral etiology, especially in primary care. It is anticipated that rapid and accurate

identification of the aetiologic agent of RTI will lead to a reduction in antibiotic prescribing.

Currently, there are few clinical diagnostic devices capable of distinguishing between infection types from exhaled breath,3 which in part, is

due to the stringent sensitivity and specificity requirements outlined by the world’s regulatory authorities. The leading breath technologies

capable of meeting these regulations are the electronic nose (e-nose), mass spectrometry (MS), and ion mobility spectrometry (IMS) devices.

E-noses have the highest potential for miniaturization,4,5 but are limited by manufacturing consistency and their capability to preserve diag-

nostic integrity over time.4,6 MS-based devices, such as PTR-MS or SIFT-MS, have a wide range of detection capabilities and relatively un-

matched selectivity and sensitivity in complex media, such as breath.7,8 Although promising, integration of MS-based devices into clinical

practice has been slow due to limited automatic sample preparation, substantial technical expertise, and high operational complexity.4,9

All of which, could explain why only 5% of reported clinical tests utilize MS in clinical pathology, despite its high diagnostic capability.10

IMS is a well-established technique that has been shown to achieve equivalent sensitivity and selectivity as observed in MS-based devices.

Yet, IMS-based devices can detect trace levels of VOCs without complicated pressure vacuums, as is required by most other devices with

similar detection levels.11 IMS-based devices have begun to show their high potential to meet clinical requirements, while also addressing
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Table 1. An outline of the number of participants alongside their certified diagnosis and after implementation of the quality control measures

Quality Controlled Dataset

Secondary Care Sites Bacterial Non-Bacterial Total

1 Leicester Royal Infirmary 16 39 55

2 Glenfield Hospital 17 22 39

3 NHS Lothian 4 7 11

4 CWM-TAF-Royal-Morgannwg Health Board 22 16 38

6 Royal Liverpool

University Hospital

15 63 78

7 Aintree University Hospital 71 99 170

Primary Care Site

8 Brownlow Health 4 174 178

Combined

- All 149 421 570
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the current clinical market demands.11 To date, the use of GC-IMS as a diagnostic tool a variety of the diseases encompassing cancer,12–14

inflammatory bowel disease,15–17 COPD,18–20 and Alzheimer’s.21

The primary aim of this large, multicenter study was to investigate whether bacterial RTI could be distinguished from non-bacterial RTI in

exhaled breath, utilizing a recently developed IMS-based diagnostic device. Only one previous study has been performed in this area, but this

initial study was limited by its exploratory nature and small sample size of 71 subjects.22 This study will expand upon these initial findings re-

ported in the pilot study. Moreover, previous research has demonstrated that demographic and clinical factors can be sources of bias and

influence on diagnosticmodels.23 Our secondary aimwas to understand the influence of demographic and clinical factors on the classification

models. Lastly, as the GC-IMS breath devices were initially designed and strategically manufactured for this project, a participant feedback

survey was implemented to assess the acceptability of the device and breath collection process.

RESULTS

990 participants were recruited, of which, 190 were considered to have met the gold standard criteria for bacterial RTI, while 592 were not

deemed to meet this criterion. The introduction of quality control (QC) measures reduced the total participant numbers to 570, 149 (35%)

of these were confirmed bacterial and 421 (65%) were confirmed as non-bacterial. A breakdown of participant distribution for each site after

the QC measures is provided in Table 1.

Demographics

A breakdown of the clinical and demographic factors stratified by infection classifications is shown in Table 2.

Diagnostic model outputs

Bacterial vs. non-bacterial

The primary focus of this study was to determine the diagnostic capability of the prototype BreathSpec device to distinguish between bac-

terial and non-bacterial RTIs, which achieved a diagnostic accuracy between 72 and 73%. In particular, the sparse logistic regression (SLR)

model reported an area under the curve (AUC) of 0 $ 73 (95% CI 0 $ 69–0 $ 77) with a sensitivity of 0 $ 85 (95% CI 0 $ 79–0 $ 91) and a specificity

of 0 $ 55 (95%CI 0 $ 50–0 $ 60). The secondarymodel (XGboost) displayed anAUC result of 0 $ 72 (95%CI 0 $ 68–0 $ 76) with a sensitivity of 0 $ 83

(95% CI 0 $ 76–0 $ 89) and specificity of 0 $ 54 (95% CI 0 $ 49–0 $ 59). Figure 1 displays the ROC plots for both the SLR and XGboost alongside

their respective AUC outputs.

Confounding factors

In addition to the principal diagnostic output, several potential confounding factors were also screened. The results for all confounding factor

analyses performed can be found in Tables 3 and 4, which are stratified by the analysis type.

Age. Two age-related demographic factors were screened: mean and At-risk age. In the mean-age analysis screen, a high

distinguishing accuracy and sensitivity was shown in both models. SLR reported an AUC of 0 $ 81 (95% CI 0 $ 77–0 $ 85) and a sensitivity

of 0 $ 88 (95% CI 0 $ 83–0 $ 91). XGboost similarly reported an AUC of 0 $ 80 (95% CI 0 $ 76–0 $ 84), but a much higher sensitivity of 0 $ 96

(95% CI 0 $ 93–0 $ 98). The specificity for both models was moderate to low with SLR reporting 0 $ 65 (95% CI 0 $ 59–0 $ 71) and XGboost

at 0 $ 59 (95% CI 0 $ 53–0 $ 65).
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Table 2. Clinical and demographic characteristics of the study participants grouped within the bacterial and non-bacterial classifications

Bacterial Non-Bacterial

Participants

149 (35%) 420 (65%)

Clinical Factors

Infection Type

Lower 69 133

Upper 6 181

Demographic Factors

Sex

Female 73 164

Male 76 254

Smoking Status

Currently smoking 108 (72%) 193 (46%)

Weight (kg)

Mean (SD) 72 (22) 75 (23)

Age

1st Quartile (25%) 53 21

Interquartile Range 67 42

3rd Quartile (75%) 78 67

Ethnicity

Asian 5 21

Black, Caribbean, or African 3 6

Caucasian 140 378

Mixed 0 0

Other 1 15

Abbreviations: SD = standard deviation; kg = kilogram.
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The second factor, at-risk age, reported a moderate AUC of 0 $ 77 (95% CI 0 $ 74–0 $ 81) in the SLR model, while XGboost reported 0 $ 73

(95%CI 0 $ 69–0 $ 77). Bothmodels reported high sensitivities between 0 $ 91–0$94 but had low specificities of just 0 $ 51–0$56 (Table 3). When

further merged with the smoking status classification, a difference could not be distinguished between smokers and non-smokers above the

age of 65. Yet, a moderate diagnostic accuracy was obtained when differentiating between those below 65 years of age (Table 3). When strat-

ified by bacterial infections, a moderate diagnostic accuracy was reported at 0 $ 77 (95% CI 0 $ 71–0 $ 82) and 0 $ 76 (95% CI 0 $ 70–0 $ 81)

for XGboost in participants under 65 years of age. However, the diagnostic accuracy was substantially reduced when screening those over

65 years of age, where both models reported an AUC of just 0 $ 51 (95% CI 0 $ 43–0 $ 60) (Table 4). A prominent difference in sensitivity

was also observed when comparing the at-risk age groups, in which, the over 65 group reported a sensitivity value of 0 $ 92 (95% CI 0 $

83–0 $ 97) while the under 65 group reported a value of only 0 $ 44 (95% CI 0 $ 83–0 $ 97).

Smoking status. 53% of the patients stated they were smokers. Of those diagnosed with a bacterial RTI, 19% were smokers and 7% were

non-smokers. A diagnostic accuracy of 0 $ 70 (95% Cl 0 $ 66–0 $ 76) was reported when distinguishing smokers from non-smokers (Table 3).

When stratified into the bacterial classification, non-smokers reported a moderate diagnostic accuracy of 0 $ 80 (95% CI 0 $ 74–0 $ 87) for the

SLRmodel and 0 $ 73 (95%CI 0 $ 66–0 $ 80) for XGboost. However, this was not observed for smokers which reported an AUC of 0 $ 57 (95%CI

0 $ 51–0 $ 64) and 0 $ 61 (95% CI 0 $ 54–0 $ 68) for XGboost in the SLR model (Table 4).

Feature overlay plots

Once the confounding factors were screened, the diagnostic features were overlayed onto topographic plots to identify areas of interest and

compare feature locations. As can be observed in Figure 2A, two prominent feature locations were identified (outlined in red) when

comparing bacterial and non-bacterial participants. The feature locations were predominantly contained between a drift time (DT) of 62–

64 milliseconds (ms) and a retention time (RT) of 130–240 seconds (s). The age discriminatory features were isolated to an area with approx-

imately 68ms DT and 155s RT (Figure 2B). Although not shown in the reference sample designated for this overlay plot, there is an apparent

discriminatory peak at this location indicative by the circular concentration of features.
iScience 27, 110610, September 20, 2024 3



Figure 1. ROC curve plots produced from the sparse logistic regression and XGboost models with the resulting AUC output

Abbreviations: ROC = receiver operating characteristic; AUC = area under the curve.
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Subject questionnaire

A response rate (RR) of 49% was obtained for the participant questionnaire. 16 participants (4%) commented that they found it difficult to

provide a breath sample. An expected response due to the need to obtain, primarily, the alveolar portion of the exhaled breath. Thus,

requiring a deep exhalation, which can cause some discomfort and coughing in participants. Despite this exertion, participant opinions

on the breath collection process and device were positive with over 73% of the comments indicating a positive comment or stating it was

a ‘‘good idea’’. Moreover, 32 participants (8 $ 5%) found the implementation of breath was just ‘‘ok’’ or ‘‘fine’’, while another 10% had no

opinion on it. In summary, the use of breath as a diagnostic medium seems to be well received with only a few negative comments associated

to the necessary long exhale (Figure 3).

A total of 289 participants provided feedback on the BreathSpec device (29% RR). Of these 289 participants, 209 (72%) stated that the de-

vice did not need improvement. An additional 80 stated theBreathSpec needed improvement, of which, 70 provided additional comments on

the exact areas that could be developed; half of the comments suggested the device should be smaller, 22 $ 5% requested it to be less noisy,

roughly 9% wanted a quicker sample collection, and 6% wanted longer sample collection tubes (Figure 4).

DISCUSSION

In this study, GC-IMS based diagnostic devices were integrated into several clinical sites across the UK to analyze VOCs in the exhaled breath

of participants presenting with symptoms of RTIs. Data analysis incorporated 570 RTI participants with 149 being clinically verified with a bac-

terial diagnosis and 421 as non-bacterial into two machine learning models. Both models reported moderately high and near identical diag-

nostic accuracies in distinguishing bacterial from non-bacterial RTIs (SLR model: 0 $ 73; XGboost: 0 $ 72). This study marks only the second

study to have implemented GC-IMS technology to distinguish bacterial RTIs using breath. The initial pilot study conducted by Lewis et al.22,

reported an AUC of 0 $ 73, a sensitivity of 0 $ 62, and a specificity of 0 $ 80 when discriminating between bacterial and non-bacterial RTIs.22 In

comparison, our study reported a higher sensitivity than were reported in the pilot (SLR: 0 $ 85; XG: 0 $ 83), but also had a reduction in the

specificity (SLR: 0 $ 55; XG: 0 $ 54). The pilot study only incorporated 71 participants from a single clinical site, whereas our study was able to

provide a sizable cohort from several clinical sites to substantiate the tentative results identified in the earlier study. This reduction could be

attributed to the disproportionate number of participants classified as non-bacterial compared to bacterial, which has been known to influ-

ence specificity outputs in diagnostic models.24 Despite this, our study was able to report better sensitivities and similar diagnostic accuracies,

despite the reduction in specificities, compared to the pilot study.

Furthermore, we speculated that a variety of clinical and socio-demographic factors were possible influencers affecting the diagnostic

capability of the classifiermodels. To explore this further, age, and smoking status were screened. Age-related factors were indicated as prob-

able influencers on the diagnostic accuracy (Table 3). When the at-risk group was further stratified by the bacterial classification, a moderate

diagnostic accuracy was reported for participants below 65 years of age but was not shown for those above this age limit. This implies that

analyzing samples from patients over 65 years old had a negative impact on the discriminatory capability of the models. This suggests that

there are additional factors impacting the discernment capabilities for those above this age group. Several age-related VOCs have already

been linked to patients above 65 years. For example, Cakmak et al. found an association between reduced lung function and three VOCs

(hexanal, a-pinene, and 2-methyl-1,3-butadiene) in the elderly above 65 years of age.25 Altomare et al. also utilized a combination of 14

exhaled VOCs to discriminate patients with colorectal cancer from those without, specifically in patients above 65 years of age.26 The feature

plots also indicated a third, unique, feature solely identified in only the >65 bacterial group classification. The area was concentrated within a
4 iScience 27, 110610, September 20, 2024



Table 3. Result outputs obtained from the Sparse Logistic Regression and XGboost classifier models for each categorical comparison evaluated

Categorical Comparisons

Factor Classifier AUC G95% Sensitivity Specificity PPV NPV P-value

Mean Age (>49Vs < 49) SLR 0 $ 81 (0 $ 77–0 $ 85) 0 $ 88 (0 $ 83–0 $ 91) 0 $ 65 (0 $ 59–0 $ 71) 0 $ 74 0 $ 82 2 $ 97x10�37

XG 0 $ 80 (0 $ 76–0 $ 84) 0 $ 96 (0 $ 93–0 $ 98) 0 $ 59 (0 $ 53–0 $ 65) 0 $ 72 0 $ 93 7 $ 28x10�36

At-Risk Age (>65Vs < 65) SLR 0 $ 77 (0 $ 74–0 $ 81) 0 $ 91 (0 $ 86–0 $ 95) 0 $ 56 (0 $ 51–0 $ 61) 0 $ 50 0 $ 93 1 $ 53x10�26

XG 0 $ 73 (0 $ 69–0 $ 77) 0 $ 94 (0 $ 89–0 $ 97) 0 $ 51 (0 $ 45–0 $ 56) 0 $ 48 0 $ 94 7 $ 22x10�20

Sex (Male Vs. Female) GP 0 $ 50 (0 $ 45–0 $ 55) 0 $ 89 (0 $ 85–0 $ 92) 0 $ 18 (0 $ 13–0 $ 23) 0 $ 60 0 $ 53 0 $ 500

XG 0 $ 50 (0 $ 45–0 $ 55) 0 $ 39 (0 $ 34–0 $ 44) 0 $ 66 (0 $ 59–0 $ 72) 0 $ 61 0 $ 44 0 $ 549

Sex (Female) & Age

(>49Vs < 49)

SLR 0 $ 76 (0 $ 71–0 $ 82) 0 $ 90 (0 $ 82–0 $ 95) 0 $ 58 (0 $ 51–0 $ 66) 0 $ 56 0 $ 91 4 $ 78x10�14

XG 0 $ 77 (0 $ 72–0 $ 83) 0 $ 94 (0 $ 88–0 $ 98) 0 $ 54 (0 $ 47–0 $ 61) 0 $ 54 0 $ 94 3 $ 89x10�15

Sex (Male) & Age

(>49Vs < 49)

SLR 0 $ 81 (0 $ 74–0 $ 87) 0 $ 94 (0 $ 90–0 $ 97) 0 $ 68 (0 $ 57–0 $ 78) 0 $ 87 0 $ 84 2 $ 77x10�16

XG 0 $ 81 (0 $ 74–0 $ 88) 0 $ 99 (0 $ 96–1 $ 00) 0 $ 62 (0 $ 51–0 $ 72) 0 $ 86 0 $ 96 5 $ 16x10�17

Smoking (Smoker Vs. Not) SLR 0 $ 70 (0 $ 66–0 $ 75) 0 $ 89 (0 $ 85–0 $ 93) 0 $ 56 (0 $ 49–0 $ 62) 0 $ 69 0 $ 82 2 $ 20x10�17

XG 0 $ 71 (0 $ 67–0 $ 76) 0 $ 90 (0 $ 86–0 $ 93) 0 $ 53 (0 $ 47–0 $ 59) 0 $ 68 0 $ 83 5 $ 41x10�19

Smokers & Sex

(Male Vs. Female)

SLR 0 $ 53 (0 $ 46–0 $ 59) 0 $ 62 (0 $ 54–0 $ 69) 0 $ 50 (0 $ 41–0 $ 59) 0 $ 60 0 $ 52 0 $ 77

XG 0 $ 58 (0 $ 52–0 $ 65) 0 $ 70 (0 $ 62–0 $ 77) 0 $ 46 (0 $ 37–0 $ 54) 0 $ 61 0 $ 55 0 $ 993

Non-Smokers & Sex

(Male Vs. Female)

SLR 0 $ 53 (0 $ 46–0 $ 61) 0 $ 69 (0 $ 61–0 $ 76) 0 $ 45 (0 $ 35–0 $ 54) 0 $ 67 0 $ 47 0 $ 170

XG 0 $ 50 (0 $ 43–0 $ 58) 0 $ 62 (0 $ 55–0 $ 70) 0 $ 46 (0 $ 36–0 $ 58) 0 $ 65 0 $ 43 0 $ 473

Age (>65) &Smoking

(Smoker Vs. Not)

SLR 0 $ 52 (0 $ 41–0 $ 63) 0 $ 68 (0 $ 59–0 $ 75) 0 $ 49 (0 $ 32–0 $ 66) 0 $ 84 0 $ 27 0 $ 672

XG 0 $ 51 (0 $ 41–0 $ 62) 0 $ 53 (0 $ 44–0 $ 61) 0 $ 57 (0 $ 39–0 $ 73) 0 $ 83 0 $ 23 0 $ 395

Age (<65) &Smoking

(Smoker Vs. Not)

SLR 0 $ 76 (0 $ 72–0 $ 81) 0 $ 85 (0 $ 78–0 $ 9) 0 $ 61 (0 $ 54–0 $ 67) 0 $ 60 0 $ 85 5 $ 47x10�19

XG 0 $ 75 (0 $ 70–0 $ 80) 0 $ 82 (0 $ 75–0 $ 88) 0 $ 61 (0 $ 54–0 $ 67) 0 $ 59 0 $ 83 3 $ 21x10�17

Abbreviations: SLR = Sparse Logistic Regression; XG=XGboost; AUC=Area Under theCurve; PPV = Positive Prediction Value; NPV=Negative Prediction Value.
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peak located at DT 68ms and an RT of 170s (Figure S3B), suggesting that the intensity values associated to this peak could be an age-related

discriminatory factor. Once participants over 65 years old were removed, a slight increase in AUC and sensitivity values were observed when

compared to the full data bacterial classification. Altogether, these demonstrate the importance of addressing age factors in future breath

studies.

Smoking status was screened as a potential influencing factor. The diagnostic models showed that smokers could be moderately distin-

guished from non-smokers in the dataset.When incorporated into the bacterial classification analysis, non-smokers reported an AUC of 0 $ 80

when differentiating between bacterial and non-bacterial participants in the SLR model. The feature plots indicated the peak located at DT

64ms and an RT of 160s as the key distinguishing factor (Figure S4). Yet, an AUC of just 0 $ 61 (SLR) was observed in the same analysis for

smokers. In comparison to the results obtained from the full dataset, the removal of smokers increased the diagnostic accuracy and sensitivity.

The reduction in diagnostic capability from smokers could be associated to the toxic and carcinogenic compounds inhaled when smoking,

such as benzene, styrene, acetonitrile, and 2,5-dimethylfuran.27 This in turn, diminishes the potential diagnostic VOCs through saturation of

these compounds in breath. Moreover, an increase in specificity was also reported solely in the SLRmodel from 0 $ 55 (95% CI 0 $ 50–0 $ 60) in

the full dataset to 0 $ 71 (95% CI 0 $ 65–0 $ 77) in the non-smoker group. It has been established that cigarette smoke affects the host-meta-

bolism through the increase of oxidative stress leading to the formation of free radicals and lung inflammation.27 In combination, these

elements are likely to mask important VOCs in the breath and reduce diagnostic accuracy.

Finally, as the BreathSpec devices were strategically designed andmanufactured for this project, we thought it was important to consider a

patient’s perspective on providing a breath sample and on the diagnostic device itself. To achieve this, a user-centerd design was imple-

mented, which has shown to lead to better quality products with lower error rates, while establishing efficient and effective devices that

address the diverse needs of participants,28,29. This study reported a 49% RR for feedback associated to delivering a breath sample and a

29% RR on the device itself. Using this approach, key concerns could be addressed and improved in the next generation of BreathSpec de-

vices. Over 22% of comments were associated to the noise of the device, primarily associated to the CGFU unit. Upgrades to the pumps were

able to reduce this noise level. Although over half of the comments were associated to the size of the device, the initial size of the device was

deliberately designed to be portable and is smaller than similar spectrometry-based devices. 6% of the comments were associated to the

length of the sample collection tubes. It was determined that increasing the length of the tubes would also require a time-delay for the breath

samples to enter the device. Thereby, adding to the analysis time and the potential to reduced sample input. This issue was addressed

through the design of a new, remote, breath collection procedure. This procedure involves the integration of a short cylindrical tube with

a syringe attached to themiddle. As the participant exhales through the reservoir tube, the syringe is pulled down to collect the breath sample
iScience 27, 110610, September 20, 2024 5



Table 4. Result outputs obtained from the Sparse Logistic Regression and XGboost classifier models for each bacterial characterization factor

evaluated

Bacterial Characterization (Bacterial Vs. Non-Bacterial)

Factor Classifier AUC G95% Sensitivity Specificity PPV NPV P-value

Non-Smokers SLR 0 $ 80 (0 $ 74–0 $ 87) 0 $ 93 (0 $ 80–0 $ 98) 0 $ 71 (0 $ 65–0 $ 77) 0 $ 37 0 $ 98 3 $ 72x10�10

XG 0 $ 73 (0 $ 66–0 $ 80) 0 $ 95 (0 $ 83–0 $ 99) 0 $ 52 (0 $ 46–0 $ 59) 0 $ 27 0 $ 98 1 $ 75x10�6

Smokers SLR 0 $ 57 (0 $ 51–0 $ 64) 0 $ 30 (0 $ 21–0 $ 39) 0 $ 85 (0 $ 79–0 $ 90) 0 $ 52 0 $ 68 0 $ 016

XG 0 $ 61 (0 $ 54–0 $ 68) 0 $ 45 (0 $ 36–0 $ 55) 0 $ 77 (0 $ 71–0 $ 83) 0 $ 53 0 $ 72 7 $ 89x10�4

Under 65 SLR 0 $ 77 (0 $ 71–0 $ 82) 0 $ 92 (0 $ 83–0 $ 97) 0 $ 60 (0 $ 54–0 $ 66) 0 $ 36 0 $ 97 2 $ 16x10�13

XG 0 $ 76 (0 $ 70–0 $ 81) 0 $ 91 (0 $ 82–0 $ 96) 0 $ 54 (0 $ 48–0 $ 59) 0 $ 32 0 $ 96 2 $ 83x10�12

Over 65 SLR 0 $ 51 (0 $ 43–0 $ 60) 0 $ 44 (0 $ 32–0 $ 55) 0 $ 65 (0 $ 56–0 $ 74) 0 $ 48 0 $ 61 0 $ 62

XG 0 $ 51 (0 $ 43–0 $ 60) 0 $ 31 (0 $ 21–0 $ 42) 0 $ 80 (0 $ 72–0 $ 87) 0 $ 53 0 $ 61 0 $ 39

Sex (Female) SLR 0 $ 66 (0 $ 60–0 $ 72) 0 $ 95 (0 $ 87–0 $ 99) 0 $ 42 (0 $ 36–0 $ 48) 0 $ 33 0 $ 96 1 $ 67x10�5

XG 0 $ 66 (0 $ 60–0 $ 72) 0 $ 86 (0 $ 76–0 $ 93) 0 $ 52 (0 $ 46–0 $ 59) 0 $ 35 0 $ 92 1 $ 04x10�5

Sex (Male) SLR 0 $ 69 (0 $ 62–0 $ 76) 0 $ 93 (0 $ 85–0 $ 98) 0 $ 41 (0 $ 33–0 $ 49) 0 $ 41 0 $ 93 9 $ 33x10�7

XG 0 $ 66 (0 $ 58–0 $ 73) 0 $ 95 (0 $ 87–0 $ 98) 0 $ 31 (0 $ 24–0 $ 39) 0 $ 38 0 $ 93 9 $ 33x10�5

Sex (Female) & Non-Smokers SLR 0 $ 62 (0 $ 47–0 $ 76) 0 $ 45 (0 $ 23–0 $ 68) 0 $ 88 (0 $ 81–0 $ 92) 0 $ 33 0 $ 92 0 $ 047

XG 0 $ 61 (0 $ 48–0 $ 73) 0 $ 8 (0 $ 56–0 $ 94) 0 $ 42 (0 $ 34–0 $ 50) 0 $ 16 0 $ 94 0 $ 052

Sex (Female) & Smokers SLR 0 $ 57 (0 $ 47–0 $ 66) 0 $ 43 (0 $ 30–0 $ 57) 0 $ 73 (0 $ 64–0 $ 81) 0 $ 45 0 $ 71 0 $ 085

XG 0 $ 59 (0 $ 49–0 $ 68) 0 $ 29 (0 $ 17–0 $ 42) 0 $ 89 (0 $ 82–0 $ 94) 0 $ 57 0 $ 71 0 $ 031

Sex (Male) & Non-Smokers SLR 0 $ 64 (0 $ 52–0 $ 76) 0 $ 62 (0 $ 38–0 $ 82) 0 $ 68 (0 $ 56–0 $ 78) 0 $ 33 0 $ 87 0 $ 023

XG 0 $ 74 (0 $ 63–0 $ 84) 0 $ 81 (0 $ 58–0 $ 95) 0 $ 69 (0 $ 57–0 $ 79) 0 $ 40 0 $ 93 4 $ 8 x10�4

Sex (Male) & Smokers SLR 0 $ 66 (0 $ 56–0 $ 75) 0 $ 54 (0 $ 39–0 $ 68) 0 $ 75 (0 $ 64–0 $ 84) 0 $ 57 0 $ 72 1 $ 03 x10�3

XG 0 $ 63 (0 $ 53–0 $ 74) 0 $ 48 (0 $ 34–0 $ 62) 0 $ 83 (0 $ 74–0 $ 91) 0 $ 64 0 $ 72 4 $ 36 x10�3

Abbreviations: SLR = Sparse Logistic Regression; XG=XGboost; AUC=Area Under theCurve; PPV = Positive Prediction Value; NPV=Negative Prediction Value.
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and then directly injected into the BreathSpec. Thus, removing the need for attached tubing or heavy handheld breath collection masks. This

breath collection procedure was successfully implemented in a COVID-19 study by Nazareth, J. et al. (2022) and can be visualized in Figure S3

from the article.30 Notably, through the utilization of the next generation BreathSpec devices and breath collection procedure, they were able

to discriminate COVID-19 patients from healthy controls with an AUC, sensitivity, and specificity of 0.85, 0.80, and 0.88.
Limitations of the study

There are several limitations that must be considered in this study. To start, we were unable to investigate medical treatments, alcohol-use, or

comorbidities as bias factors due to limited patient data. Although the breath collection procedure utilized in this study aimed to collect the

last portion of the breath, CO2 concentrations in the exhaled breath were not measured to determine the exact end-tidal portion. Thus, the

sample is still considered to be of mixed-breath origin. It is worth noting that participant recruitment was completed in 2018, before

the COVID-19 outbreak, and the routine PCR testing for viral RTIs established during the pandemic had not been implemented at the

time. Additionally, participants were only able to be recruited from a single primary care site and where there were only five definitive

confirmed bacterial cases. This prevented the capability to analyze differences between primary and secondary care participants. The

dataset also combined URTI and LRTI’s due to a low number of URTI classified into the bacterial infection group. This was due to the limited

certainty that current diagnostic techniques were able to determine a bacterial URTI. It is possible these combinations influenced the diag-

nostic accuracy due to the differences in participant demographics and colonizing bacteria in the URT and LRT. Further studies will be

required to distinguish the differences between these sites and URT/LRTI categorizations. Finally, this study utilized a data mining approach

for data analyses that removed the need for a priori knowledge of the VOCs or their peak locations. This allowed the discriminatory features to

be visualized by overlaying themonto the GC-IMS topographic plots to display areas of interest. However, this process limits the capability to

establish a biological link and can only indicate areas-of-interest for potential diagnostic VOCs. Despite this, this methodology has also been

shown to provide an efficient way to eliminate background information while preserving diagnostic accuracy.31,32
Conclusion

This study was able to demonstrate the feasibility of implementing the BreathSpec, a portable GC-IMS breath device, in both primary

and secondary care. It is only the second study to ever be conducted utilizing GC-IMS technology to discriminate this infection type
6 iScience 27, 110610, September 20, 2024



Figure 2. An overlay of the discriminatory features established in two separate analyses (A and B) onto designated topographic plots

The y axis is the retention time obtained from the gas chromatography column and the x axis is the drift time reported by the ion mobility spectrometer.
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and, to the best of our knowledge, the largest to date. As such, one of the core strengths of this study is the large cohort size and true

population heterogeneity that was obtained through an unselected recruitment process at the clinical level. Although it is also believed

that this heterogeneity was a contributing factor to the low specificity reported in our diagnostic models. A likely effect compounding

socio-demographic factors, in addition to the population heterogeneity, influencing the detection of exhaled diagnostic VOCs. In

which, this study was able to establish that both age and smoking status are key socio-demographic factors affecting diagnostic accu-

racy. Despite the low specificity, these first generation BreathSpec devices were able to still produce a moderate diagnostic accuracy

and high sensitivity. Nonetheless, utilizing current diagnostic techniques, only 48% of participants with a bacterial RTI were classified as

definitive and able to be utilized in this study; a prominent factor that influenced our sample size. This outcome, in of itself, can show

that there is a critical need for more accurate and reliable diagnostic tests to distinguish bacterial RTIs in both primary and secondary

care facilities. Moreover, currently implemented point-of-care tests, such as rapid antigen tests or lung ultrasounds, could be combined

with the GC-IMS to provide quick, reliable, and improved diagnostic outputs than is observed individually. Either through this integra-

tion of existing techniques to the GC-IMS or through advancements in the BreathSpec, further studies will need to look at the diag-

nostic capability of the GC-IMS to predict RTIs over time and their potential to fill this gap and assist in the reduction of antibiotic

overprescribing.
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Figure 4. A clustered bubble chart depicting the comments provided in the participant questionnaire for the improvement of the BreathSpec device
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� Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study recruited adult patients presenting in primary and secondary care with suspected upper and/or lower respiratory tract infections

(URTI/LRTI). Following suspected infection, potential participants were invited to take part and study procedures were quickly followed in the

respective clinical site. The study involved six secondary care (hospital) sites and one primary care (general practice) site within theUK. Recruit-

ment occurred over a 7-month period from 2018 to 2019. The criteria for inclusion encompassed those R18 years of age and a clinical sus-

picion for upper and/or lower respiratory tract infection. Patients were excluded if they had received antibiotics within the previous 6 h, had a

diagnosis of lung cancer, had received cancer chemotherapy within the previous 30 days, and/or a history/pre-existing diagnosis of iatrogenic

neutropoenia. Potential participants were identified by clinical triage within the acute hospital setting (Emergency Department or acutemed-

ical wards), or frompatients presenting for general practice review. Recruitment and study protocols and procedures were completed at initial

presentation. UK ethical approval was grantedbyNHSREC (approval no.: 18/LO/1029) and all participants providedwritten informed consent.

In addition to breathe analysis and demographics the following routine clinical data were extracted from the clinical records, if available. In

secondary care: routine observations, clinical examination findings, chest radiology, sputum culture, nose & throat swabs for viral and bac-

terial (including atypical bacterial) identification using standard culture methods and/or polymerase chain reaction (PCR), urinary pneumo-

coccal/legionella antigens, routine hematology, biochemistry and CRP. In primary care: chest radiology, sputum culture; nose and throat

swabs for viral and bacterial (including atypical bacterial) identification using standard culture methods and/or PCR testing. A breakdown

of the number of recruited participants for each site alongside their classification is provided below (Table S1).

Based on clinical data, experienced clinicians utilised the following framework to classify participants into four categories.33,34

(1) Definite bacterial pneumonia
a. New lobar or multi-lobar consolidation on chest radiograph or CT.
(2) Probable bacterial pneumonia
a. Radiological imaging suggestive (but not diagnostic), AND positive microbiology (sputum positive OR swab PCR positive for res-

piratory bacterial pathogen).

b. Imaging suggestive (but not diagnostic), AND CRP R100 +/� clinical examination in keeping with pneumonia BUT microbiology

negative/not taken.

c. Imaging unremarkable, BUT CRP R100 AND clinical examination suggestive AND positive microbiology.
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(3) Possible bacterial pneumonia

a. Imaging suggestive (but not diagnostic), AND clinical examination in keeping with pneumonia BUT microbiology negative/not

taken.

b. Imaging unremarkable BUT Positive microbiology AND CRP between 20 and 100.

c. Imaging unremarkable BUT Positive microbiology AND clinical examination in keeping with pneumonia AND CRP between 20

and 100

d. Imaging unremarkable ANDmicrobiology negative/not taken BUT clinical examination suggestive of pneumonia ANDCRPR100.

(4) Not bacterial pneumonia
12 i
a. Imaging suggestive, (but not diagnostic) OR normal AND Negative microbiology AND CRP <20.

b. Imaging unremarkable AND microbiology negative/not taken.
Sample size calculation

This study aimed to discriminate between bacterial and non-bacterial RTIs through the implementation of AUROC curves as a measure of

diagnostic accuracy. To ensure statistical relevance, an intial sample size calculation was performed. As the true prevalence and diagnostic

accuracy were unknown at the start of this study, a single-test design against a null value was utilised for the calculation; as outlined in Akoglu,

H (2022).35 The prevalence for bacterial RTIs was set to 50% with a power of 90% and a confidence level of 95%. The pilot study conducted by

Lewis et al. (2017)22 provided the sensitivity and specificity estimate values. As such, a potential sensitivity (seP1) of 60% and a potential spec-

ificity (spP1) of 80% were chosen. The null values (P0) were set at 50% for sensitivity and 70% for specificity. This calculation identified a total

sample size required to estimate a true prevalence of RTI bacterial at 556 participants (with Yates’ Continuity Correction). However, as the pilot

study only contained 12 confirmed viral and 7 confirmed bacterial RTI’s, we decided it was necessary to perform an additional sample size

calculation post-factum with larger participant pool. To ensure similarity, the diagnostic performance reported by Nazareth et al. (2022) uti-

lising a GC-IMS instrument to distinguish COVID-19 patients from other RTIs in breath was selected.36 This study reported a sensitivity of 80%

and a specificity of 90%.36 These were selected as the null values and the spP1 and seP1 were set as similar to the values reported by Lewis &

colleagues. This calculation identified a total sample size necessary to estimate the true prevalence of bacterial RTIs at 281 participants (with

Yates’ Continuity Correction).

METHOD DETAILS

Breath sample collection

Prior to breathe collection, the participant was asked not to eat or drink for 30 min and to rinse out their mouth with water. For collection, the

participant was asked to take a deep breath, but not to hold it, and then breathe out normally through a disposable mouthpiece, into a reser-

voir tube, for as long as they could. The breath sample was then drawn directly into the machine from the reservoir tube (Figure S1) and into

the instrument containing a 1mL sample loop for immediate analysis. For note, the sample would be taken from the last portion of the breath

to ensure the breath used for analysis was primarily a mixed breath of end-tidal or alveolar portion, which is considered to have the highest

concentration of the VOC chemical information from the lungs and bloodstream.34 The combination of the sample loop and delayed breath

collection excludes the possibility of a dead volume being collected. Directly after the participant’s breath was analyzed, a room air sample

was introduced into the instrument to check the background for air contamination before the data analysis stage. Breath collection and GC-

IMS analysis took 10 min for each participant.

Gas chromatography-ion mobility spectrometry

This study manufactured the first generation BreathSpec (G.A.S., Dortmund, Germany) devices, a GC-IMS-based diagnostic platform de-

signed to separate and detect trace VOCs in complex exhaled breath samples.37 The platform utilises a 2-fold separation strategy through

the implementation of gas chromatography alongside Ion Mobility Spectrometry. The detection limits of GC-IMS devices have been estab-

lished to have similar detection limits as to those observed in GC-MS. However, due to the necessity to form proton clusters, the detection

limits for VOCs will be dependent upon their proton affinity. For example, typical detection limits for polar and medium polar VOCs, such as

alcohols or ketones, range in the lower ppb to upper ppt. Nonpolar species, such as alkanes, range from themid to upper ppb levels.38,39 The

samples were tested using the following instrument settings; drift gas flow rate of 150 mL/min, carrier gas flow of 15 mL/min. Thereafter, the

flow rate was ramped to 50 mL/min over the 10-min analysis time. The temperatures of the sample loop, transfer line, GC column, and IMS

segments were set to: Sample loop: 55�C, Transfer line: 50�C, GC column: 40�C, and IMS: 70�C.

QUANTIFICATION AND STATISTICAL ANALYSIS

Classifications

The study data analysis only included theDefinite (Bacterial) andNot Detected (Non-Bacterial) RTI participants to optimisemodel accuracy by

removing possible false positives. Smoking status was determined by the participant declaring they were a current smoker and non-smokers

were any participants who had either never smoked or did not identify as a current smoker. Two age-related demographic factors were
Science 27, 110610, September 20, 2024
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screened: Mean and At-risk age. Mean age was calculated by averaging the ages from all participants in dataset (Mean: 49.32; SD: 23.91). At-

risk age was chosen due to the significantly higher mortality and morbidity rates in respiratory infections identified for those above the age of

65 years.31,35,36 Furthermore, this study combined both upper and lower RTIs within the respective classifications (bacterial vs. non-bacterial).

This was due to a limited number of bacterial subjects diagnosed with an upper RTI.

Demographic factors were first separated into groups and then screened through the supervised feature selection process. The datasets

were classified into two comparison groups for analysis: categorical and bacterial characterizations. The prior was implemented first to iden-

tify whether the models could separate clinical or demographic factors from the data (i.e., smoker vs. non-smoker). Thereafter, the bacterial

characterization isolated the bacterial and nonbacterial subjects within each clinical or demographic classification (i.e., smoker – bacterial vs.

non-bacterial).
Quality control measures

The two-factor categorized dataset was then screened against severalQuality Control (QC) parameters. To start, the entire dataset wasmanu-

ally validated to ensure that none of the data were corrupted and that the spectra obtained during breath collection was viable. This check,

alongside the exclusion of both the probable and possible categorizations, reduced the total number of participants to 782. Once the data

validation had been performed, a series of pre-processing steps were included to reduce the dimensionality and align the BreathSpec spec-

tral outputs. This is necessary due to the high dimensionality of the spectra, which can contain over 11 million data points. A description of the

pre-processing steps can be found in Emma Daulton et al. (2021).40 Next, there were small variances in retention and drift time between in-

struments, due to manufacturing variances. To account for this, the spectral outputs were aligned utilising a custom alignment software. This

software utilises a reference spectrum alongside the relative position of the RIP peak to align all spectra. Once completed, the software pro-

vides a mean square alignment error value (MSV) from the reference spectra. An MSV threshold was applied to the data to account for sig-

nificant alignment variations that could influence the functionality of the diagnostic models. AmoderateMSV threshold of 0 $ 035 was applied

to the data to limit large deviations while providing the necessary leeway to not remove viable data.

Finally, one of the key concerns in breath collection is the discernment between a genuine breath sample and the surrounding room. To

verify this, acetone was used as a reference VOC, as it is well-established to be both consistent and stable in the human breath and has a

concentration well above the detection limits of the BreathSpec. An acetone reference standard was analyzed to identify the range of the

acetone peak on the BreathSpec spectral output. A box range for this peak was defined using VoCAL (G.A.S., Dortmund, Germany; version

0.1.3) software and the value of the highest intensity datapoint, within this range, was identified. The peak intensity value for acetone, which is

linked to the rescaled RIP height, was obtained for every participant sample. The dataset was then split in half based on the intensity values

and all the lower half spectral outputs were compared to establish a threshold that could be applied to the dataset to remove room air sam-

ples without eliminating viable samples. In consequence, any participant sample below this established threshold of 500, was removed from

the analysis and considered a room air sample. An overview of the entire recruitment, QC measures, and data analysis is shown in Figure S2.
Statistical analysis

In completion of the pre-processing andQC steps, the final dataset was then implemented into a supervised feature selection process in ‘R’ (R

Foundation for Statistical Computing, Vienna, Austria; version 2022 $ 07$1 – Build 554). This method performs binary class prediction using a

k-fold cross validation methodology that separates the dataset into ten equally sized subsets. Thereafter, a single subset was used for vali-

dation and the other nine were used to train the data (90:10 split), this is repeated until all the data have been used as a test sample. Features

were identified through the implementation of aWilcoxon rank-sum test onto the defined diagnostic groups. This process only occurred with

the training set to remove data leakage from the test and train sets. It is important to note that the identified features are obtained solely on a

statistical basis and do not have any biological significance. The top 100 features with the lowest p-value are identified and implemented into

two separate classifier models. The models and their respective ‘R’ packages were: Sparse Logistic Regression (SLR) – glmnet (version 4.1–6)

and XGboost (XG) – XGboost (version 1.6.0.1). This approach provides statistically significant and compact datapoint features that can be

integrated into machine learning algorithms to train classifier models.31 From the resultant probabilities obtained from themodels, statistical

performance values were calculated. These encompassed the sensitivity, specificity, positive predictive values (PPV), negative predictive

values (NPV), and the p-value outputs for every diagnostic analysis. The results from each of the diagnostic models was exhibited with a

Receiver Operating Characteristic (ROC) curve and an Area Under the Curve (AUC) value was produced to report diagnostic accuracy.
Feature plotting

A visualisation of the identified features onto participant spectral outputs were obtained through the implementation of a custom feature

integration platform using the software LabVIEW (National Instruments, Austin, Texas, USA; version 2023-Q1) to integrate the extracted fea-

tures onto a designated spectral output within the equivalent analysis. The resulting output was then transformed into a matrix with the X axis

corresponding to the drift time and the Y axis referencing the GC retention time. The X axis of thematrix was normalised, utilising the normal-

isation feature in the OriginPro (OriginLab, Northampton, Massachusetts, USA; version 2023–10.0), and a heatmap map was produced from

the matrix.
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