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Summary
Background Translating findings from animal models to human disease is essential for dissecting disease mecha-
nisms, developing and testing precise therapeutic strategies. The coronavirus disease 2019 (COVID-19) pandemic has
highlighted this need, particularly for models showing disease severity-dependent immune responses.

Methods Single-cell transcriptomics (scRNAseq) is well poised to reveal similarities and differences between species
at the molecular and cellular level with unprecedented resolution. However, computational methods enabling
detailed matching are still scarce. Here, we provide a structured scRNAseq-based approach that we applied to
scRNAseq from blood leukocytes originating from humans and hamsters affected with moderate or severe
COVID-19.

Findings Integration of data from patients with COVID-19 with two hamster models that develop moderate (Syrian
hamster, Mesocricetus auratus) or severe (Roborovski hamster, Phodopus roborovskii) disease revealed that most
cellular states are shared across species. A neural network-based analysis using variational autoencoders quantified
the overall transcriptomic similarity across species and severity levels, showing highest similarity between
neutrophils of Roborovski hamsters and patients with severe COVID-19, while Syrian hamsters better matched
patients with moderate disease, particularly in classical monocytes. We further used transcriptome-wide
differential expression analysis to identify which disease stages and cell types display strongest transcriptional
changes.
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Interpretation Consistently, hamsters’ response to COVID-19 was most similar to humans in monocytes and
neutrophils. Disease-linked pathways found in all species specifically related to interferon response or inhibition
of viral replication. Analysis of candidate genes and signatures supported the results. Our structured neural
network-supported workflow could be applied to other diseases, allowing better identification of suitable animal
models with similar pathomechanisms across species.

Funding This work was supported by German Federal Ministry of Education and Research, (BMBF) grant IDs:
01ZX1304B, 01ZX1604B, 01ZX1906A, 01ZX1906B, 01KI2124, 01IS18026B and German Research Foundation
(DFG) grant IDs: 14933180, 431232613.

Copyright © 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC
license (http://creativecommons.org/licenses/by-nc/4.0/).

Keywords: COVID-19; Cross-species analysis; Disease state matching; Single-cell RNA-seq; Hamster model; Deep
learning
Research in context

Evidence before this study
The translational gap between preclinical animal models and
human patients impedes the transferability and
interpretability of insights gained from animal experiments.
In literature, structured cross-species analysis pipelines that
leverage the power of deep learning algorithms while
preserving biological interpretability are still scarce. Due to the
large number of studies, animal models and data sets
generated, COVID-19 is well suited for exploring the potential
of this approach. We searched PubMed for human whole
blood scRNAseq data sets covering different COVID-19
severity degrees to conduct a cross-species disease state
matching with generated data from two hamster species.

Added value of this study
We established a neural network-based framework to match
COVID-19 disease severity levels across humans and hamster
species on a single-cell level, while also developing metrics for
measuring interspecies similarity considering biological
pathways and differential gene expression. We observed a
synergistic relationship between AI-based and biologically

informed analyses. Our results indicate that monocytes
dominate the early pro-inflammatory response in moderate
COVID-19 disease of human patients and infected Syrian
hamsters, while extensive neutrophil influx is one key factor
in severe to fatal disease courses in patients with severe
COVID-19 and Roborovski hamsters. These findings are
consistent with early pandemic observations gathered from
human patient data.

Implications of all the available evidence
We have shown that the translational gap between preclinical
animal models and human patients can be narrowed by
integrating robust deep learning models in combination with
biologically informed analyses. Cross-species comparisons of
single-cell RNA sequencing data are well poised to reveal
similarities and differences at molecular and cellular level,
extending far beyond COVID-19 research. Specifically, the
described methodology allows to determine universal
immune mechanisms, enabling clinical and laboratory
scientists working with animal models to identify both the
specific opportunities and limitations of their models.
Introduction
Animal models are essential for understanding host–
pathogen interactions1 and for evaluating new thera-
pies, as demonstrated by the rapid response to the
recent severe acute respiratory syndrome coronavirus
type 2 (SARS-CoV-2) caused pandemic, which was
greatly aided by animal studies.2–4 Nonetheless, the
‘translational gap’ from animal models to human dis-
ease often remains a major challenge.5 One means to
minimise this gap is to implement unbiased tools, i.e.
tools not requiring explicit biological pathway knowl-
edge, such as neural network-based models.

COVID-19 presents a suitable disease for conducting
proof-of-concept studies. Multiple well-documented and
publicly accessible single-cell transcriptomic (scRNASeq)
datasets derived from blood of patients with COVID-19
are available.6–10 Patients with COVID-19 exhibit a range
of disease severities, which is measured using the world
health organization’s (WHO) ordinal scale for disease
severity11 (WOS). Various suitable COVID-19 animal
models, such as non-human primates, ferrets, hamsters,
and transgenic mice, typically addressing specific human
disease stages, have been reported.12–16 Hamster models
are particularly suitable, as Syrian hamsters (Mesocricetus
auratus) develop a moderate and Roborovski hamsters
(Phodopus roborovskii) a severe disease course upon
experimental infection.17–19 Recent studies using
advanced machine learning algorithms have demon-
strated that unbiased analysis can e.g. successfully eval-
uate different vaccination strategies for COVID-19
www.thelancet.com Vol 108 October, 2024
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prevention.20 However comprehensive translational
comparisons across species especially on the molecular
level are still an unmet need.

For an unbiased and omics-based comparative
analysis across species, individual species datasets first
need to be successfully integrated. Multiple approaches
exist, with different trade-offs between eliminating
batch effects and preserving biological variance.21

Integration of information across multiple experi-
ments was demonstrated by the so-called Human Lung
Cell Atlas (HLCA) core data set,22 where a neural
network-based method called scANVI23 was used to
integrate 14 datasets. Integration across species was
demonstrated to be feasible, although among the most
challenging tasks.21,24

Neural network-based models can also assist in
comparing biological signals and patterns in high-
dimensional scRNAseq data. Variational Autoencoders
(VAEs) are especially valuable for this purpose.25,26 VAE
models can represent gene expression data (about
20,000 genes) in a low-dimensional space using as few
as 10 dimensions, while also capturing the most sig-
nificant input signals. Thus, VAEs have been utilised in
scRNAseq data analyses to model sparse data,27 integrate
data,28,29 generate data29–31 and perform reference map-
ping.32 The development of scGen by the lab of Theis
and colleagues is a vital application of VAEs.29 scGen has
the capability to deduce data points for conditions not
present in the data. It successfully predicted LPS re-
sponses across various animal species,29 as well as pro-
tein abundance from mRNA in cases of Alzheimer’s
dementia,33 and gene expression patterns in mice,
humans, and cancer cell-lines following chemical
perturbations.34

Here, we employ an scGen-based framework to
match COVID-19 disease severity levels across humans
and hamster species, while also developing a metric for
measuring interspecies similarity on a cellular level. To
complement this, we used differential expression anal-
ysis to compare up- and downregulation at whole
genome, candidate-gene and pathway level, across
different species and severities. Our study demonstrates
how analysis of omics datasets across different species,
utilising VAEs and other bioinformatics methods, can
help to identify strengths and limitations of specific
animal models and their relationships to human disease
states.
Methods
Ethics statement and blood sampling for scRNAseq
analysis
All experiments involving animals were approved by
relevant institutional and governmental authorities
(Freie Universität Berlin and Landesamt für Gesundheit
und Soziales Berlin, Germany, permit number 0086/20)
and adhered to the Federation of European Laboratory
www.thelancet.com Vol 108 October, 2024
Animal Science Associations (FELASA) guidelines and
recommendations for the care and use of laboratory
animals, which is equivalent to American ARRIVE
guidelines. Detailed description of virus stocks and cell
processing can be found in Supplemental Methods.
Briefly, 500 μL whole blood per animal was depleted of
red blood cells by lysis, counted and processed for
single-cell RNA sequencing using 3′-based 10x Geno-
mics chemistry according to the manufacturer’s in-
structions and as we previously published.35 Sequencing
was performed on a Novaseq 6000 device (Illumina)
according to the manufacturer’s instructions resulting
in sample averages of 34,387 reads per cell and
sequencing saturation of 73.1% (Table S1).

Animals and infection
In application of the 3R principle, no separate animals
were sacrificed for the purpose of this study. Instead, we
re-used data (Syrian hamsters35) and blood samples
(Roborovski hamsters36,37) from animals studied in our
previously published research. As part of these experi-
ments, 10- to 12-week-old female and male Syrian
hamsters (M. auratus; RjHan:AURA, Janvier Labs,
Saint-Berthevin, France) and Roborovski hamsters
(P. roborovskii, German pet store) were kept in individ-
ually ventilated cages (Tecniplast, Buguggiate, Italy) in a
BSL-3 laboratory with free access to food and water. To
reduce housing-related distress, animals were kept in
cages equipped with environmental enrichment (Carfil,
Oud-Turnhout, Belgium) such as various nesting ma-
terials, aspen brick, pressed hay balls and paper tunnels
to meet their natural behaviour. Moreover, they were
housed in groups of maximum 3 (Syrian hamsters) and
6 (Roborovski hamsters) animals per cage. For the
duration of the infection experiments, the cage tem-
perature and relative humidity were set between 22 and
24 ◦C and 40 and 55%, respectively. Before each
experiment, the animals were allowed to acclimatise to
the experimental conditions for at least 7 days.

As described in previous work,38 Syrian and Robor-
ovski hamsters were anaesthetised and intranasally
infected using standardised procedures with 1 × 105 or
1 × 104 plaque-forming units (pfu) SARS-CoV-2 (variant
B1, isolate BetaCoV/Germany)/BavPat1/2020). We per-
formed clinical examination of all infected animals twice
daily. Animals with a body weight loss of more than
15% for more than 48 h were euthanised according to
the animal use protocol. In all other instances, naive
hamsters (n = 3) and hamsters at 2, 3, 5 and 14 days
after infection (n = 3 each) were randomly selected for
sample collection. As described in our previous work,36

euthanasia was carried out by cervical dislocation and
exsanguination under anaesthesia. No statistical method
was used to predetermine sample size. Instead, we
selected a sample size of 3 animals per time point based
on our previous experience with SARS-CoV-2 infection
of Roborovski dwarf hamsters and Syrian hamsters. To
3
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adhere to the 3R principle, we reduced the number of
animals used in this study to the minimum that had
been experimentally determined in our previous
studies.38–41 For ethical reasons, blinding of live animals
was not possible because treatments had to be recorded
on cage cards. No animals were excluded from the
study. The hamster blood sampling schedule reflected
the disease course of the hamster species: Roborovski
hamsters experience a severe to fatal disease course,
meeting humane endpoint criteria at 3 days post-
infection (dpi), while Syrian hamsters undergo a tran-
sient, moderate disease course that allows for follow-up
analyses of virus clearance and resolution of inflam-
mation after high-dose infection. Thus, additional 5 dpi
and 14 dpi time-points were sampled for Syrian ham-
sters. For human data, actual time-point of infection was
unknown. Human data were grouped by WOS quanti-
fying disease severity, and included patients with
WOS3, WOS4, WOS5 and WOS7.

Data integration
Orthologue genes were defined based on Ensembl
release 109–Feb 2023, for P. roborovskii, orthologue in-
formation from M. auratus, Rattus_norvegicus, or Mus_-
musculus was used as available (Figure S1, Table S2).
The datasets of the three species (including cells marked
as low quality) were integrated using anchor-based
reversed PCA as implemented in the IntegrateLayers()
function of the R-package Seurat. Cell clusters were
identified again and visualised by embedding expression
profiles in a Uniform Manifold Approximation and
Projection (UMAP). For each cluster of cells, we iden-
tified the most likely cell type according to the originally
reported cell label which was in line with reported
marker genes. Cells with discordance between cluster
and original label were removed (5.5%). Clusters from
single species and integrated analyses with more than
50% cells not meeting cut-offs were removed if not
explained by cell type (i.e. neutrophils and plasmablast
cluster). Individual low-quality cells were also removed,
in total 6.3% of all cells (Table S3).

VAE disease state matching
We applied variational autoencoders (VAEs) for jointly
embedding high-dimensional hamster and human gene
expression data into a low-dimensional latent space us-
ing the python package scGen29 v2.0.0. Separate VAE
models were trained for comparisons between humans
and Syrian hamsters as well as between humans and
Roborovski hamsters. Details on the VAE model and
training hyperparameters are provided in Supplemental
Methods. To account for diverse transcriptomic re-
sponses to infection across cell types, distinct VAE
models were learned for each cell type. General inter-
species differences in latent space were addressed by a
species-shift-vector based exclusively on human controls
(WOS0) and hamster controls (Day0). The control
group-based species-shift-vector ensured controlling for
interspecies difference while avoiding interference from
infection response. To allow for cross-species disease
state comparison, the species-shift-vector derived from
the controls was applied to the latent embeddings of
infectious hamster cells, a process we refer to as
humanisation. The similarity between humanised-
hamster disease states and human disease states was
quantified via a diffusion pseudotime-based42 distance
metric d2. Details can be found in Supplemental
Methods.

Statistical analysis
R-package FDRtool 1.2.17 was used to estimate per-
centages of differential transcriptome in cells of
infected vs. healthy subjects. Differential expression
analysis of time points after infection compared to
controls in hamsters, and WOS levels compared to
controls in humans, were performed in the Limma-
Voom43 framework. We used standard-filtering for
frequent genes, pseudo counts aggregated per bio-
logical replicate and included the calculation of con-
fidence intervals (Table S4). Multiple testing of
multiple genes was controlled by the false discovery
rate according to Benjamini and Hochberg. To corre-
late fold-changes of genes expressed in the same di-
rection in human patients and one hamster species, all
genes significant at the level of FDR ≤ 20% in both
species were used.

We followed standard procedures to ensure that the
data met the assumptions of our statistical tests. As
recommended, this involved constructing a DGEList
object using the R package with appropriate library size
normalisation using the calcNormFactors function.
Only genes that met the suggested requirements were
included in the pseudocount-based statistics by filtering
them with the filterByExpr function from edgeR with
default settings (min.count = 10, i.e. minimum count
required for at least some samples; min.total.count = 15,
i.e. minimum total count required; large.n = 10, i.e.
number of samples per group that is considered “large”;
min.prop = 0.7, i.e. minimum proportion of samples in
the smallest group that express the gene). In addition,
we inspected diagnostic plots for ‘voom’ after estimating
observation and quality weights from the pseudo-bulk
profiles, including a plot showing the mean-variance
trend used to estimate the observation weights and
another plot showing the per-sample quality weights,
which appeared appropriate.

When comparing the top-10 differential regulated
genes “corresponding direction” means either the same
direction or, for timepoint 14 days post infection (dpi;
i.e. recovered hamsters), the opposite direction between
patients and hamsters. Pathway enrichment analyses
were performed separately for each species and condi-
tion using gprofiler2 0.2.1. with the gene ontologies
Biological Processes from Gene Ontology, Wikipathways,
www.thelancet.com Vol 108 October, 2024
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Reactome, and KEGG. In this way, the foreground was
defined as maximum 100 top-genes at FDR ≤ 20% or-
dered by absolute fold-change or–if this resulted in less
than 30 genes–the top 30 genes ordered by P-value,
excluding ribosomal and mitochondrial genes. The
background were all genes considered in association
analysis. When comparing overlapping pathways be-
tween species, we filtered for pathways being globally
significantly enriched (padjusted ≤ 0.05) and including at
least 2 foreground-genes. No animals were excluded for
any of the performed analysis.

Role of funders
The funders had no role in study design, data collection,
data analysis, interpretation, or writing of the
manuscript.
Results
We generated scRNAseq from blood of uninfected or
infected Roborovski hamster (n = 3 per time point and
condition) that received a low-dose (1 × 104 pfu) or a
high-dose (1 × 105 pfu) of SARS-CoV-2 to compare with
our previously published data from infected
(1 × 105 pfu) and uninfected Syrian hamsters35 and
publicly available human data from patients with
COVID-19 and controls7 (Fig. 1a). All together the data
encompass 28,357 cells in Syrian hamsters, 23,046 cells
in Roborovski hamsters and 79,196 cells from humans.

Cellular recruitment in hamsters and humans
First, we combined blood transcriptomic data into a
common embedding and applied a single unified gene
nomenclature as described previously.45 The merged
dataset revealed species-related batch effects (Fig. 1b).
To allow for application of a common cell type assign-
ment, we resolved these by utilising the Reciprocal
Principal Component Analysis (RPCA) data integration
pipeline46 to find a common embedding for the cells
based on their cellular phenotypes rather than on
experimental conditions (Fig. 1c). Application of
Louvain-based clustering to integrated interspecies data
identified several matching leukocyte populations
(Fig. 1d, Figure S2). One previously described7 subset of
immature neutrophils, namely FUT4+ pro-neutrophils
(Immature Neutrophils 2), was exclusively observed in
humans. In addition, while CD8+-T-cells from hamsters
clustered closer to CD4+-T-cells, CD8+-T-cells from pa-
tients with COVID-19 clustered closer to NK-cells
(Fig. 1e), involving genes linked to cytotoxicity
(GZMA, NKG7, SLAMF7, CX3CR1, PRF1), as well as
transcription factors associated with T-cell effector/
memory differentiation (ZEB2, EOMES) (Fig. 1f).

Examining the proportion of blood cell types over
time after infection in hamster data, or with increasing
disease severity in human data, revealed distinct pat-
terns: Syrian hamsters experienced a sharp but transient
www.thelancet.com Vol 108 October, 2024
increase in blood neutrophils at 2 days post-infection
(dpi), resolving to basal levels by 3 dpi. In contrast, in
both high- and low-dose infected Roborovski hamsters,
neutrophils remained increased at 2 dpi and 3 dpi. In
humans, a steady increase in the immature neutrophil
fraction correlated with disease severity. The fraction of
CD4+-T-cells declined in patients with severe disease
(WOS5, WOS7) compared to controls, which was
consistent with both Roborovski hamster infection
groups. By contrast, in patients with moderate disease
course (WOS3, WOS4), CD4+-T-cells increased. A
reduction of non-classical monocytes, which is common
in severe human disease,6,7 was not observed in infected
hamsters (Fig. 1g, Figure S3).

VAE-based neural network pipeline enables
interspecies disease state matching of the
transcriptome
To identify transcriptional similarities between humans
and hamsters, we employed neural network techniques
to match disease states across species. High-
dimensional gene expression data was mapped to low-
dimensional latent space through implementation of a
variational autoencoder (VAE) model.29 Latent embed-
ding provides a denoised data representation, capturing
only the most relevant input signals (Fig. 2a). For each
hamster species and every cell type of interest, we
trained separate VAE models for jointly embedding
human and hamster data.

Fig. 2b illustrates the procedure to match disease
states of human and Syrian hamster neutrophils using
the example of finding the human severity grade cor-
responding best with Syrian hamster 2 dpi. In latent
space, the species-shift-vector (δspecies) is derived based
on uninfected human and hamster controls via vector
arithmetic (Supplemental Methods). Since only control
groups were considered for computing δspecies, it repre-
sents species differences, but not response to infection.
The humanised representation of each hamster cell 2
dpi in latent space was then generated by applying δspecies
to the cell’s latent embedding and compared to the
latent embeddings of human WOS5 and WOS7 cells by
a similarity quantification of species disease states using
graph-based diffusion pseudotime distance42 incorpo-
rating 10 different root cells. For all root cells,
humanised-hamster cells 2 dpi exhibited smaller mean
diffusion pseudotime distance to human WOS5 cells
(similarity score d2 = 0.92) than to WOS7 cells
(d2 = 0.083) (Fig. 2b).

Species- and infection-shift-vectors in VAE latent
space generalise to out-of-training samples
To evaluate the generalisability of the δspecies approach,
we divided human and Syrian hamster neutrophil con-
trol groups into a training set and a test set (Fig. 3a,
upper panel). δspecies was derived de novo solely from the
VAE latent embeddings of the training set. Next, we
5
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Fig. 1: Cellular recruitment in hamsters and humans. (a) Schematic overview of included datasets from humans and hamsters. (b) Uniform manifold
approximation and projection (UMAP) plot indicating the original dataset of all cells merged in a common embedding before data integration
including cell density per UMAP coordinate coloured according to species. (c) UMAP plot indicating the original dataset of all cells after performing data
integration using Reciprocal Principal Component Analysis (RPCA) including cell density per UMAP coordinate coloured according to species. (d) UMAP
plot of identified cell populations of all datasets. (e) UMAP Plot of CD8+ T cell subset of human and hamster cells; colours indicate cells from different
human severity levels. (f) UMAP plots of CD8+ T cell subset indicating the expression of genes linked to cytotoxicity, and transcription factors
associated with T cell effector/memory differentiation. (g) Frequencies of different populations in the two hamster species according to days post-
infection and in humans according to the WHO ordinal scale for disease severity (WOS). To quantify significance of differential abundance of cell
types, we applied a negative binomial generalised linear model as previously described.44 * FDR ≤ 0.05, ** FDR ≤ 0.01. FDR: global false discovery rate.
Data display means ± SD. n = 3 animals per time point for hamsters. Human Data: Cohort 2 from Schulte-Schrepping et al.7 (Table S9).
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applied the VAE encoder, δspecies and VAE decoder from
the training set to the test set data, resulting in a deco-
ded test set (Supplemental Methods). The application
was considered successful, since the decoded test set of
humanised-hamster cells displayed a stronger correla-
tion with human data compared to the original decoded
hamster data. Correlation was quantified using squared
Spearman’s rank correlation coefficient R2 of all gene-
www.thelancet.com Vol 108 October, 2024
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Fig. 2: VAE neural network-based workflow enables interspecies disease state matching of the transcriptome. (a) Schematic overview of
the variational autoencoder (VAE) neural network-based pipeline for joint latent embeddings of high-dimensional hamster and human cell type-
specific scRNAseq data. (b) Disease state matching in VAE latent space illustrated for Syrian hamster and human neutrophils with selected
disease states. The species-shift-vector δspecies is derived from Syrian hamster and human controls (left panel, UMAP coordinates adapted) and
applied to humanise the latent embedding of 2 dpi Syrian hamster cells (second left panel, UMAP coordinates adapted). To identify the best
matching WOS grade, the mean diffusion pseudotime distances (graph-based, scheme middle panel) between the 2 dpi humanised Syrian
hamster disease state and the human disease state WOS5 are calculated, as well as with the WOS7 state, respectively. For this we used 10
different root cells (second right panel), converted this information into a similarity score d2 (right panel) and identified the best matching
disease state. Boxplot specifications correspond to standard seaborn.boxplot v0.12. parameters.

Articles
wise calculated medians of species data with values
ranging between 0 (no correlation) and 1 (perfect cor-
relation). Decoded humanised-hamster achieved a
higher R2 score (0.97) compared to decoded original
hamster (0.11) when tested against the gene expression
of the human control group (Fig. 3a, lower panel)
demonstrating generalisability of δspecies to out-of-
training samples. Next, confirmation that human-
isation works for both hamster species was achieved by
repeating the training-test-split humanisation procedure
with non-classical monocytes from Roborovski
hamsters–again resulting in a higher R2 score for
decoded humanised-hamster (0.84) compared to deco-
ded original hamster (0.27, Fig. 3b). Analogously, we
tested the remaining cell types of both hamster species;
humanisation worked properly at all occasions with best
results for Syrian hamster (Figure S4).

We repeated the described training-test-split proced-
ure to evaluate robustness of infection-shift-vectors
δinfection representing the mean direction of infection in
latent space and enabling prediction of diseased states
from a control cell. For the example of Syrian hamster
www.thelancet.com Vol 108 October, 2024
neutrophils 2 dpi, the decoded predicted gene expression
2 dpi using control cells not used for training correlated
more strongly with the decoded actual gene expression 2
dpi (R2: 0.98) than with the corresponding control cell
gene expression (R2: 0.58) on the test set (Fig. 3c). Similar
results were found for Roborovski hamster non-classical
monocytes (R2: 0.97 vs. R2: 0.55, respectively) (Fig. 3d).
This demonstrates that disease states can be addressed by
an infection-shift-vector δinfection in VAE latent space,
which generalises to out-of-training samples.

VAE-driven mapping of hamster temporal disease
states to patient severity levels
The VAE model pipeline was then used to map temporal
disease states in hamsters to levels of disease severity in
patients with COVID-19 across all datasets and cell types
with sufficient cell counts. At all time points examined,
resulting transcriptional states of most Syrian hamster
cell types best matched patients with moderate disease
based on similarity score d2, particularly WOS3 and 4
(Fig. 4a, Figures S5a, b, S6a). However, for some cell
types no clear assignment to a particular human severity
7
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Fig. 3: Species- and infection-shift-vectors in VAE latent space generalise to out-of-training samples. (a) Cross-species proof-of-principle for
Syrian hamster and human neutrophil controls: The species-shift-vector δspecies in VAE latent space is derived solely from the training set (top left
panel, UMAP coordinates adapted) and is applied to humanise the latent embeddings of hamster control cells of the test set (top right panel, UMAP
coordinates adapted). Rank correlation scatter plots for decoded hamster and human gene expression (bottom left panel) as well as for decoded
humanised hamster and human gene expression (bottom right panel) of the test set. (b) Analogous to (a) for Roborovski hamster and human non-
classical monocyte controls. (c) Intra-species proof-of-principle for Syrian hamster neutrophils: The infection-shift-vector δinfection is derived solely
from the training set and points from control group towards the 2 dpi disease state in VAE latent space (top left panel, UMAP coordinates adapted).
The 2 dpi disease state of control cells from the test set is predicted by applying the infection-shift-vector δinfection from the training set in VAE latent
space (top right panel, UMAP coordinates adapted). Rank correlation scatter plots for decoded control and 2 dpi gene expression (bottom left panel)
as well as for decoded predicted 2 dpi and control gene expression (bottom right panel) on the test set. (d) Analogous to (c) for Roborovski hamster
non-classical monocyte controls with predicted high-dose 2 dpi states of the control group. R2: Spearman’s rank correlation coefficient.
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grade could be established. For example, transcriptomic
profiles of Syrian hamster non-classical monocytes cor-
responded not only to that of patients with WOS3, as
expected, but also resembled that of patients with
WOS7. Among the Roborovski hamsters’ blood leuko-
cytes (Fig. 4b, Figures S5c, d, S6b), neutrophils,
www.thelancet.com Vol 108 October, 2024
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Fig. 4: Neutrophils from Roborovski hamsters are the cell type that best matches that of patients with severe disease whereas Syrian
hamster leukocytes are matched with moderate patient disease states. Overall cell type-specific transcriptome similarity from VAE pipeline
for each time point in hamsters to each severity score of human patients quantified as similarity score (d2). Darker shades with higher values
indicate higher similarity, corrected for species differences. (a) Similarity scores d2 for pairs of human disease states (x-axis) and Syrian hamster
disease states (y-axis). (b) Similarity scores d2 for pairs of human disease states (x-axis) and Roborovski hamster disease states (y-axis). WOS:
WHO ordinal scale; dpi: days post infection; ld: low dose; hd: high dose.

Articles
independently of infection dose, demonstrated highest
similarity to patients with WOS7. Conversely, classical
monocytes matched transcriptomic profiles of patients
with moderate disease courses. Immature neutrophils
of both hamster species matched patients with moderate
but also showed similarity to patients with severe
disease.
www.thelancet.com Vol 108 October, 2024
Differential gene expression correlation of human
and hamster disease states
To examine which genes and pathways drive disease
course similarities between patients with COVID-19 and
hamster models, we conducted a differential gene
expression (DGE) analysis of disease states compared to
uninfected controls (Table S4).
9
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Globally, Syrian and Roborovski hamsters showed
the highest percentage of differentially regulated genes 2
dpi. In human patients, the highest percentage was
observed in WOS7. To achieve the required minimum
of two patients per group, patients with WOS4 and
WOS5 were analysed together. However, this group still
displayed the lowest statistical power, as evident by the
notably lower fraction of differentially regulated genes
(Fig. 5a, Table S5). We therefore focused on WOS3 and
WOS7 and provide matching analyses for group WOS4
and WOS5 in the supplement (Figure S7). To identify
similarities in antiviral responses, we probed if signifi-
cant differential regulation in human patients and
hamsters occurs in the same direction (Fig. 5b,
Figure S7a). On single gene level, effect-sizes of signif-
icant genes showed little correlation between humans
and hamsters. Yet, classical monocytes showed the
highest number of similarly regulated genes between
patients with WOS3 and 3 dpi and 5 dpi in Syrian
hamsters, as well as with 2 dpi in high-dose Roborovski
hamsters. In contrast, for patients with WOS7, the
monocyte gene expression resembled all acute phase
time points (i.e. ≤5 dpi) in both hamster species. Neu-
trophils showed strongest concordance of gene effect
sizes between patients with WOS7 and 2 dpi as well as 3
dpi in Syrian and all Roborovski time points and doses,
indicating increased activation of these cells in severe
disease. In Syrian hamsters, neutrophils 5 dpi showed
more concordance with WOS3. At 14 dpi, if at all, we
only observed anti-correlated effect sizes of differentially
regulated genes (e.g. CD4+-T-cells) between humans
and Syrian hamsters. This was likely due to the resolu-
tion of the Syrian hamster’s infection by this point
(Fig. 5b). Notably, despite small correlation of differen-
tially expressed genes, overlapping differentially
expressed pathways between species were highly specific
for COVID-19, relating to interferon signalling and in-
hibition of viral replication (Fig. 5c, Figure S7b). They
showed the most prominent co-enrichment in neutro-
phils of patients with WOS3 and Syrian as well as high-
dose infected Roborovski hamsters. High co-enrichment
was also observed in classical monocytes of patients with
WOS3 and WOS7 as well as Syrian and high-dose
infected Roborovski hamsters (Fig. 5c, Table S6). Cell–
cell communication analysis (Supplemental Methods)
supports the important role of neutrophils and mono-
cytes in the antiviral response by revealing their high
levels of communication. In general, a similarity be-
tween high and low communicating cell types, such as
neutrophils and monocytes, is conserved across species.
Syrian hamster disease states show higher variance,
similar to humans (Fig. 6, Figure S8).

Common most highly differentially expressed
genes in humans and hamsters after infection
Based on the analysis of correlated genes, we sought to
identify the top 10 genes per cell type (ordered by
absolute effect size at FDR 20%) regulated in matching
directions in patients with COVID-19 and hamsters
(Fig. 7, Figure S7c). Interferon-regulated genes, like
IFI27, IFIT2, and IFIT3, were most abundant during
the early phase of infection in hamsters and matched
both patients with WOS3 and WOS7 across cell types. In
neutrophils, all concordantly regulated top genes
matched patients with severe disease progression. Most
correlating neutrophil genes were expressed at 2 dpi in
Roborovski hamsters. LCN2, a regulator of interferon-
stimulated gene expression, prominently correlated be-
tween high- and low-dose infected Roborovski hamsters
and patients with severe COVID-19. Further, HP upre-
gulation and CSF1R downregulation correlated in the
early disease neutrophils of hamster models and pa-
tients with severe disease. Interestingly, CD4+-T-cells
and NK-cells displayed a pattern of most top regulated
genes correlating between patients with severe disease
and Roborovski hamsters 2 dpi of high-dose infection
(Fig. 7, Table S7).

COVID-19 mediators and gene expression patterns
amongst relevant cell types
To further investigate which specific genes contribute to
severe or moderate disease courses, we analysed genes
described to associated with inflammation35,41 (Fig. 8a,
Figure S9a, b, Table S8). Several of these genes, such as
interferon-stimulated genes (IRF7, IFIT3, ISG15,
ISG20), chemokines (CXCL10, CXCL11) and pro-
inflammatory mediators (TNFSF10, NLRC5) showed
the highest expression levels in blood leukocytes of
high-dose infected Roborovski hamsters. Low-dose
infected Roborovski hamsters deteriorated less rapidly
with fewer inflammatory genes expressed by classical
monocytes. In human patients with COVID-19, the in-
flammatory response appeared more monocyte-
dependent in moderate cases and neutrophil-
dependent in severe cases. Interestingly, S100A8,
S100A9, and CD177 were not upregulated in hamsters,
but were found to be upregulated in patients with WOS7
and associate with severe COVID-1910,49 (Fig. 8a).

Finally, we analysed a “severe inflammatory” gene
signature in neutrophils linked to severe disease in
humans50 (Table S7). This signature measures expres-
sion of 201 immune-related genes and was found in a
subset of neutrophils of patients with WOS5 and WOS7
COVID-19. In Syrian hamsters, the gene scores in
innate immune cells were low, whereas in Roborovski
hamsters they were high, particularly in neutrophils of
the high-dose infection group. Notably, this gene
signature was not exclusively present in neutrophils, yet
its severity-dependence was most prominent in neutro-
phils (Fig. 8b).

While this demonstrates an inflammatory response
of Roborovski hamster neutrophils similar to patients
with severe disease, a notable difference was that the
gene set was found uniformly expressed in hamster
www.thelancet.com Vol 108 October, 2024
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Fig. 5: Differential gene expression correlation of human and hamster disease states. (a) Percentage of genes significantly up- or
downregulated in humans or hamster species compared to controls. (b) Dotplot indicating significantly regulated genes regulated in the same
direction in humans and hamsters. Shown in bright colours are conditions where significantly more (orange) or less (blue) than 50% of the
overlapping genes were regulated in the same direction. (c) Dotplot of pathways enriched in differentially expressed genes that are present in
human and hamster species. Here we focus on specific pathways, i.e. pathways not including more than 220 genes and not being redundant
regarding included genes (see Table S5 for all pathways present in both human and hamsters). Differential expression analyses were performed
in the Limma-Voom43 framework. Multiple testing adjustments were applied using the false discovery rate according to Benjamini and
Hochberg. To correlate fold-changes, all genes significant at false discovery rate (FDR) ≤ 20% in both species were used. Pathway enrichment
analyses for globally significant pathways (P corrected ≤ 0.05) were performed using gprofiler2. Pathway enrichment factor is the ratio between
observed and expected proportion of significant genes in each pathway.
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Fig. 6: Cell–cell communication. Shown is the sum of interaction magnitudes normalised by the number of ligands and receptors available to
each cell type when acting as either target (a) or source (b), respectively. Cell–cell communication analyses were performed within the LIANA47,48

framework.
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neutrophils, but only in a specific subset of patients with
severe disease (Figure S10a). Expression was high in the
dense neutrophil-clusters “2” and “3” of patients with
severe disease, but low in the remaining neutrophil-
clusters (Figure S10a, b). Differential expression anal-
ysis on clusters 2 and 3 compared to the other neutro-
phil clusters in patients with severe COVID-19 further
revealed elevated expression of inflammation-associated
genes (Figure S10c, d). Notably, most of these genes
were not included in the “severe inflammatory” signa-
ture and were yet highly expressed in “severe inflam-
matory” neutrophils (Figure S10e). In particular, genes
associated with interferon response and TNFR signal-
ling were highly expressed (Figure S10c, d). This sug-
gests that the highly inflammatory response triggered by
COVID-19 in human neutrophils is limited to a subset
of these cells. Intriguingly, in Roborovski hamsters, the
expression of the severe inflammatory signature was not
restricted to a specific neutrophil subset.

VAE feature importance analysis
We applied explainable AI techniques to identify the top
contributing genes to the VAE models used for cross-
species disease state matching (Figures S11, S12). The
top 141 contributing genes partially overlapped with
differentially expressed genes, with only 5 not observed at
FDR ≤ 5% (SAMD3, FCER1A, SERPINB2, PTGDS, and
FCGR2A). These five are less than expected by chance
(pFisher’s Exact < 2.2e-16) and all have relevance as immu-
nity and inflammation mediators. Comparing the cor-
relation between VAE gene importance and differential
expression significance revealed frequent correlations,
especially in neutrophils and monocytes. Pathway
analysis of the top VAE genes consistently identified
immune-related pathways, including interferon and
antiviral responses, consistent with classical ap-
proaches from differential expression analysis (Fig. 4).
Discussion
Our study employs a machine learning-based approach29

to bridge the persistent translational divide between
preclinical animal models and clinical research in
humans.51 By integrating VAE neural network-based
generative models, differential gene expression, and
pathway analysis, we achieved a thorough comparison of
disease responses at a single-cell level across different
species. Our VAE-based disease-state-matching pipeline
demonstrates the feasibility of inferring humanised
versions of hamster cells, addressing interspecies dif-
ferences directly in the VAE latent space and extending
existing cross-species integration strategies.52

Our VAE-based analysis corroborates that the Syrian
hamster model closely resembles the response of hu-
man patients with moderate COVID-19 across all rele-
vant blood cell types. Differential expression analysis
confirmed this in specific, but highly relevant cell types:
For example, the interferon-related gene expression
peaking 5 dpi in Syrian hamster classical monocytes
resembles the immune response observed in immuno-
competent patients,53 while hamster neutrophils during
early infection times match patients with WOS4 with
modest inflammatory response gene expression pat-
terns. In sum, our approach further supports that SARS-
CoV-2-infected Syrian hamsters are a valid model for
studying innate and adaptive immunity in moderate
COVID-19, in congruence with their proven effective-
ness for testing vaccination,41 immune modulatory
therapy,54 and antiviral therapeutic strategies.55,56

While Roborovski hamsters infected with high-dose
SARS-CoV-2 have been utilised as a model for severe
COVID-19 disease due to their high susceptibility,18,57

our bioinformatics workflow shows some limitations:
neutrophils are the only immune cell type in this model
that reflects severe clinical disease in humans. More-
over, the rapid and fatal disease progression in
www.thelancet.com Vol 108 October, 2024
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Fig. 7: Most common differentially expressed genes in humans and hamsters after infection. Dotplot displaying the top 10 genes for each
cell type (ordered by absolute effect size at FDR 20%) that are regulated in concordant direction (abs. Log2FoldChange) in humans and
hamsters. Larger symbols correspond to larger effect sizes, direction of the triangles to up- or downregulation and colour to species. All
common significantly expressed genes with corresponding fold-changes are reported in Table S6. Differential expression analyses were per-
formed in the Limma-Voom43 framework. Multiple testing adjustments were applied using the false discovery rate (FDR) according to Benjamini
and Hochberg.
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Roborovski hamsters precludes the study of adaptive
immunity during severe disease, as animals reach hu-
mane endpoints before cells like exhausted T-cells6 or
pathologic CD16+ T-cells58 can develop. Besides, human
patients with severe COVID-19 also exhibit increased
inflammatory responses by innate immune cells other
than neutrophils, which Roborovski hamsters fail to
www.thelancet.com Vol 108 October, 2024
represent well, e.g. dysfunctional EomeshiTbetlo NK-
cells.59 The same is true for the observed shift of in-
flammatory classical monocytes to “immunoparalysis”
in severe COVID-19.6 Multiple models may thus be
required to simulate different aspects of severe human
COVID-19, especially given the numerous risk factors
influencing disease progression.60,61 Hence, systematic
13
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Fig. 8: COVID-19 mediators and gene expression patterns amongst relevant cell types. (a) Dotplots displaying significantly up- or
downregulated genes linked to inflammation in human patients by WOS severity level compared to controls or in hamster species 2 dpi
compared to controls. (b) Violin plots displaying expression of the previously described “severe inflammatory” gene set50 amongst different
innate immune cell types in humans or hamster species. Differential expression analysis were performed in the Limma-Voom43 framework.
Log2FC: log2FoldChange, dpi: days post infection, adj. P-value: adjusted P-values were calculated according to Benjamini and Hochberg.
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approaches as proposed here might be a helpful tool
also in other diseases to identify which processes in
specific animal-cell types reflect the human states.

The neutrophil bias observed in Roborovski ham-
sters infected with SARS-CoV-2 is consistent across
different infection doses, indicating a predisposition
which was likewise observed in their pulmonary
COVID-19 immune response.37 This bias does not align
with the diverse cellular inflammatory responses seen in
humans with severe COVID-19 and some key genes
associated with poor outcome in patients, namely the
alarmins S100A8/S100A9 encoding for calprotectin10
www.thelancet.com Vol 108 October, 2024
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and the neutrophil activation marker CD177,49 were not
prominently expressed in hamster neutrophils. Conse-
quently, the utility of the Roborovski hamster as a severe
disease model for translating mechanisms of therapeu-
tic immune modulators remains limited to subsets of
inflammatory neutrophils.62

Our VAE neural network-based approach provides an
unbiased, rapid method for exploring scRNAseq data
across species by providing a global similarity score
without requiring ground truth labels, which may be
difficult to obtain. In contrast, other COVID-19 machine
learning studies in animals have required supervised
techniques, e.g. for assessing virulence,63 predicting
infection,64 and identifying essential genes for vaccina-
tion status classification.20 For the latter, the reported top
identified features (DDX5, DEF6, EEF1A1, IFIT3,
PFN1, RPS23, RPSA, TPT1, UBA52) also showed an
above-average importance in our VAE, indicating
agreement in content between approaches.

By learning molecular differences between species,
our VAE model can generate humanised molecular
profiles derived from animal models. For example, in
future applications, it could be trained to predict
whether subgroups of patients are likely to be re-
sponders or non-responders to different doses or
different drugs used in the animal model. It could also
predict the molecular effects of untested treatment
combinations in animal models, potentially reducing
the number of subjects required for future experiments.

However, challenges arise in the selection of hyper-
parameters and the careful handling of orthologues. The
performance of our VAE model depends on the quality
and quantity of the underlying data. The lack of direct
interpretability in the VAE latent space can be mitigated
by evaluating the importance of each gene for the latent
space, as shown here, or by modifying the VAE archi-
tecture to consider linear decoders.65

Importantly, comparison with results from classical
analyses such as differential gene expression, cell–cell
communication, and pathway importance provides
another level of validation and molecular insights across
species. For our model, we observed consistency, e.g. in
the inclusion of immune and inflammatory pathways,
or in the observed correlation between VAE significance
and differential expression significance, with differ-
ences likely also reflecting the ability of VAE to capture
both, interspecies differences and infection responses.
Important VAE genes not observed among the top genes
in classical analyses were meaningful in the context of
infection. This suggests that the VAE approach com-
plements traditional approaches in extracting key tran-
scriptional features related to COVID-19 severity from
the hamster models.

In conclusion, the combination of the global tran-
scriptomic view provided by the VAE model, along
with differential gene expression and pathway
enrichment analysis, helps to narrow the ‘translational
www.thelancet.com Vol 108 October, 2024
gap’ by providing a nuanced understanding of disease
responses across species at the single cell level. It
supports the identification of meaningful animal
models that recapitulate human molecular dynamics
for the development and testing of therapeutic
interventions.

Limitations of the study
While offering valuable insights, our study has limi-
tations. Sole reliance on blood data restricts organ-
specific insights, e.g. on lungs as primary sites of
infection or secondary lymphoid organs as sites of
adaptive immune cell priming. Nonetheless, our focus
on blood cells overcomes the problem that lung tissue
is only available post-mortem from fatal cases, and
oropharyngeal swabs as well as bronchoalveolar la-
vages, provide an incomplete picture of pulmonary cell
types.66,67 A further limitation involves the sample sizes
of the analysed datasets which do not allow for sub-
group analysis, for example regarding ethnic and sex-
related patterns in response to COVID-19. To address
the shortcoming of putative species-specific differences
in cell activation pattern, sequencing-based lineage-
tracing methods68 could potentially help to identify
common developmental pathways and to validate
cross-species disease-specific cellular activation pat-
terns on a computational level.
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