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Malaria control relies on insecticides targeting the mosquito vector, but
this is increasingly compromised by insecticide resistance, which can be
achieved by elevated expression of detoxifying enzymes that metabolize
the insecticide. In diploid organisms, gene expression is regulated both
in cis, by regulatory sequences on the same chromosome, and by trans
acting factors, affecting both alleles equally. Differing levels of transcription
can be caused by mutations in cis-regulatory modules (CRM), but few of
these have been identified in mosquitoes. We crossed bendiocarb-resistant
and susceptible Anopheles gambiae strains to identify cis-regulated genes
that might be responsible for the resistant phenotype using RNAseq,
and CRM sequences controlling gene expression in insecticide resistance
relevant tissues were predicted using machine learning. We found 115
genes showing allele-specific expression (ASE) in hybrids of insecticide
susceptible and resistant strains, suggesting cis-regulation is an important
mechanism of gene expression regulation in A. gambiae. The genes showing
ASE included a higher proportion of Anopheles-specific genes on average
younger than genes with balanced allelic expression.

1. Introduction
Malaria prevalence in Sub-Saharan Africa has reduced by 50% since 2000,
primarily due to insecticide-based control of mosquito vectors [1]. Recently,
progress has stagnated [2], partly due to increasing levels of resistance
against insecticides in mosquito populations [3]. Anopheles gambiae is one
of the dominant malaria vectors in Sub-Saharan Africa, the primary vector
across most of Uganda [4] and the vector for which the largest resource
of genome data is available, with 7275 genomes sequenced [5–8]. A com-
mon cause of insecticide resistance is increased degradation of insecticides
(termed metabolic resistance) [9] with overexpression of insecticide-metabo-
lizing P450s repeatedly implicated [10–12]. This can be caused by mutations in
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cis-regulatory regions regulating the expression of metabolic resistance genes. In diploid organisms, such mutations typically
only affect the expression of the allele of the gene located on the same chromosome. Although some trans factors involved
in metabolic resistance gene regulation in Anopheles are known [13,14], few studies have identified genetic variation causing
metabolic resistance [15–18]. The multiallelic nature of metabolic insecticide resistance which can involve different mutations
affecting the same gene in different populations, as well as the involvement of multiple genes, makes marker identification
challenging as it limits the power of association studies unless very large sample sizes are used [15].

Despite the primary role of gene overexpression in metabolic resistance, only one cis-regulatory variant for resistance-linked
differential expression has been identified in A. gambiae [19], and markers for such variants are therefore absent in the current
genetic marker panel for resistance [20]. Copy number variants (CNV) have been observed in A. gambiae metabolic resistance
gene clusters [21]. For example, in Anopheles coluzzii copy number of Cyp6AA1 is associated with deltamethrin resistance [22].
The relative contribution of CNV and cis-regulation on Anopheles gene expression has not yet been determined.

Uganda sees a high burden of malaria; comprising 7.8% of all global cases in 2021 [23]. To address this public health
burden, the insecticide bendiocarb has been used for indoor residual spraying (IRS) to complement the distribution of long-
lasting insecticidal nets. Some resistance to bendiocarb in A. gambiae was observed in Nagongera (southeast Uganda) and
Kihihi (southwest Uganda), with 83% and 70% mortality, respectively, to World Health Organization (WHO) bioassays with a
diagnostic dose of 0.1% bendiocarb in 2014 prior to the IRS [24]. The IRS campaign starting in December 2014 succeeded in
reducing the human biting rate, cases of malaria and test positivity rate in Nagongera [24], but the potential for further increases
in resistance puts the long-term usefulness of bendiocarb into question.

Mosquitoes collected from Nagongera in 2014, which have moderate resistance to bendiocarb, showed significant differential
expression of many genes compared with the susceptible Kisumu strain, including salivary gland protein encoding D7r2 and
D7r4 genes as well as the detoxification-associated genes Gstd3 and Cyp6m2 [25]. Expression of D7r4 was associated with a
single-nucleotide polymorphism (SNP) in a non-coding transcript downstream of the D7 cassette [25].

In diploid organisms, allele-specific expression (ASE) provides strong evidence that genes may be under differential
cis-regulatory control [26,27]. Using a method that has been applied to a variety of taxa [26,28–32] but not mosquitoes, we
describe the identification of genes showing ASE in A. gambiae which potentially confer metabolic resistance. The challenges
of applying this method that arise from mosquito biology and genome structure are discussed. In complementary work, we
predicted the sequences of some of the cis-regulatory modules (CRM) that may underlie the expression of genes involved in
insecticide resistance using machine learning. Predictions included potential CRMs proximal to the genes showing ASE and
genes that show consistent differential expression patterns in multiple resistant Anopheles strains, providing a starting point for
future investigations into CRM variants during the evolution of insecticide resistance.

2. Material and methods
(a) Strains and crosses
Resting female mosquitoes were collected in Siwa Village, Nagongera, Tororo District in Eastern Uganda (0°46′12.0″N, 34°01′34.0″E)
in March 2013. Sixty-five A. gambiae (as ascertained by species ID PCR [33]) egg batches laid by the collected females were reared and
combined to establish the Nagongera colony. All colony founding mothers were screened for the bendiocarb target site resistance
mutation G280S in ace1 using the TaqMan assay described by Bass et al. [34]. No resistance-associated variants were observed. Full
sequencing of ace1 from six colony mosquitoes that survived bendiocarb exposure did not reveal any other potential target site
resistance mutations. The colony was assayed using WHO tube assays [35] at F2 and found to be highly resistant to DDT (7.4%
mortality to diagnostic dose 4%, n = 54) and deltamethrin (17.2% mortality to diagnostic dose 0.05%, n = 64), with intermediate
resistance to the carbamate bendiocarb (65.9% mortality to diagnostic dose 0.1%, n = 44). WHO tube bioassays [35,36] of Nagongera
colony adults using assays with preexposure to 4% piperonyl butoxide (which inhibits P450-mediated metabolism) for 1 h prior to
bendiocarb exposure increased mortality to 97.4% (n = 39), a 48% increase in mortality compared with bendiocarb exposure alone,
implying that bendiocarb resistance is metabolic rather than target site mediated.

A schematic of the experimental design is shown in figure 1. Reciprocal crosses between Nagongera mosquitoes and an
inbred insecticide susceptible colony (origin Kisumu, Kenya, 1975, susceptible to bendiocarb, DDT and deltamethrin) were
performed as described previously [6]. Crosses each involved 13 males and multiple females; since A. gambiae are swarm maters,
multiple males are required to induce mating. Females were transferred to individual cups for egg laying. F1 progeny of three
females from each reciprocal cross were raised to adults under standard insectary conditions of 12 h light : 12 h dark cycle, 26°C
± 2°C and 70% relative humidity and fed on 10% sucrose solution (table 1, figure 1).

(b) Sequencing
RNA was extracted from pools of 10 female F1 progeny from each of the six crosses 3–5 days after eclosion using RNAqu-
eous4PCR total RNA isolation kit (Invitrogen). RNA quality and quantity were checked using the Agilent Bioanalyser profile
and Qubit 2.0 Fluorometer. Total RNA libraries were prepared for Illumina paired-end indexed sequencing according to the
Illumina TruSeq RNA sample preparation v. 2 guide [37]. cDNA libraries were barcoded, pooled and sequenced using the
Illumina HiSeq1500 platform, with 100 bp paired-end reads.

DNA was extracted using the Qiagen DNeasy Kit from the six individual mothers, all individual potential fathers alive
following the cross and individual male F1 siblings (figure 1) and sequenced as described previously [6].
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(c) Genome analysis
Quality control of genomic sequences for mothers, potential fathers and F1 progeny and matching of fathers to the
progeny using Mendelian error analysis was performed as described previously [6], electronic supplementary material,
table S1.

Scikit-allel v. 1.3.7 [38] was used to analyse the genome of the mothers and potential fathers, generating a consensus sequence
of homozygous sites for Kisumu and Nagongera colonies and calculating the number of SNPs differing between the colonies
which passed the MalariaGen ‘gamb_colu’ site filter (table 2). Analysis of CNV, selective sweeps, protein age and enrichment
analysis are described in electronic supplementary materials.

(d) RNAseq analysis
Samples were compared using the RNA-Seq-Pop snakemake workflow [39] which includes FastQC [40], read alignment to the
A. gambiae PEST reference genome (AgamP4, INSDC Assembly GCA_000005575.1, February 2006) using kallisto [41], principal
components analysis, differential gene expression analysis using DESeq2 [42], differential isoform analysis using sleuth [43] and
gene set enrichment analysis using GSEA [44]. RNAseq data for the Kisumu parental colony, Busia G28 deltamethrin selected
colony [39] and Tiefora pyrethroid resistant colony [45] were compared with the F1 RNAseq data.

(a) (c) (g)

(b)

(d)

(h)

(e)

(f)

( f )

Figure 1. Crossing, DNA and RNA extraction schema. (a) Thirteen Kisumu females (blue) were crossed to 13 Nagongera males (red). Females mate only once.
Genomic DNA from Nagongera males was extracted and sequenced. (b) In the reciprocal cross, 13 Nagongera females (red) were crossed to 13 Kisumu males (blue).
Genomic DNA was extracted and sequenced from Kisumu males. (c) Individual mated Kisumu females were transferred to laying cups. Genomic DNA was extracted
and sequenced following egg laying. (d) Individual mated Nagongera females were transferred to laying cups. Genomic DNA was extracted and sequenced following
egg laying. (e) F1 progeny (purple) from the three Kisumu mothers sequenced at step (c) were raised to adulthood. Genomic DNA was extracted and sequenced
from individual males (f). F1 progeny (purple) from the three Nagongera mothers sequenced at step (d) were raised to adulthood. Genomic DNA was extracted and
sequenced from individual males (g,h). Female F1 from each of the six mothers were raised to adulthood. RNA was extracted and sequenced from pools of 10 F1
females 3–5 days after eclosion.

Table 1. Crosses between Kisumu and Nagongera and RNAseq summary statistics.

RNAseq sample cross mother origin mother

Sanger code

father origin father

Sanger code

total reads counted

(F1 RNAseq)

percentage of reads mapping to

A. gambiae PEST genome

Wilding_1 B1 Nagongera failed QC Kisumu unknown 18 496 263 88.6%

Wilding_2 B3 Nagongera failed QC Kisumu unknown 38 526 717 87.1%

Wilding_3 B5 Nagongera AC0382-C Kisumu AC0416-C 28 969 694 87.7%

Wilding_4 K2 Kisumu AC0300-C Nagongera AC0406-C 6 400 460 85.5%

Wilding_5 K4 Kisumu AC0317-C Nagongera AC0398-C 46 229 505 86.3%

Wilding_6 K6 Kisumu AC0334-C Nagongera AC0398-C 29 491 773 86.9%
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(e) Analysis of ASE
For parent-based mapping, SNPs homozygous for different alleles in the parents were used to infer ASE. Due to the pooling of
10 females for RNA sequencing, it was not possible to use parental heterozygous SNPs. For sibling-based mapping, autosomal
SNPs distinguishing maternal and paternal alleles were inferred from the male siblings’ genome sequences (electronic supple-
mentary material, tables S2 and S3).

Analysis of F1 RNAseq data for ASE was performed using ASEReadCounter* [46] (based on ASEReadCounter [47]) using
individual parent genomes for each cross to assign reads to parental alleles (options –vcf_mat, –vcf_pat). Where only sibling-
inferred SNPs were known, option –vcf_joind was used on the unphased inferred F1 VCF file. SNP level ASE was calculated for
all SNPs with ≥10 total counts.

To obtain a gene level measurement of ASE, MBASED [48] was used to aggregate SNP level counts to gene level by
pseudo-phasing SNPs in each gene. The SNPs with the higher read count at each variable site are combined into the major
allele. For SNPs inferred from siblings, MBASED was run assuming SNPs were unphased. Where phase was known, MBASED
was run in both phased and non-phased mode to measure the impact on power to detect loci with ASE. The overdispersion
parameter for simulations was determined from read counts (electronic supplementary materials). In all cases, the same seed
was set prior to running 106 simulations with the total read count at each SNP kept constant, but drawing reference allele
counts from a null beta-binomial distribution with mean 0.5 × total count and overdispersion parameter 0.038. The p-value is the
proportion of simulations in which the major allele frequency (MAF) is greater than or equal to the observed MAF. For genes
with multiple SNPs, the p-value for heterogeneity (phet) between the level of ASE at each SNP was calculated. Low phet indicates
possible isoform-specific ASE. False discovery rate correction was applied to both p-values for ASE and phet with a nominal rate
of 5% [49].

(f) Prediction of CRMs
Anopheles CRMs were predicted using SCRMshaw [50–54]. Briefly, Drosophila CRMs which drive gene expression in the tissue
of interest were downloaded from the Redfly database (v. 9.6.0, database updated 2 January 2023) [55,56], with max size
2000. Only non-overlapping sequences (>100 bp) were included. Syntenous regions from related Drosophila species (putatively
containing the equivalent CRM) were added to the training dataset using liftOver at https://genome.ucsc.edu/cgi-bin/hgLiftOver
[57] as described by Kazemian & Halfon [51]. SCRMshaw was trained using this augmented training set and a 10× bigger set
of non-CRM non-exonic regions. Repeats in CRMs, non-CRMs and the target A. gambiae PEST genome were masked using
repeat masker [58]. Existing training sets for the adult peripheral nervous system, embryonic and larval excretory and embry-
onic/larval Malpighian tubules were downloaded from GitHub (https://github.com/HalfonLab/dmel_training_sets). These were
compared with the 2272 Tn5 transposase hypersensitive sites identified by Ruiz et al. [59].

3. Results and discussion
(a) Crosses
Three females from each reciprocal cross between the Kisumu and Nagongera strains laid viable eggs (figure 1 and table 1). For
four crosses the father was identified by minimizing median Mendelian error (electronic supplementary material, table S1), but
for the other two crosses the mother failed sequencing quality control and none of the sequenced putative fathers were a good
match. We presume the true fathers for these crosses died during the experiment, precluding extraction of good quality DNA.

RNAseq statistics for the pooled F1 females from each of these six crosses are shown in table 1. The number of reads
recommended for 60% power to detect ASE at 1.5-fold is 500 per gene [60], which for the 13 796 annotated genes in A. gambiae

Table 2. Number of SNPs differing between Kisumu and Nagongera colony consensus genome sequences and SNPs in exonic regions differing between the parents
that could be used to detect ASE

Cross or Colony 2L 2R 3L 3R X Y / other Total

Colony consensus 2519 12 769 1530 1931 10 510 0 29 259

K2 13 849 30 134 19 375 20 877 15 543 0 99 778

K4 33 139 35 048 19 074 22 405 15 250 0 124 916

K6 30 303 30 811 14 534 17 801 15 601 2 109 052

B5 29 627 36 203 20 865 25 414 10 539 1 122 649

Colony consensus numbers are the count of SNPs on each chromosome arm which differ between the Kisumu and Nagongera colony and are homozygous in all
sequenced Kisumu and Nagongera colony individuals. Numbers for each cross are exonic SNPs that are homozygous in the parents of each cross but differing between
the parents
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would require around 6.9 × 106 reads. Five crosses exceeded this value with one cross, K2, having slightly fewer (6.4 × 106 reads).
The proportion of reads mapping to the A. gambiae genome was similar for all crosses (mean 87.0%, s.d. 1.1%).

(b) Between pools gene expression comparison
Comparison between reciprocal crosses revealed similar gene expression in the F1 progeny, with just nine genes significantly
downregulated and 12 genes significantly upregulated in the F1 progeny of Kisumu mothers compared with F1 progeny of
Nagongera mothers at padj ≤ 0.001 (figure 2a). When comparing only F1 crosses in PCA, B1 seemed to be an outlier in terms of
expression (electronic supplementary material, figure S1a). However, when compared with other colonies of A. gambiae s.l., the
F1 progeny formed a distinct group (electronic supplementary material, figure S1b).

F1 gene expression differed from the Kisumu (parental) colony, with a total of 1362 genes upregulated and 1265 genes
downregulated in the F1 compared to the Kisumu colony (p-adj ≤ 0.001) (figure 2b). Differential isoform expression results are
available at Dryad [61]. RNAseq data were unavailable for the Nagongera colony, which no longer exists. Gene set enrichment
analysis of the differentially expressed genes indicated that genes with Gene Ontology (GO) terms associated with odorant
binding, olfactory receptor activity, sensory perception of smell, response to stimulus, detection of chemical stimulus involved
in sensory perception of smell, structural constituent of cuticle and signal transduction were downregulated in the F1 compared
with Kisumu, whereas those with GO terms associated with translation, ribosome, mitochondrion, structural component of
ribosome and serine type endopeptidase activity were upregulated in the F1 compared with Kisumu (all at p-adjusted 0.05).
KEGG pathway analysis showed significant upregulation of ribosome, citrate cycle (TCA cycle) and oxidative phosphorylation
in the F1 compared with Kisumu, and no KEGG pathway significantly downregulated.

(c) ASE inference
Detection of ASE relies on sufficient SNPs differing between the parents [60]. Despite being inbred, neither the Kisumu nor the
Nagongera parental strain was isogenic, consistent with previous observations of retained heterozygosity in inbred A. gambiae
strains [62]. Nucleotide diversity and heterozygosity were lowest in the Kisumu colony and higher in the Nagongera colony
although slightly reduced compared with wild mosquitoes caught in the same geographic area (electronic supplementary
material, table S4). The number of SNPs differing between maternal and paternal genomes varied (table 2) and since the
available SNPs considering each cross separately was far in excess of the consensus differences between the colonieswe used
the SNP sets from each cross for further analysis. SNP level ASE was inferred for each cross (figure 3; electronic supplementary
material, figure S2). For the four crosses where the parent was known, per gene ASE was calculated as reads mapping to
the maternal genome/total reads mapped at that gene. In addition, the MAF at each gene was calculated for all crosses. Read
count data were fitted to binomial and beta-binomial models. ANOVA indicated that the beta-binomial model was a better
fit to the data (p < 2.2e−16). Per gene ASE statistics for all crosses are shown in table 3. Due to variations in parental genome
and sequencing depth the power to detect ASE varies between crosses, so it is not possible to infer whether the proportion of
genes with ASE is different between the crosses. Crosses B5, K2 and K4 showed similar numbers of SNPs (figure 3; electronic
supplementary material, figure S2) and genes with maternal or paternal ASE but cross K6 showed extreme paternal ASE. This
could either be due to K6 showing a very different pattern of ASE to the other crosses, or a sampling error occurred so that
the RNA sequenced samples were not from the same cross as the parents and siblings. We therefore checked the effect of
using SNPs from the wrong parents to infer ASE. Using SNPs from non-matching parents resulted in inflated ASE estimates
(electronic supplementary materials, table S4 and figure S3). Using SNPs from the parents of cross K4 to infer allelic counts for
cross K6 shifted mean imbalance back to 0.5 (figure 3; electronic supplementary materials, figure S2 and table S5). Furthermore,
when SNPs called from the RNAseq data were compared, the progeny of cross K4 and K6 were extremely genetically similar
and clustered closely in PCA for all chromosomal arms (electronic supplementary material, figure S4), suggesting they may
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have hatched from two egg batches from the same cross. Gene level ASE for cross K6 was therefore inferred using SNPs from
K4 parents.

Genes showing ASE showed some overlap between the different crosses (figure 4). At the most conservative estimate, 13
genes showed ASE in all crosses. This exceeds the overlap expected by random genes showing ASE, as in 100 000 simulations of
randomly drawing the observed number of significant genes from the set of genes where SNPs were available to detect ASE in
all crosses, the maximum overlap was 1. Most genes showing ASE were unique to individual crosses (figure 4), but many genes
showed ASE in combinations of multiple crosses that may also be under consistent differential cis-regulation between Tororo
and Nagongera colonies. Maternal or paternal ASE bias was inferred for crosses B5, K2, K4 and K6 (electronic supplementary
material, tables S6 and S7). Table S6 shows the 115 genes with significant ASE in at least 4 out of the 6 crosses. Significant phet
was observed in at least one cross for 62 of these, suggesting possible isoform-specific ASE.

Analysis of gene ages that showed or did not show ASE revealed an enrichment of younger, Anopheles specific genes
showing significant ASE (figure 5; electronic supplementary material, table S8). The same trend was seen in all crosses.

Genes showing ASE showed an unequal distribution along chromosomal arms compared with genes not showing ASE
(electronic supplementary materials, table S9 and figure S5). This trend was significant for all crosses except for K2. ANOVA
indicated both chromosome and cross explained the variance in the proportion of ASE/total detectable genes per chromosome
arm (p < 0.05).

(d) Copy number variation
True ASE is caused by cis-regulation, but CNV of the expressed gene could lead to apparent ASE if there are different numbers
of gene copies containing the SNPs used to count reads; e.g. if two copies of a duplicated gene with total of three copies
bear one SNP and the third the other SNP, apparent ASE would be inferred without differential cis-regulation. We therefore
checked for CNV in the parental and F1 sibling genomes at the genes that showed ASE in at least 4 out of 6 crosses, and in
the genes which contained sufficient SNPs to infer ASE but expression appeared to be in balance. The number of individuals
with a possible CNV in each gene varied between the genes (table S6) . A total of 60/114 (53%) autosomal genes showing ASE
contained possible CNV. For genes that did not show ASE, 481/1333 (36%) had possible CNV. A two-sided Fisher’s exact test
rejected the hypothesis that the odds ratio is 1 (odds ratio 2.0, p = 0.0006) suggesting that for some genes CNV contributed to
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the observed ASE. For example, ace1 (AGAP001356) is the target site of bendiocarb, and a CNV in this gene has previously been
implicated in resistance to bendiocarb [63]. AC0398-C, the Nagongera father of crosses K4 and K6, had three copies of ace1, as
did some of the F1 progeny of these crosses. However, ace1 ASE also occurred independently of the CNV as it was also observed
in the progeny of cross K2 for which neither parent had a CNV in ace1.

(e) Overlaps between ASE genes and other datasets
The list of 115 genes showing ASE in at least four crosses was compared with published gene expression data. All other
available Anopheles expression data is based on between sample comparison and represents a mixture of cis- and trans-regula-
tion, whereas ASE data is specific to cis-regulation and excludes any trans-regulation. Therefore even for extremely similar ASE
and between sample comparison datasets only cis-regulated genes are expected to overlap.

Genes showing ASE in at least four crosses were compared with genes with consistently high median fold change in
a meta-analysis of 35 experiments comparing RNAseq data between A. gambiae s.l. and Anopheles funestus strains [64], and
with genes showing significant fold change with consistent directionality in microarrays comparing susceptible and resistant
populations of A. coluzzii [65]. For the RNAseq metadata set, the genes with the top 5% of median fold changes between
susceptible and resistant populations (429/8599 total genes in the dataset), six genes were also present in the ASE gene set. These
were AGAP001251 (Eupolytin), AGAP008218 (Cyp6Z2), AGAP012296 (Cyp9J5), AGAP011068 (Aldose reductase), AGAP003583
(L-iditol 2-dehydrogenase) and AGAP008331 (WD repeat-containing protein 59). There was no overlap between ASE and microarray
data.

Gene set enrichment analysis did not reveal any consistent patterns across crosses for the enrichment of genes showing
significant ASE in any GO term or Kegg pathway. Trypsin and Ubiquitin pfam domains were significantly enriched in four of
the six crosses.

Of the gene families previously implicated in metabolic resistance, we observed four P450s with ASE in four of the
six crosses: Cyp12F3 (AGAP008019), Cyp12F2 (AGAP008020), Cyp6Z2 (AGAP008212) and Cyp9J5 (AGAP012296). Cy6Z2 and
Cyp9J5 are overexpressed in strains from Burkina Faso which exhibit varying degrees of resistance to organochlorine,
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Figure 4. Intersection of genes showing ASE between crosses. UpSet plot with the number of genes showing ASE for each cross and the intersection of these genes
between crosses. Only the first 28 sets of overlaps are shown.

Table 3. Number of genes showing ASE in each cross.

Cross Genes showing ASE (FDR 5%) Total genes with SNP(s) and sufficient counts to detect ASE

B1 327 6486

B3 324 6065

B5 823 7537

K2 255 5185

K4 979 8166

K6 757 7852

All (intersection) 13 2934

Numbers are exonic SNPs that are homozygous in the parents of each cross but differing between the parents.
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carbamate and pyrethroid insecticides [45]. Alpha-crystallins are chaperone proteins which bind denaturing proteins prevent-
ing their aggregation [66] previously implicated in deltamethrin resistance and response to insecticide exposure [65]. Alpha-
crystallins AGAP005548 and AGAP007159 showed ASE in four of the six crosses.

The D7 protein family has previously been implicated in bendiocarb resistance in Uganda [25]. AGAP008282 (D7r2) showed
significant ASE in two crosses (detectable in 4) and D7r4 in none (detectable in 3). Other D7r genes, D7r1 (AGAP008284), D7r5
(AGAP008280) also showed significant ASE in two crosses, D7L1, D7L2 and D7r3 in one cross.

We finally asked whether genes showing ASE were more likely to be in a genomic region that has undergone a recent
selective sweep (see electronic supplementary materials). Out of 115 genes showing ASE in at least four of the six crosses, 13
were in a swept region, whereas 103 of the 1333 genes showing no evidence of ASE in any of the six crosses were in swept
regions. A two-sided Fisher’s exact test did not reject the hypothesis that the odds ratio is 1 (odds ratio 1.5, p = 0.2), suggesting
that genes showing ASE are no more likely to be in a swept region than genes that do not.

(f) CRM prediction
Drosophila CRMs for adult midgut, adult Malpighian tubules, larval midgut and legs were used as training data from
SCRMshawHD to predict Anopheles CRMs operating in the same tissues, together with previously developed training sets for
the adult peripheral nervous system, embryonic and larval excretory system and embryonic/larval Malpighian tubules (https://
github.com/HalfonLab/dmel_training_sets). These tissues were selected based on previous studies examining the tissue-specific
expression of genes involved in insecticide resistance with roles including detoxification and cuticular resistance [67–72].
Training CRM sets used for the first time in this study are shown in electronic supplementary material, table S10 (full
sequences at https://github.com/azurillandfriend/traning_sets_IR.git). Oenocyte (FBbt:00004995), cuticle (FBbt:00004970) and

B5

0.5

0.4

Protein Age Distribution Comparison
Mann–Whitney U-test: U = 7.3e+05 (p = 8.27e–08)

0.3

F
ra

ct
io

n

0.2

0.1

0.0

Anopheles (
0)

Diptera (4
71)

Ecdysozoa (7
28)

Bila
teria

 (9
10)

Opist
hokonta (1

368)

Eukaryota (1
628)

Cellu
lar O

rganism
s (

4200)

K2 Protein Age Distribution Comparison
Mann–Whitney U-test: U = 4.3e+05 (p = 0.00383)

Anopheles (
0)

Diptera (4
71)

Ecdysozoa (7
28)

Bila
teria

 (9
10)

Opist
hokonta (1

368)

Eukaryota (1
628)

Cellu
lar O

rganism
s (

4200)

K4

0.4

Protein Age Distribution Comparison
Mann–Whitney U-test: U = 2.3e+06 (p = 3.41e–09)

0.3

F
ra

ct
io

n

0.2

0.1

0.0

Anopheles (
0)

Diptera (4
71)

Ecdysozoa (7
28)

Bila
teria

 (9
10)

Opist
hokonta (1

368)

Eukaryota (1
628)

Cellu
lar O

rganism
s (

4200)

B1

0.4

Protein Age Distribution Comparison
Mann–Whitney U-test: U = 6.8e+05 (p = 0.0033)

0.3

F
ra

ct
io

n

0.2

0.1

0.0

Anopheles (
0)

Diptera (4
71)

Ecdysozoa (7
28)

Bila
teria

 (9
10)

Opist
hokonta (1

368)

Eukaryota (1
628)

Cellu
lar O

rganism
s (

4200)

B3 Protein Age Distribution Comparison
Mann–Whitney U test: U = 5.4e+05 (p = 1.95e–05)

Anopheles (
0)

Diptera (4
71)

Ecdysozoa (7
28)

Bila
teria

 (9
10)

Opist
hokonta (1

368)

Eukaryota (1
628)

Cellu
lar O

rganism
s (

4200)

Taxon of Origin (Age, millions of years ago)

K6 Protein Age Distribution Comparison
Mann–Whitney U-test: U = 1.9e+06 (p = 9.19e–07)

Anopheles (
0)

Diptera (4
71)

Ecdysozoa (7
28)

Bila
teria

 (9
10)

Opist
hokonta (1

368)

Eukaryota (1
628)

Cellu
lar O

rganism
s (

4200)

Taxon of Origin (Age, millions of years ago)

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.5

0.4

0.3

0.2

0.1

0.0

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Figure 5. Ages of genes showing ASE or not showing ASE. Bar plots comparing the age of genes showing ASE (black bars) and without ASE (red bars) in the progeny
of six crosses between Nagongera and Kisumu strains, using the Wagner parsimony method. The cross name is indicated at the top left of each plot, Fisher’s exact test
p-values for the difference in fraction of genes in each age between ASE/non-ASE genes are displayed above the bars. *0.001 < p < 0.05; ***p ≤ 0.001.

8

royalsocietypublishing.org/journal/rspb 
Proc. R. Soc. B 291: 20241142

https://github.com/HalfonLab/dmel_training_sets
https://github.com/HalfonLab/dmel_training_sets
https://github.com/azurillandfriend/traning_sets_IR.git


adult epidermis (FBbt:00005401) CRMs could not be used as training data due to insufficient experimentally validated CRMs,
highlighting the need for more research to identify CRMs in these tissues. The top scoring 250 predictions for each training set
and method were combined, producing a total of 4122 unique CRM predictions [61]. Sixty-two predicted CRMs were flanked by
a gene showing ASE in at least four of the six crosses (electronic supplementary material, table S11).

In total, CRMs were predicted for 33 of the 115 genes showing ASE in at least four of the six crosses. A total of 211
predicted CRMs were flanked by a gene showing consistently high median fold change between resistant and susceptible
strains (electronic supplementary material, table S12). CRMs were predicted for a total of 141 of the 429 genes in this set.
Predicted CRMs were also compared with a published dataset of Tn5 transposase sensitive sites in the adult midgut [59,73].
Fifty predicted CRMs overlapped with Tn5 transposase sensitive sites identified as cis-regulatory elements by Ruiz et al. [59],
flanking a total of 48 genes. The majority of these CRMs were previously predicted by Kazemian et al. [74] despite the different
training sets.

We hypothesized that CRMs responsible for ASE in F1 hybrids between Kisumu and Nagongera contain SNPs that differ
between these colonies. We therefore located SNPs in the 62 predicted CRMs flanking genes showing ASE in at least 4 out of
6 crosses and which were homozygous in parents but different between the colonies. Such SNPs were found in 9 out of the 62
predicted CRMs (electronic supplementary material, table S13). It is possible that the CRMs contained other types of mutations
such as insertions and deletions, and that only selecting SNPs which were present in all the parents filtered out some SNPs
which could underlie ASE. Indeed there were a large number of other segregating SNPs in 38 of the CRMs [61]. The limited
training CRMs for some insecticide resistant relevant tissues and lack of empirical data on A. gambiae CRMs operating outside of
the midgut and salivary glands mean that there are likely many undiscovered CRMs regulating the genes showing ASE.

The CRMs identified in these predictions provide a starting point for future studies to examine genetic variation in Anopheles
populations with different insecticide resistance phenotypes. Future research can now evaluate the contribution of genetic
variants in CRMs to cis-regulation of gene expression using expression quantitative trait loci, targeted association studies and
CRM reporter assays.

4. Conclusions
The study of ASE in Anopheles gambiae provides the first evidence that cis-regulation of gene expression occurs across the
genome and differs between strains in this species.

Sample pooling, while a cost-effective solution for bulk RNAseq of small samples, limits the power of experiments targeting
the study of ASE; in future, to maximize the power to detect ASE, individual samples should be used. RNAseq on whole
mosquitoes may have masked tissue-specific ASE. The true number of genes showing ASE in individual tissues is likely
higher than we observed on the whole mosquitoes analysed here, since pleiotropic effects may limit the potential for genes
to upregulated or downregulated in all tissues simultaneously but permit the evolution of tissue-specific regulation [75].
Future studies should target specific tissues of interest. Despite these limitations, we were able to detect genes showing
ASE in pooled RNA from whole mosquitoes in crosses between Anopheles strains with different carbamate resistance pheno-
types, indicating different cis-regulation patterns between the strains. While we detected some genes previously implicated
in insecticide resistance, there was no consistent enrichment of these or any particular GO term among genes showing ASE.
This probably indicates that the strains have undergone extensive cis-regulatory divergence, affecting both genes involved in
insecticide resistance but also genes involved in many other functions. Comparing ASE in progeny of crosses between multiple
insecticide resistance and susceptible strains, together with examining gene expression in the parental strains, would enable
a more comprehensive survey of the cis-regulation versus trans-regulation of insecticide resistance genes. The bias towards
younger, Anopheles specific genes showing ASE in the F1 suggests there may be a higher degree of cis-regulatory divergence
between the parental strains for younger genes.

It was possible to computationally predict some CRMs involved in tissue-specific expression, including potential CRM for
genes showing ASE and genes previously implicated in insecticide resistance. This was hampered by the lack of good quality
training data for the tissues thought to be most relevant to insecticide resistance in adult mosquitoes, highlighting the need for
future experimental CRM discovery.
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