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Abstract 

Background  Pyrethroid resistance is one of the major threats for effectiveness of insecticide-treated bed nets 
(ITNs) in malaria vector control. Genotyping of mutations in the voltage gated sodium channel (VGSC) gene is widely 
used to easily assess the evolution and spread of pyrethroid target-site resistance among malaria vectors. L1014F 
and L1014S substitutions are the most common and best characterized VGSC mutations in major African malaria vec-
tor species of the Anopheles gambiae complex. Recently, an additional substitution involved in pyrethroid resistance, 
i.e. V402L, has been detected in Anopheles coluzzii from West Africa lacking any other resistance alleles at locus 1014. 
The evolution of target-site resistance mutations L1014F/S and V402L was monitored in An. coluzzii and Anopheles 
arabiensis specimens from a Burkina Faso village over a 10-year range after the massive ITN scale-up started in 2010.

Methods  Anopheles coluzzii (N = 300) and An. arabiensis (N = 362) specimens collected both indoors and outdoors 
by different methods (pyrethrum spray catch, sticky resting box and human landing collections) in 2011, 2015 
and 2020 at Goden village were genotyped by TaqMan assays and sequencing for the three target site resistance 
mutations; allele frequencies were statistically investigated over the years.

Results  A divergent trend in resistant allele frequencies was observed in the two species: 1014F decreased in An. 
coluzzii (from 0.76 to 0.52) but increased in An. arabiensis (from 0.18 to 0.70); 1014S occurred only in An. arabiensis 
and slightly decreased over time (from 0.33 to 0.23); 402L increased in An. coluzzii (from 0.15 to 0.48) and was found 
for the first time in one An. arabiensis specimen. In 2020 the co-occurrence of different resistance alleles reached 43% 
in An. coluzzii (alleles 410L and 1014F) and 32% in An. arabiensis (alleles 1014F and 1014S).

Conclusions  Overall, an increasing level of target-site resistance was observed among the populations with only 1% 
of the two malaria vector species being wild type at both loci, 1014 and 402, in 2020. This, together with the co-
occurrence of different mutations in the same specimens, calls for future investigations on the possible synergism 
between resistance alleles and their phenotype to implement local tailored intervention strategies.
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Background
Malaria vector control is still deeply dependent on the 
use of pyrethroids, the primary class of World Health 
Organization (WHO)-recommended insecticides for 
treating bed nets (ITNs). Pyrethroid-based control tools 
have been the milestone of malaria prevention in Africa 
for almost two decades and have led to an incontestable 
success in the fight against the disease: ITNs alone drove 
over 68% of 663 million prevented case in 2000–2015 [1]. 
Unfortunately, the longstanding usage of pyrethroids as 
pest control in agriculture and their massive scale up in 
the field of public health [2–5] have contributed to the 
current scenario of widespread resistance among mos-
quito vector populations across all Africa [6, 7]. This is 
even worsened by cross-resistance, for which an insec-
ticide can elicit the resistance to another chemical com-
pound of a different class but sharing the same mode of 
action. This has probably been the case of the past exten-
sive use in agriculture of DDT which share with pyre-
throids the same target site, i.e. the voltage-gated sodium 
channel (VGSC) [8, 9]. Pyrethroid resistance is seriously 
threatening the success of malaria vector control tools, 
contributing to the current stalling progress towards 
malaria elimination [10].

To face the global issue of insecticide resistance, WHO 
has recently approved two new classes of ITN containing 
pyrethroids mixed with Chlorfenapyr (pyrrole insecticide 
disrupting oxidative pathways) or Pyriproxyfen (an insect 
growth regulator) [11], which act on different target sites 
than sodium channel. This new generation of ITNs is 
expected to be a game changer in restoring ITN effective-
ness [11–14].

Pyrethroid insecticide resistance is mainly imput-
able to: 1) non-synonymous mutation in the vgsc gene 
encoding for the paratype voltage-gated sodium chan-
nel and 2) metabolic mechanisms which increase the 
activity of enzymes detoxifying the insecticide (i.e. 
cytochrome P450 monooxygenases, esterases, and glu-
tathione S-transferases). Other mechanisms as cuticular 
resistance and binding/sequestration can act in addition 
to determine mosquito physiological resistance to pyre-
throids [9, 15–17].

Molecular testing of mutations in the vgsc is widely 
used to easily assess presence and frequencies of tar-
get site mutations of insecticide resistance and repre-
sents also an early informative approach to follow the 
evolution/spread of resistance among field popula-
tions [7]. This is a fundamental aspect in the context of 

pyrethroid resistance management, especially consid-
ering the complicated genetics of target site resistance 
[18] and its combined effect with metabolic pathways 
[7, 19].

L1014F and L1014S mutations (or L995F and L995S 
using An. gambiae codon numbering) are the most 
widely spread and best characterized VGSC mutations 
in major African malaria vector species of the An. gam-
biae complex [18]. They cause a substitution of leucine 
with phenylalanine (TTA→TTT, for L1014F) or with 
serine (TTA→TCA for L1014S) in the sixth transmem-
brane segment of domain II of the VGSC, leading to 
altered channel gating and eventually a reduced sensi-
tivity to pyrethroids (knock-down resistance, kdr) [20]. 
Both mutations were observed in An. gambiae sensu 
lato (s.l.) field populations largely before the scaling up 
of pyrethroids in public health (started in 2000s), with 
first reports dating around the end of 80’s [21–23], and 
were shown to have emerged multiple times across 
Africa [24–27]. L1014F and L1014S were originally 
described in West and East Africa respectively [21, 
22, 28–30], but now coexist across sub-Saharan Africa 
at variable frequencies from site to site among major 
vector species of the An. gambiae complex, i.e. An. 
coluzzii, An. gambiae and An. arabiensis [24, 31–41]. 
Although there is no clear evidence that the presence 
of 1014 mutations is sufficient to result in vector con-
trol failure [7, 9, 19], these alleles are commonly used as 
markers of target-site resistance to pyrethroids.

Two additional tightly linked non-synonymous 
mutations in vgsc gene, V402L-I1527T, were recently 
observed in An. coluzzii populations of Ghana, Burkina 
Faso and Ivory Coast, in specimens lacking mutations 
at 1014 locus [18], observing a linkage disequilibrium 
between 1014F and 402L. Allele 402L is reported in 
two allelic variants (TTA and CTA) causing a substitu-
tion from valine to leucine in segment 6 of domain I, 
while I1527T causes a change from isoleucine to thre-
onine in segment 6 of domain III. For V402L, it has 
been demonstrated that this mutation confers resist-
ance to pyrethroids in laboratory colonies without 
apparent fitness cost under experimental laboratory 
conditions [42], while L1014F has been shown to have 
pleiotropic effects resulting in reduced fecundity and 
longevity, alongside an effect on larval development 
[19, 43, 44]. This would allow V402L to compete with 
the L1014F mutation and increase in frequency in case 
of either reduced insecticide selective pressure, or if its 
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combined effect with other resistance mechanisms (e.g. 
other mutation as I1527T or metabolic resistance) con-
ferred elevated level of pyrethroid resistance. In fact, 
first evidence of a drop in frequency of 1014F associ-
ated with the rise of the alternative V402L/I1527T hap-
lotype was reported in An. coluzzii wild populations 
of Southwest Burkina Faso where, from 2016 to 2019, 
402L-1527 T frequency increased from 18 to 37% while 
the frequency of the 1014F allele decreased from 82 to 
63% [42].

In this study, the temporal frequencies of 1014F, 
1014S and 402L mutations in malaria vectors of a vil-
lage in central Burkina Faso were analysed, from 2011 to 
2020, i.e. since one year after the implementation of the 
ITN national mass distribution campaign. Differently 
from the previously quoted study in the South-western 
region of the country [42], a limited insecticidal pressure 
derived from insecticide use against agricultural pest is 
expected in the present study site. In addition, this study 
site has been characterized entomologically for over ten 
years, supporting the results here retrieved with other 
parameters related with vector response to ITN pressure 
[45–48].

Methods
Study area
The survey was carried out in Goden, a rural village 
(12°25ʹ N, 1° 21ʹ W) of < 1,000 people (Bogodogo, Health 
District survey 2021, unpublished data) located in the 
central region of Burkina Faso, in a Sudanese savannah 
area, at 35 km East far from the capital city Ouagadou-
gou. The land use and livelihood profile of the region is 
mainly based on market gardening and, to a lesser extent, 
on rice cultivation around dams and on livestock rearing 
of small ruminants and poultry [49]. The study area is far 
out (about 480 km) from the major cotton growing belt 
located in the Southwest of Burkina Faso and scarcely 
affected by pesticide usage for agricultural purposes [50].

The region is characterized by holoendemic malaria 
mainly caused by Plasmodium falciparum [51]. ITNs are 
the vector control tools employed in the region where, as 
in the rest of the country, five national mass distribution 
campaigns were implemented in 2010, 2013, 2016, 2019 
and 2022 [52, 53].

According to the national survey “Enquête sur les indi-
cateurs du paludisme au Burkina Faso” [54, 55], about 
55%, 86% and 79% of households received at least one 
ITN, respectively, in the first three distribution cam-
paigns in Goden region. Roughly 3,800,000 ITNs were 
distributed during these campaigns, reaching up to 96% 
household coverage (data unpublished, courtesy of Dr. 
Wamdaogo Moussa Guelbeogo).

ITN enriched with PBO (piperonyl butoxide), a non-
toxic synergist of pyrethroids, has been introduced in the 
Central region since 2019 to manage insecticide resist-
ance, while no IRS is currently used [53, 56].

Entomological collections and specimen processing
Mosquitoes analysed in the context of the current study 
were part of larger entomological collections conducted 
in years 2011, 2015 and 2020 [45, 47, 48]. Briefly, in 2011 
indoor and outdoor resting collections were carried out 
by pyrethrum spray catches and sticky resting box, while 
in 2015 and 2020 host seeking mosquitoes were collected 
inside and outside houses by human landing catches. 
A subsample of mosquitoes, already identified as An. 
coluzzii and An. arabiensis in previous studies [45, 47, 
48], was randomly chosen for each sampling year and 
processed for insecticide resistance allele genotyping.

Insecticide resistance analysis
Genotyping of 1014F and 1014S mutations was carried 
out by two different Taqman Realtime assays, accord-
ing to the protocol of Bass et al. [57]. For a subgroup of 
genotyped mosquitoes, results were double-checked 
by sequencing the amplification products derived from 
standard PCR assay of Martinez-Torres and colleagues 
[28]. According to the protocol, primers Agd1 (5’-ATA​
GAT​TCC​CCG​ACC​ATG​-3’) and Agd2 (5’-AGA​CAA​
GGA​TGA​TGA​ACC​-3’) were used in the reaction mix-
ture. Agd1 was then provided as sequencing primer.

Genotyping of the two allelic variants of V402L sub-
stitution was achieved by amplifying the genomic region 
flanking the mutations adapting the PCR protocol of 
Fan and colleagues [58] originally designed to detect the 
mutation in Aedes aegypti. The reaction was performed 
using primers AaSCF9 (5′-ATC​TGC​CTT​TCG​TCT​AAT​
GACCC-3′) and AaSCR10 (5′-TTC​CTC​GGC​GGC​CTC​
TTC​-3′) and was conducted in a final volume of 25  μl 
containing: 0.32  μmol of each primer, 0.08  mM of each 
dNTP, 3 mM MgCl2, 1 U Taq polymerase (Bioline™; Bio-
line Reagents Ltd, London, U.K.), and 2.5  μL of DNA 
extracted from half mosquito. Obtained amplicons were 
sent for sanger sequencing using primer 402-F (5’-GTG​
TTA​CGA​TCA​GCT​GGA​CCG-3’) designed by Williams 
and colleagues (2021) as sequencing primer. This primer 
binds downstream to an intronic region of the amplicon 
allowing to avoid problems in sequence interpretation 
due to the presence of intron length polymorphisms.

All amplification products were purified and sequenced 
at Eurofins Genomic Center (GmbH, Ebersberg, Ger-
many). Electropherograms were inspected by Chromas 
Lite (Technelysium Pty. Ltd., Tewantin, Queensland) to 
detected target site mutations.
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Statistics
For each species, Chi-square and/or Fisher’s exact tests 
were used to investigate differences in resistant allele fre-
quencies over the years and to explore deviations from 
Hardy–Weinberg equilibrium (HWE) for the year 2020. 
For An. arabiensis, HWE was performed only for the 
three allelic locus 1014, while for An. coluzzii combined 
frequencies for loci 402 and 1014 were considered. Anal-
yses were performed using VassarStats (Statistical Com-
putation Website). R statistical software version 3.5.0 (R 
development core Team, 2018) with stats package was 
used to test the Hardy–Weinberg equilibrium under 
Fisher’s exact test.

Results
A total of 300 An. coluzzii and 362 An. arabiensis speci-
mens were successfully genotyped for the three target-
site mutations for the year 2011, 2015 and 2020. The 
number of specimens analysed and relative genotypes 
are summarized in Tables  1 and 2 for the two species 
in each year. Different trends in the frequency of the 
three mutations are observed between the two species. 
In An. coluzzii, 1014F allelic frequency decreases sig-
nificantly from 0.76 in 2011 to 0.52 in 2020 (χ2 = 29.39, 
p < 0.0001), while 402L rises from 0.15 in 2011 to 0.48 
in 2020 (χ2 = 42.2, p < 0.0001; Fig.  1). L1014S substitu-
tion is not observed over the study period in this spe-
cies. Conversely, in An. arabiensis, 1014F frequency 
increases significantly from 0.18 in 2011 to 0.70 in 2020 
and 1014S allele ranges between 0.23 and 0.33 over the 
years (χ2 = 183.09, p < 0.0001; Table  2, Fig.  2). Finally, 
402L mutation is detected in heterozygosis in a single An. 

arabiensis specimen collected in 2011 (Table 2). Sequenc-
ing of 1014 locus, performed on a subgroup of 130 speci-
mens, confirms the results obtained by the TaqMan 
assays for L1014F/S substitution detection.

Sequencing of locus 402 reveals that in An. coluzzii 
the substitution of valine with leucine is encoded by 
either TTA nucleotide triplet (in 84% of the cases) or by 
CTA triplet (N alleles 402L = 191, Additional file S1). In 
the single An. arabiensis specimen carrying V402L, the 
mutation is encoded by the CTA triplet.

The 402L mutation appears to be in strong linkage with 
1014L wild type allele. The only exceptions (confirmed by 
sequencing) are observed in: (i) one An. coluzzii speci-
men collected in 2020 carrying the 402L mutation in 
homozygosis and 1014F in heterozygosis (Additional file 
S2); (ii) the An. arabiensis 402L heterozygous specimen 
which carries both 1014F/S mutations.

For the year 2020 (the most recent sampling) the 
observed genotype frequency at loci 1014 and 402 doesn’t 
significantly deflect from the expected values under the 
Hardy–Weinberg equilibrium for each species.

As visible from Figs. 3 and 4, over the study period it 
is observed an increasing number of specimens carry-
ing at least one resistance allele: from 95 to 100% for An. 
coluzzii and from 70 to 98% for An. arabiensis (see also 
Table 2 and Additional file S2).

Discussion
The availability of historical samples collected in Goden 
village over a decade following the massive ITN scale-up 
started in 2010, allowed to highlight an overall increase 
of resistant alleles in vector populations analysed from 

Table 1  Anopheles coluzzii L1014F and V402L genotype

1014F/1014F = Homozygote resistant; 1014F/1014L = heterozygote; 1014L/1014L = sensitive wild type. 402L/402L = Homozygote resistant; 
402L/402 V = heterozygote; 402 V/402 V = sensitive wild type

The total of specimens(N) genotyped for each year is reported bold

year N 1014F/1014F 1014F/1014L 1014L/1014L 402L/402L 402L/402 V 402 V/402 V

2011 78 65% 22% 13% 4% 22% 74%

2015 107 47% 48% 6% 5% 45% 50%

2020 115 30% 44% 26% 27% 42% 31%

Table 2  Anopheles arabiensis L1014F/S and V402L genotype

1014F/1014F = homozygote resistant; 1014S/1014S = homozygote resistant; 1014F/1014S = heterozygote with 1014F and 1014S allele; 1014F/1014L = heterozygote; 
1014S/1014L = heterozygote; 1014L/1014L = sensitive wild type. 402L/402L = homozygote resistant; 402L/402 V = heterozygote; 402 V/402 V = sensitive wild type

The total of specimens(N) genotyped for each year is reported bold

year N 1014F/1014 F 1014S/1014S 1014F/1014S 1014F/1014L 1014S/1014L 1014L/1014L 402L/402L 402L/402 V 402 V/402 V

2011 104 8% 10% 13% 7% 33% 30% 0% 1% 99%

2015 128 9% 16% 14% 20% 22% 20% 0% 0% 100%

2020 130 50% 6% 32% 8% 3% 2% 0% 0% 100%
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Fig. 1  Temporal trend of 1014F, 1014S, 402L allelic frequencies in An. coluzzii over the study period

Fig. 2  Temporal trend of 1014F, 1014S, 402L alleic frequencies in An. arabiensis over the study period
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2011 to 2020. For the first time, it is reported the V402L 
substitution in An. arabiensis and observed a high co-
occurrence of different target site mutations which leads 
to less than 1% of specimens that are wild type at both 
1014 and 402 loci in the year 2020. Interestingly, this 
extremely high target site resistance in the vector popula-
tion is due to a different genetic response of An. coluzzii 
and An. arabiensis to the local ITN selective pressure.

In An. coluzzii, the 1014F mutation decreases from 
2011 to 2020, but the frequency of 402L allele rises, 
with both alleles reaching an ~ 50% frequency in 2020. 
This could be explained by contrasting adaptive selec-
tive forces which may have led to a trade-off between 
maintaining high levels of insecticide resistance and 
reducing the negative impact of 1014F on population fit-
ness [19, 44, 59]. According to Williams and colleagues 
[42], no apparent fitness cost has been associated to 
402L homozygous laboratory colonies, while its expres-
sion in transgenic lines seems to confer a lower level of 
resistance to pyrethroids in comparison to L1014F. The 
observed inverse trend for 1014F and 402L mutations 
is consistent with what already reported in other An. 
coluzzii populations of West Burkina Faso [42, 60] and 
confirmed the linkage disequilibrium existing for the two 
substitutions [18, 42, 61]. Nevertheless, a single specimen 

carrying a combined 1014F/1014F and 402L/402 V geno-
types is found, showing lack of a complete mutual exclu-
sivity between these mutations [18, 42]. The mutation 
1014S is never observed in the An. coluzzii samples, con-
sistently with the limited circulation of this allele in other 
An. coluzzii populations from Burkina Faso [35, 62–66].

Conversely, in An. arabiensis all the three target site 
mutations are detected, including V402L substitution 
(observed in a single specimen in 2011). The 1014S was 
the most frequent target site mutation circulating in An. 
arabiensis population in 2011 (even if at relatively low 
level, i.e. 33%), and appears to be overcome by 1014F 
10 years later. This can be imputable to the higher resist-
ance conferred by allele 1014F as compared to 1014S 
[22, 67, 68]. A single specimen of An. arabiensis carried 
all the three mutations simultaneously (402V/402L and 
1014F/1014S genotype), confirming the lack of mutual 
exclusivity already observed in An. coluzzii.

The divergent allelic response to ITN selective pressure 
observed in the two vector species can result from several 
factors. An. coluzzii and An. arabiensis showed different 
backgrounds of insecticide resistance as early as 2011, i.e. 
one year after beginning of ITN implementation, with 
1014F dominating in An. coluzzii (76%) and 1014S in 
An. arabiensis (33%) at frequencies in the range of those 

Fig. 3  An. coluzzii target site resistance. Percentage of specimens carrying two, one or zero resistance alleles (i.e. 1014F or 402L). 2 = 1014F/1014F 
or 1014F/402L or 402L/402L genotype; 1 = 1014L/1014F or 402 V/402L genotype; 0 = 1014L/1014L or 402 V /402 V genotype
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observed in 2012 and 2009 in other villages of the same 
eco-climatic zone of Goden (i.e. Sudan Sahelian) [35, 
50]. In addition, different biting behaviours occurring in 
the two sibling species possibly affected their exposure 
to treated nets. According to our previous surveys con-
ducted in Goden village since 2011, an evasive behaviour 
to ITN presence was observed in both species, affect-
ing biting rhythms and their degrees of endophagy and 
anthropophily [45, 47, 48].

However, after ITN implementation, An. coluzzii kept 
maintaining a higher anthropophily when compared to 
An. arabiensis, as suggested by its higher densities inside 
dwellings, human blood index, human biting pressure, 
and sporozoite rate ([45, 47, 48], and Perugini et al. pers. 
commun.). Thus, it can be hypothesized that An. arabi-
ensis suffered reduced ITN insecticidal pressure than An. 
coluzzii, and this may have contributed to the limited 
increase of 1014F observed in this species from 2011 to 
2015. Finally, different levels of metabolic resistance and/
or insecticide binding mechanisms may exist between the 
species over the study period [17, 69]. Future transcrip-
tomic investigations will address to the contribution of 
other resistance mechanisms in malaria vector species, 
especially considering the introduction of PBO net in 
Goden village since 2019.

In the most recent year of the survey (2020), 43% of 
An. coluzzii and 32% of An. arabiensis specimens were 
found double mutants for 1014F-410L and 1014F-1014S, 
respectively (Table  2; Additional file S2). Although gen-
otype frequencies are conformed to Hardy–Weinberg 
expectations, future investigations are needed to evalu-
ate a possible advantage in the co-occurrence of differ-
ent target site mutations in the same specimen and the 
impact on vector control. So far, no information is avail-
able about synergism between V402L and L1014F/S but 
there is evidence that the co-expression of 1014F/1014S 
mutation confers a more resistant phenotype than those 
expressed by the heterozygosity of one of the two sub-
stitutions [68, 70, 71]. Moreover, 1014F/1014S double 
mutants seem to express a resistance phenotype almost 
comparable to that of 1014F homozygotes [71].

In 2020, only 2% of An. arabiensis and no An. coluzzii 
were found homozygous wild type at both 1014 and 
402 loci. In fact, almost all An. coluzzii specimens were 
homozygous for 1014F, or for 402L or double mutant 
1014F/402L (Fig.  3; Additional file S2), while 88% of 
tested An. arabiensis specimens were 1014F or 1014S 
homozygous, or 1014F/1014S (Fig.  4; Table  2). Given 
the high target site resistance observed in the malaria 
vector population and high co-occurrence of different 

Fig. 4  An. arabiensis target site resistance. Percentage of specimens carrying two, one or zero resistance alleles (i.e. 1014F or 1014S). 
2 = 1014F/1014F or 1014S/1014S or 1014F/1014S genotype; 1 = 1014F/1014L or 1014S/1014L genotype; 0 = 1014L/1014L genotype
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substitutions in the same specimens (Table 2; Additional 
file S2), it will be important to evaluate the phenotypic 
effect of these combined mutations and the level of meta-
bolic resistance, in order to predict their impact on PBO 
net effectiveness.

The present results, together with bioassays, will inform 
the choice on the most cost-effective strategy to adopt in 
the area. In fact, although the new generations of ITNs 
(containing admixture of phyretroids and chlorfenapyr 
or pyriproxyfen) are expected to be a game changer in 
insecticide resistance management, their implementation 
is more expensive and less sustainable than PBO nets 
[11–14]. Thus, local-level studies are needed to unveil 
different mechanisms involved in insecticide resistance 
to develop tailored control interventions.

Conclusion
This study showed extremely high levels of target site 
insecticide resistance in malaria vector populations of 
Goden village in the central region of Burkina Faso. Here 
the co-occurrence of 1014F, 1014S and 402L may be 
reducing the effectiveness of ITNs and, potentially, lim-
iting the impact of PBO nets recently introduced in this 
region. In fact, the entomological indices calculated in 
our previous studies revealed a consistent high level of 
malaria transmission risk over 10 years, despite the large 
bed net coverage. The results call for future studies to 
evaluate possible synergism among the different target 
site mutations and other insecticide resistance mecha-
nisms (i.e. metabolic and sequestration/binding). Tak-
ing Goden village as a potential “sentinel site”, obtaining 
this information could eventually lead to reconsider the 
current strategies adopted in the central region of Bur-
kina Faso and inform on the choice of the most suitable 
malaria vector control tool at local scale.
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