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Abstract

Environmental surveillance for Salmonella Typhi may provide information on the commu-

nity-level dynamics of typhoid fever in resource poor regions experiencing high disease bur-

den. Many knowledge gaps concerning the feasibility of ES remain, especially in areas

lacking formal sewage systems. We implemented protocols for S. Typhi ES, including site

selection and catchment population estimation, sample concentration and testing using

qPCR for S. Typhi specific gene targets. Between May 2021 and May 2022, we collected

grab samples and Moore swabs from 43 sites in Blantyre, Malawi. Catchment characteris-

tics, water quality, and human faecal contamination (qPCR for Bacteroides HF183) were

also recorded. Their association with S. Typhi detection was investigated using a logistic

mixed-effects regression analysis. Prevalence of S. Typhi in ES samples was 2.1% (1.1–

4.0%) and 3.9% (1.9–7.9%) for grab and Moore swab samples, respectively. HF183 was

associated S. Typhi positivity, with a unit increase in log genome copies/microlitre increas-

ing the odds of detection of S. Typhi by 1.56 (95% CI: 1.29–1.89) and 1.33 (1.10–1.61) in

Moore swabs and grab samples, respectively. The location and timing of S. Typhi detection

through ES was not associated with the incidence of typhoid fever reported in associated

catchment populations. During this period of relatively low typhoid fever incidence, waste-

water surveillance continued to detect S. Typhi in human sewage and wastewater suggest-

ing that ES using natural river systems can be a sensitive indicator of transmission.
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Author summary

Typhoid fever is a major public health concern throughout many low- and middle-

income countries, resulting in significant morbidity and mortality. In recent years, two

typhoid-conjugate vaccines have been pre-qualified, with the World Health Organization

recommending their targeted use in high incidence, endemic regions. However, quality

assured information on the spatio-temporal distribution of typhoid fever is lacking, and

scale-up of typhoid vaccination is progressing slowly. Environmental surveillance for Sal-
monella Typhi in sewage and wastewater may be a cost-effective and scalable approach to

identify high-burden regions, thereby motivating vaccine introduction. However, many

knowledge gaps regarding the use of environmental surveillance for Salmonella Typhi

remain, particularly where human wastewater is unmanaged and its disposal reliant on

informal drainage channels and natural river systems. Therefore, we conducted a study in

Malawi, Blantyre to ascertain the feasibility of environmental surveillance throughout an

urban, natural freshwater river system. We measured S. Typhi prevalence in wastewater

contaminated rivers and ditches serving a mixed land use environment with diverse popu-

lation densities. Whilst detection rates of S. Typhi were relatively low, and no obvious spa-

tial pattern of distribution was observed, this study demonstrates that the presence of S.

Typhi throughout the year. It suggests that wastewater testing for S. Typhi may offer a sen-

sitive surveillance tool that complements clinical case reporting and may help identify

areas to be prioritized for vaccination rollout.

Introduction

Salmonella enterica subspecies enterica serovar Typhi (Salmonella Typhi) is an enteric bacte-

rium responsible for typhoid fever, a globally important and life-threatening disease [1].

Typhoid fever is transmitted via the faeco-oral route, through direct (short cycle) or environ-

mental (long cycle) transmission pathways typically associated with polluted water sources [2].

Symptoms include fever, nausea, headaches, and abdominal pain, and in severe cases can

result in intestinal perforation [3]. Despite a reduction in the global incidence of typhoid fever

in recent decades, S. Typhi remains responsible for an estimated >10 million annual cases of

typhoid fever globally, causing approximately 117,000 deaths [4]. Typhoid fever is endemic in

many low- and middle-income countries (LMICs) including sub-Saharan Africa [5] where

access to safe water and effective sanitation infrastructure is inadequate [6].

The recent proliferation of antimicrobial resistant (AMR) and extensively drug-resistant

(XDR) strains of S. Typhi [7], represent an emerging global public health concern and high-

light the importance of effective and timely vaccine deployment throughout endemic regions

[8]. Since 2018, the World Health Organisation (WHO) has prequalified three typhoid conju-

gate vaccines (TCV) and recommended their targeting at countries with the highest burden of

typhoid disease or high burden of AMR S. Typhi [9]. Diagnosis of typhoid fever, however,

requires diagnostic clinical microbiology capacity, through blood culture of suspected cases

[10]. Blood culture is expensive, has imperfect sensitivity and is not widely available in typhoid

endemic settings [11]. Therefore, the burden of typhoid fever is uncertain in many countries

and often underestimated [12]. As such, there remains a paucity of reliable data with which to

estimate the true burden of typhoid in low-income settings.

Alternative surveillance approaches may assist in identifying the spatiotemporal distribu-

tion of typhoid fever. Environmental surveillance (ES) of water and sewage contaminated with

human faecal matter offers an anonymous, relatively low cost and sustainable approach to
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establish S. Typhi circulation in areas where blood culture capacity is limited [13]. As an aggre-

gate sampling strategy, ES can survey thousands of individuals and has capacity to detect com-

munity wide transmission, including that of both symptomatic and asymptomatic cases [14].

Moreover, routine repeat sampling may provide valuable information on the temporal dynam-

ics of typhoid and could provide an early warning of disease outbreaks [15]. A varied range of

ES approaches have been successfully used on a suite of human disease causing pathogens

including as part of the global polio eradication effort [16], and more recently for SARS-CoV-

2 surveillance [17] and numerous enteric pathogens [18]. To date, most ES studies have sam-

pled from formal piped drainage and sewerage systems or major wastewater treatment centres.

However, high incidence, low-income countries often lack such networks, with human waste

typically deposited into open drainage channels and local rivers. Therefore, the potential value

of natural river systems as a method for typhoid surveillance and the sensitivity of methods to

detect S. Typhi in these systems are unclear.

Blantyre, the second largest city in Malawi, is a mixed-use environment comprising areas of

highly densely populated areas, local agricultural lands, and various natural mixed vegetation

[19,20]. The city has a population of approximately one million people with the majority living

in informal, unplanned settlements [21] and is served by the Queen Elizabeth Central Hospital

(QECH) [22]. At present, formal wastewater drainage networks are limited and there are no

operational wastewater/sewage treatment plants [23]. Therefore, the majority of the popula-

tion rely on earthen or concrete pit latrines and septic tanks [21,24]. Moreover, river water is

typically used for cleaning and cooking, and has recently been linked to environmental expo-

sure to S. Typhi in Blantyre [25].

This study sought to assess the feasibility of utilising ES in an urban environment drained

by a natural river system and investigate whether this approach might be a useful tool for con-

firming the presence and sustained transmission of S. Typhi within the local population. Sec-

ondly, we aimed to investigate whether it is possible for ES to contribute to the identification

of local hotspots of clinical cases of typhoid fever. Additionally, we sought to explore the asso-

ciation between S. Typhi detection and ES catchment level environmental characteristics.

Methods

Ethics statement

This study was completed under ethics application P.10/19/2819, ethical waiver P.07/20/3089

from the University of Malawi College of Medicine Research Ethics Committee (COMREC),

now part of Kamuzu University of Health Sciences. An additional waiver was provided by the

Imperial College London Joint Research Compliance Office.

ES site selection

Utilising a previously published standardised protocol using a remote, geographic information

systems (GIS) based framework with geospatially referenced data, ES sites were systematically

identified throughout Blantyre [26]. Briefly, OpenStreetMap river data (‘blue-lines’) were

acquired and coupled with a high-resolution digital elevation model within ArcMap v10.7.

Georeferenced hydrological surface layers were generated and river stream order was estab-

lished using the Strahler stream order index classification approach [27]. Briefly, Stahler

stream order is a categorical variable used as a surrogate for stream size. These data were used

to establish a list of candidate ES sites, generate catchments and calculate population estimates

based on the High-Resolution Settlement Layer (HRSL) dataset [28]. Using published power

calculation estimates [26], and field-based inspections to investigate ES site suitability, candi-

date sites were screened and down-selected to a total of 43 ES sites (Fig 1). ES sites were
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selected based on the following constraints: broad geographic coverage, catchment population

>1,200, sufficient river flow, safe accessibility, wide range of catchment sizes and anticipated

year-round access based on local knowledge. Once selected, sites were stratified into 3 equal

size classes (terciles) based on catchment population estimates and the proportion of various

land uses calculated for each catchment.

Sample collection and processing

Sample collection and laboratory testing methods were based on protocols recommended by

an expert advisory group established by the Bill and Melinda Gates Foundation following for-

mal comparison of 8 different published protocols [29]. Repeat samples from 43 ES sites were

collected each month between May 2021 and May 2022 (i.e. 13 months study period). Sample

types collected consisted of one litre water grab samples, collected in autoclavable PPCO bot-

tles, and composite sampling with the Moore swab, manufactured with sterile gauze and high-

Fig 1. Spatial distribution of final 43 ES site locations. Map created in QGIS v3.22.4. Background map: CartoDB Positron layer accessed with

QuickMapServices QGIS Plugin (https://carto.com/basemaps) made available under the Creative Commons Attribution (CC BY) 4.0 license.

https://doi.org/10.1371/journal.pntd.0012518.g001
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tensile braided fishing line [30]. Moore swabs were deployed 72 hours before collection each

week, whilst grab sample collection was performed once per week at the same time as Moore

swab collection, between 8 and 11am when possible. The full laboratory processing protocol is

summarised in Fig 2. In short, grab samples were filtered on 0.45μM membranes which were

eluted in Ringer’s lactate and spun down to produce pellets from which DNA was extracted

using the Qiagen Powerfecal Pro kit (Qiagen). Moore swabs were incubated for 24 hours in

Universal Pre-enrichment Broth (UPE), an aliquot of which was filtered on a 0.45μM mem-

brane which went directly into extraction, again using the Qiagen Powerfecal Pro kit. For all

DNA extraction batches, a no-template control (NTC) containing no sample was also included

by extracting nuclease free water alongside samples.

The qPCR reaction used for these samples included two different reactions. The first

included primers for ttr, tviB and staG to determine whether the sample was positive for S.

Fig 2. Flow diagram of sample processing after collection for both the water grab samples and Moore swabs from culture to PCR. Figure created with

BioRender.com.

https://doi.org/10.1371/journal.pntd.0012518.g002
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Typhi. The second contained primers targeting HF183, a partial 16S rRNA gene sequence

highly specific to human-associated Bacteroides dorei to act as a positive control for faecal con-

tamination in a sample, and a commercially available Sample Processing Control (Eurogentec)

to act as an extraction and inhibition control [31]. For all qPCR runs, the NTC was run in

addition to a PCR negative, using the same nuclease free water as used to make the mastermix

and primer/probe pool, and a positive control, using a genomically confirmed, anonymised

clinical strain of S. Typhi [31] were also included. Full study protocols can be found at https://

www.protocols.io/workspaces/typhoides.

Typhoid fever hospital surveillance data

MLW has offered a quality assured diagnostic blood culture service to all febrile adult and pae-

diatric medical patients presenting to QECH since 1998 [32]. In brief, blood is drawn under

aseptic conditions and inoculated into a single aerobic bottle and incubated in an automated

system (BacT/ALERT, BioMerieux, France). Blood culture bottles flagging as positive are pro-

cessed using standard methods and Salmonellae identified by biochemistry and antisera using

the Kauffmann and White scheme. Blood culture-confirmed typhoid fever cases reported to

the QECH were recorded for the duration of the ES study. Moreover, additional cases identi-

fied through enhanced passive surveillance (Typhoid Vaccine Acceleration Consortium

(TyVAC)) conducted during the ES were recorded and added for analysis.

Statistical analysis

Sampling data was analysed for Moore swabs and grab samples separately by fitting univariate

and multivariate mixed effects logistic regression models, using site-specific random effects to

investigate associations between site and sample level characteristics (time of day collected,

speed of flow, catchment land use, precipitation on the day of collection etc.) and both S.

Typhi detection and the presence of human fecal matter. To identify spatiotemporal trends in

detection and correlation with hospital reported cases of typhoid fever, we plotted monthly

cases with monthly detection rates. Additionally, we assigned cases fractionally to catchments

based on the overlaps of wards (known for cases) with catchments for comparison with bino-

mial regression, using estimated incidence per million as a predictor for S. Typhi presence in a

sample.

Results

ES sites and catchments summary

A total of 43 ES sites, stratified into 3 catchment population size classes, were identified. Esti-

mated catchment area size and population estimates varied markedly, from 0.2 km2 to 33.8

km2 and between approx. 1,200 to 107,000, respectively (Table 1).

Table 1. Environmental Surveillance Site Characteristics.

Characteristic Catchment Classification

Small Medium Large

Number of Sites 15 14 14

Median catchment area, km2 (range) 0.8 (0.2–1.6) 2.6 (1.1–7.3) 18 (1.9–33.8)

Median population (range) 5,961 (1,247–8,073) 17,451 (10,508–

50,225)

80,935 (58,422–

106,905)

Median population density, person/km2

(range)

6,720 (4,098–

17,694)

6,232 (3,560–14,523) 4,941 (3,029–30,059)

https://doi.org/10.1371/journal.pntd.0012518.t001
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Between May 2021 and May 2022, 533 grab samples and 594 Moore swabs were processed.

Monthly sampling frequency varied significantly, between 4–23 (median: 13) and 3–48

(median: 14) for grab samples and Moore swabs, respectively. Approximately 96% of Moore

swabs were successfully retrieved, however, retrieval rates varied significantly between ES sites

(range 100%-60%).

Spatial distribution of S. Typhi rates of detection

A total of 11/533 (2.1%; 95% CI: 1.1–4.0) grab samples and 23/594 (3.9%; 95% CI: 1.9–7.9)

Moore swabs tested positive for S. Typhi from 9 (20%) and 12 (27%) ES sites, respectively (Fig

3). The difference in prevalence was not statistically different (p = 0.158; S1 and S2 Tables).

There appeared to be a higher rate of positivity in the south-west of the region (S1 Fig). All

samples positive for S. Typhi came from 16 sampling sites. For grab samples, prevalence was

noticeably lower from mid- and high-stream order ES sites (1.5%; 95% CI: 0.1–5.4 and 1.6%;

95% CI: 0.0–5.6, respectively) compared to low order streams (2.5%; 95% CI: 1.3–2.5). Similar

results for Moore swabs were identified with highest rates of detection from low order streams

(4.4%; 95% CI: 2.4–7.3) compared to mid- (2.3%; 95% CI: 0.0–6.7) and high-order steams

(3.9%; 95% CI: 0.1–8.9).

Faecal contamination

HF183 was detected at 43 (100%) and 42 (98%) ES sites for grab samples and Moore swabs,

respectively (Fig 4). However, 45% of all samples were negative for HF183. No sites were posi-

tive for HF183 for all sample months; 13/43 (30.2%) of the sites were positive for HF183 <50%

of the times they were sampled. Total precipitation on the day of sample collection was slightly

Fig 3. Geographic distribution of ES sites and prevalence (%) of S. Typhi detection for A) grab samples and B) Moore swabs in Blantyre. Circle radius

proportional to the estimated catchment population. Maps were created in QGIS v3.22.4. Background map: CartoDB Positron layer accessed with

QuickMapServices QGIS Plugin (https://carto.com/basemaps) made available under the Creative Commons Attribution (CC BY) 4.0 license.

https://doi.org/10.1371/journal.pntd.0012518.g003
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negatively associated with HF183 detection, Grab sample OR 0.956 (95% CI 0.926–0.988), and

Moore swab OR 0.962 (95% CI 0.929–0.996), consistent with dilution effects.

Presence of HF183 was significantly associated with S. Typhi positivity. Of the 277 HF183

positive Moore swab samples, 19 (6.9%) were also positive for S. Typhi, whilst of the 317

Moore swab samples negative for HF183, 4 (1.3%) were S. Typhi positive. Moreover, in univar-

iate logistic regression, presence of HF183 increased the odds of S. Typhi detection by a factor

of 4.61 (95% CI: 1.47–14.5). Where HF183 was present, an increase of one in the value of the

natural log of HF183 genome copies increased the odds of detection by a factor of 1.56 (95%

CI:1.29–1.89).

Similar results were seen for Grab samples, with 3.2% (11/342) HF183 positive samples also

positive for S. Typhi compared with 0% (0/191) of HF183 negative samples. In univariate logis-

tic regression, where HF183 was present, an increase of one in the value of the natural log of

HF183 genome copies increased the odds of detection by a factor of 1.33 (95% CI:1.1–1.61).

Variation with time and clinical disease incidence

For Moore swabs, S. Typhi detection rates varied markedly throughout the 13-month study

period with detection highest during May-October 2021 (Fig 5 and S9 Table). Little variation

was recorded among grab samples with monthly rates <5% throughout. Overall, most positive

samples (28/34; 82.4%) were recorded during the dry season. Monthly detection rates can be

seen in Fig 5. No association between S. Typhi detection and clinical cases was observed (S9

Table).

Ward level crude incidence rates of typhoid fever is depicted in Fig 6. Fractions of cases are

assigned to catchments according to the level of population overlap between each ward and

catchment. This leads to an estimated number of cases per million population for each

Fig 4. Geographic distribution of prevalence (%) of HF183 detection for A) grab samples and B) Moore swabs in Blantyre. Maps were created in QGIS v3.22.4.

Background map: CartoDB Positron layer accessed with QuickMapServices QGIS Plugin (https://carto.com/basemaps) made available under the Creative

Commons Attribution (CC BY) 4.0 license.

https://doi.org/10.1371/journal.pntd.0012518.g004
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catchment, to be compared with the rate of positive samples among fecally contaminated sam-

ples (S2 Fig). No correlation between detections and estimated catchment incidence was iden-

tified for Moore swabs (OR:0.998; 95% CI: 0.993–1.00; p = 0.371) or grab samples (OR:0.999;

95% CI: 0.993–1.00; p = 0.697).

River sites vs sewage sites. Samples were predominantly taken from river sites, with just

two sites classified as sewage network sites. S. Typhi detection was higher at these sites com-

pared to river sites for both Moore swab and grab samples. For Moore swabs, 11 of 91 (12.1%;

95% CI: 7.07–23.3) sewage site samples were positive for S. Typhi, compared to 12 of 503

(2.39%; 95% CI: 1.27%-4.23) samples from river sites. For grab samples, 3 of 39 (7.69%; 95%

CI: 1.75–22.5), and 8 of 494 (1.62%; 95% CI: 0.71–3.22) were S. Typhi positive for sewage and

river sites, respectively. Site type was a significant predictor of S. Typhi, for both Moore swabs

(OR 6.19; 95% CI: 1.27–30.2), and grab samples (OR 5.06; 95% CI: 1.29–19.9) when included

in univariate mixed effects logistic regression. The significance of this predictor disappeared in

a multivariate analysis where the log of the HF183 copy number was considered, consistent

Fig 5. Monthly detection of S. Typhi in ES samples (right y axis) and the incidence of clinical cases reported (left Y axis) in Blantyre, Malawi. For the period

May 2021 to April 2021 only, the monthly number of blood culture-confirmed typhoid fever cases reported among inpatient and outpatient resident in the

study area (dark grey) with additional cases detected through enhanced passive surveillance at three primary health care centres shown in light grey. Light blue

area indicates wet season period.

https://doi.org/10.1371/journal.pntd.0012518.g005

PLOS NEGLECTED TROPICAL DISEASES Typhoid environmental surveillance in Blantyre, Malawi

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0012518 September 27, 2024 9 / 16

https://doi.org/10.1371/journal.pntd.0012518.g005
https://doi.org/10.1371/journal.pntd.0012518


with the dependence being due to the greater quantities of faecal matter available at the sewage

sites.

Factors affecting S. Typhi detection

For Moore swabs, S. Typhi detection had a possible association with deeper river channels

(OR:2.46, [0.996, 6.08], p = 0.051) and fast stream velocity (OR:2.82, [1.12–7.08], p = 0.031) in

univariate logistic regression. These two effects disappeared in a multivariate analysis, in

which the natural log of the HF183 genome copies was included. In addition, the proportion

of ES catchment classified as institutional (OR:1.13, [1.00–1.28] p = 0.048) and utilities

(OR:3.80, [1.39–10.40], p = 0.009) was also associated with Moore swab S. Typhi detection.

Catchment population was not associated with S. Typhi detection (Grab samples: p = 0.598,

Moore swab, p = 0.718), neither was the precipitation on the day of sampling (Grab samples:

p = 0.480, Moore swab: p = 0.298). No trends were identified between physiochemical mea-

surements and S. Typhi detection (S3 and S6 Tables).

Factors affecting HF183 detection

For grab samples, HF183 detection was associated with increased stream velocity (OR:1.63,

[1.10–2.40], p = 0.014). Moreover, of the physiochemical measurements, only the oxidation

reduction potential had a small but significant correlation with HF183 positivity (OR:1.01,

[1.00–1.01], p = 0.030). Several covariates related to catchment level land use area (high density

permanent residences, commercial, utilities, institutional) had small but significant correla-

tions with HF183 (S7 and S8 Tables). For Moore Swabs, larger proportion of commercial

(OR:1.02, [1.01–1.04], p = 0.004), institutional (OR:1.01, [CI 1.01–1.02], p<0.0001) or utility-

Fig 6. Geographical distribution of crude cumulative incidence rates of typhoid fever (cases per 100,000) in Blantyre from May 2021 to April 2022 using A)

hospital reported cases, and B) additional cases through enhanced passive surveillance at 3 primary health care centres. The location of the QECH shown for

reference. Maps were created in QGIS v3.22.4. Background map: CartoDB Positron layer accessed with QuickMapServices QGIS Plugin (https://carto.com/

basemaps) made available under the Creative Commons Attribution (CC BY) 4.0 license.

https://doi.org/10.1371/journal.pntd.0012518.g006
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related (OR 1.09 [1.05–1.13], p = 8.1367e-06) land uses were significantly correlated with

HF183. For both grab samples and Moore swabs, sewer sites were associated with HF183

detection compared to river sites (OR:2.80, [1.01–7.78], p = 0.049 and OR:5.73, [1.72–19.1],

p = 0.004, respectively). Total precipitation was negatively associated with HF183 positivity,

for Moore Swabs (OR:0.96, [0.92–0.99], p = 0.027) and grab samples (OR:0.95, [0.92–0.98],

p = 0.007). Full univariate logistic regression analyses for association of various covariates with

HF183 presence (with site specific random effects) can be found in S7 and S8 Tables. Temporal

distribution of HF183 detection rates for both grab samples and Moore swabs are provided in

S3 Fig.

Discussion

We present results from a comprehensive, city-wide ES surveillance program for Salmonella
Typhi in Blantyre, Malawi—a resource limited, high burden setting. Between May 2021 and

May 2022, S. Typhi was identified in both Moore swabs and grab samples collected across the

city, providing evidence for active transmission and circulation of S. Typhi throughout the

Blantyre population. We show that contaminated river networks can be used to conduct ES

for S. Typhi in the absence of formal or informal sewage networks. At present, a standardised

protocol for ES of S. Typhi in wastewaters and informal sewage network does not exist, there-

fore making direct comparison between studies challenging. However, various studies have

used a range of sample collection and detection techniques to successfully identify S. Typhi in

environmental samples [33,34].

A noteworthy advantage of our study is the relatively dense distribution of ES sites located

throughout a mixed land use study settling, thus maximising surveillance coverage. Overall,

rates of detection of S. Typhi using both grab samples and Moore swabs were relatively low.

This is lower than other studies in different locations e.g. [35] in Kathmandu, although differ-

ing methods hinder comparability.

Whilst there was no evidence to indicate spatial clustering of S. Typhi positivity, we

observed relatively higher rates of detection concentrated throughout the southwest of Blan-

tyre, throughout the Mudi River basin draining the upstream Ndirande informal settlement.

This densely populated informal settlement has minimal access to municipal services [36]

where residents heavily rely on surface waters for domestic use [37] and has previously been

identified as a typhoid high burden area [25,38]. Similar findings have been reported in urban

river systems whereby elevated rates of S. Typhi detection were observed downstream of highly

populated neighbourhoods [34].

A key challenge associated with sampling from an urban river network is the inconsistency

with which the sampled water is contaminated with faecal matter: for example, there was evi-

dence of human faecal contamination at all sites, but this was not consistent across time points.

Measurement of the HF183 biomarker allowed us to calculate the prevalence of S. Typhi detec-

tion only among samples with evidence of human faecal contamination, which is likely to cor-

relate more closely with incidence of infection in the community. Higher abundance of HF183

was associated with an increased probability of detection of S. Typhi. HF183 copy number

could therefore be used to normalise the estimated abundance of S. Typhi based on qPCR, par-

ticularly in settings where sewage and human wastewater directly enter the river system.

We did not find an association between the prevalence or abundance of S. Typhi detection

at ES sites and the incidence of typhoid fever by area of residence. Similarly, temporal peaks in

detection did not align with peaks in typhoid fever incidence. However, it is noteworthy that

the majority of S. Typhi positive ES samples, particularly for Moore swabs, were collected dur-

ing the dry season between May and October 2021.While no significant link could be
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established between precipitation and S. Typhi detection, the detection of a fecally contami-

nated sample was slightly negatively correlated with rainfall, suggesting some dilution effects

during periods of increased precipitation.

Overall, we found that rates of detection of S. Typhi were higher for Moore swabs compared

to grab samples, though this difference was not statistically significant. The increased sensitiv-

ity might be because swabs may concentrate S. Typhi during a longer deployment period by fil-

tering larger quantities of wastewater and/or because of the enrichment step during swab

processing that is not performed for grab samples. The historical use of Moore swabs for ES,

including Moore’s original use for typhoid, polio, norovirus, Vibrio cholera, E. coli [39–42]

and recent use in SARS-CoV-2 surveillance [43], suggest that this low-cost and potentially

highly sensitive surveillance method may have continued utility for multiple pathogens.

There are several limitations to our study. SARS-CoV-2 likely altered health seeking behav-

iours and the provision of blood culture to febrile cases, reducing recorded incidence of dis-

ease. Indeed, typhoid case numbers for the 2021 to 2022 period were lower than recent years.

Similarly, the representativeness of crude incidence of blood culture confirmed cases of

Typhoid fever is highly uncertain, given the low and variable diagnostic sensitivity (~59%,

dependent on volume of blood drawn and recent antimicrobial use) [44] of blood culture tests,

and low probability of an individual presenting at a clinic in Blantyre actually receiving a

blood culture test due to limited capacity [12]. Our ability to draw comparisons between inci-

dence and environmental detections is limited by these factors and by the potential for spatial

heterogeneity in healthcare seeking behaviours, influenced, for example, by distance to the

nearest healthcare facility [45]). Additionally, while it is possible that the typhoid burden was

lower than usual due to changes in social mixing due to SARS-CoV-2, a study carried out in

Blantyre in 2021 [35] found little reported social contact behavioural change. Geolocating

cases with the same resolution as those of the ES sampling data was hampered by the absence

of formalised addresses in many cases, meaning case locations could only be matched to ES

sites based on the overlap of the administrative ward with the catchment area.

Here, we demonstrate the ability of ES to detect S. Typhi in an urban freshwater system.

Whilst our data did not correlate with typhoid fever incidence, ES remains valuable for the

longitudinal detection of S. Typhi in settings in which quality assured diagnostic microbiology

facilities are lacking. Future work is needed in other settings to establish the link between the

local incidence of typhoid fever and detection of S. Typhi in wastewater/sewage samples,

which will capture shedding by both symptomatic and asymptomatic individuals. This could

include comparison with active clinical surveillance systems and serological surveys.

Despite the absence of an association between S. Typhi in ES samples and reporting of

typhoid fever cases, we found that ES could detect S. Typhi in an urban river system, highlight-

ing continuous transmission. HF183 was inconsistently detected in ES samples and strongly

associated with the detection of S. Typhi, highlighting the importance of ES site selection and

sample type for the interpretation of ES data. We recommend that other settings seeking to

establish the value of typhoid ES record this (or a similar) marker, avoiding the risk of river-

water only samples biasing estimates, and follow consistent protocols for ES site selection,

sample concentration and testing allowing comparison between settings, and where resources

are limited, the selection of sites more likely to yield a fecally-contaminated sample. Anec-

dotally, bathing and clothes washing was observed close to some sampling sites. Future studies

may benefit from formal collection of such data as a potential correlate of detection to be

adjusted for in a similar way. While it was beyond the scope of this study to collect data per-

taining to the use of and interaction with river water close to the sampling sites, given that

typhoid has a fecal-oral transmission pathway, it may be valuable for future studies to assess

how water at the sampling sites is used for washing clothes, drawing water, or cleaning kitchen
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utensils, especially as household use of river water for cooking and cleaning has been identified

as a risk factor for Typhoid in Blantyre [25]. Overall, further studies of typhoid ES in these set-

tings and comparison with active clinical surveillance and serological surveys will help to

establish the value of typhoid ES for vaccine introduction and impact monitoring.
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