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Abstract 

Malaria is preventable, but the burden of disease remains high with over 249 million cases and 608,000 deaths 
reported in 2022. Historically, the most important protective interventions have been vector control and chemopre-
ventive medicines with over 50 million children receiving seasonal malaria chemoprevention in the year 2023. Two 
vaccines are approved and starting to be deployed, bringing additional protection for children up to 36 months. 
However, the impact of these currently available tools is somewhat limited on various fronts. Vaccines exhibit partial 
efficacy, are relatively costly, and not accessible in all settings. The challenges encountered with chemoprevention 
are barriers to acceptability and feasibility, including frequency of dosing, and the lack of options in the first trimester 
of pregnancy and for women living with HIV. Also, the emergence of resistance against chemopreventive medicines 
is concerning. To address these limitations, a target product profile (TPP) is proposed as a road map to guide innova-
tion and to boost the quest for novel chemopreventive alternatives. This TPP describes the ideal product attributes, 
while acknowledging potential trade-offs that may be needed. Critically, it considers the target populations most 
at risk; primarily infants, children, and pregnant women. Malaria control and elimination requires appropriate chemo-
prevention, not only in areas of high endemicity and transmission, but also in lower transmission areas where immu-
nity is declining, as well as for travellers from areas where malaria has been eliminated. New medicines should show 
acceptable safety and tolerability, with high and long protective efficacy. Formulations and costs need to support 
operational adherence, access, and effectiveness. Next generation long-acting oral and injectable drugs are likely 
to constitute the backbone of malaria prevention. Therefore, the perspectives of front-line experts in malaria pre-
vention, researchers, and those involved in drug development are captured in the TPP. This inclusive approach aims 
at concentrating efforts and aligning responses across the community to develop new and transformative medicines.
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Background
Malaria is a preventable disease that nonetheless 
continues to cause significant global morbidity, mortality 
and economic hardship [1]. Indeed, 249 million cases 
and 608,000 deaths were reported in 2022, with over 94% 
of deaths occurring in sub-Saharan Africa [1]. Current 
malaria prevention measures encompass vector control, 
chemoprevention, and lately vaccination, but all these 
approaches have their limitations [2]. Advances across 
all interventions are required to adequately protect the 
entire population, prevent severe malaria and mortality, 
and progress towards elimination [3].

Malaria prevention is targeted at populations most at 
risk of severe malaria living in moderate-to-high trans-
mission areas (Fig.  1). The World Health Organization 
(WHO) recommends chemoprevention in children up to 
15  years of age, including perennial malaria chemopre-
vention (PMC; previously intermittent preventive treat-
ment of malaria in infants) in children up to 24 months 
of age, seasonal malaria chemoprevention (SMC) in chil-
dren from 3 months of age, intermittent preventive treat-
ment of malaria in school-aged children (IPTsc) aged 
5–15 years, and post-discharge malaria chemoprevention 

following hospital treatment of children with severe 
malaria [2]. Additionally, intermittent preventive treat-
ment of malaria in pregnancy (IPTp) is recommended in 
the second and third trimester [2]. PMC, IPTsc, and IPTp 
are reliant on sulfadoxine-pyrimethamine (SP) and SMC 
uses the combination of SP and amodiaquine (SPAQ). 
However, the effectiveness of these interventions is at risk 
from the potential spread of high-level SP resistance [4–
7]. In addition, the operational complexity of a monthly 
3-day dosing schedule in seasonal areas is significant, 
clearly pointing to the need for more simplified therapies. 
For travellers, atovaquone-proguanil is used for chemo-
prophylaxis but is not widely used within Africa.

Recently, two malaria vaccines, RTS,S/AS01 and R21/
Matrix-M, have been approved for use by the WHO to 
protect infants from severe malaria [2, 8, 9]. Both vac-
cines require four doses for two years of coverage and 
are an important advancement [10–12]. However, they 
are limited by the need for a cold chain, the require-
ment for administration by trained personnel and poten-
tial vaccine hesitancy [13–17]. They are also relatively 
expensive, at a current price of almost $40 for RTS,S/
AS01 and $16 for R21/Matrix-M for a four-dose course. 

Fig. 1  Overview of current malaria prevention interventions. AL artemether-lumefantrine, AQ amodiaquine, AS artesunate, ATV atovaquone, DHA 
dihydroartemisinin, IPTp intermittent preventive treatment in pregnancy, IPTsc intermittent preventive treatment in school-aged children, PDMC 
post-discharge malaria chemoprevention, PG proguanil, PMC perennial malaria chemoprevention, PQP piperaquine, PW pregnant women, SMC 
seasonal malaria chemoprevention, SP sulfadoxine-pyrimethamine, T trimester, WOCBP women of childbearing potential
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Additionally, the evidence for RTS,S/AS01 indicates that 
protective efficacy varies by age and location [18], and is 
short lived [18, 19]. However, recent studies have shown 
that combining seasonal malaria vaccination with SMC 
yielded better results than either intervention given 
alone [20, 21]. Understanding how and where this com-
bination can be effectively implemented at scale will be 
an important research question for the future.

The progress in protecting pregnant women has been 
inadequate [22]. Neither of the current malaria vaccines 
is approved for use in adults. Chemoprevention with SP 
is contraindicated in pregnant women living with HIV 
and in all women in the first trimester of pregnancy. 
Even for the second and third trimesters, the coverage 
of at least three SP doses during pregnancy is estimated 
as 42% globally but is often considerably lower [1]. 
Considering that annually over 35 million pregnancies 
occur in moderate to high transmission areas [1], this low 
coverage of IPTp and the lack of means to protect against 
infection during pregnancy represent a significant gap in 
therapeutics which needs urgent attention.

In areas where transmission is declining, populations 
will develop semi-immune status more slowly, moving the 
age distribution of disease up, with an increasing number 
of children over 5 years old at higher risk of severe dis-
ease [23, 24]. Consequently, SMC among 5–10-year-old 
children is being implemented in some countries [25, 26]. 
Climate change, either through displacement of people 
to new regions or because of changes in vector distribu-
tion and malaria seasonality may also cause non-immune 
populations to become threatened by malaria [1, 27–30].

In such a context, there is an urgent need for con-
venient, well-tolerated and efficacious alternative drugs 
addressing the limitations of current interventions and 
meeting the needs of a broader target population. A 
revised target product profile (TPP) outlining both the 
minimal acceptable and ideal profiles of chemopreven-
tive drug combinations is proposed. The TPP aims to 
support go/no-go decisions through the development 
pathway, and describes target product labelling, thereby 
facilitating communication with regulators. This TPP was 
developed in an inclusive manner with field-based clini-
cal experts, researchers, and drug developers. The over-
arching objective of the TPP is to propose a road map to 
guide and boost the development of a future generation 
of chemopreventive options.

Current limitations of chemoprevention drugs
Chemoprevention currently uses a full therapeutic 
course of anti-malarial medicine at pre-scheduled times, 
irrespective of infection status, and covers a range of 
populations [2] (Fig.  1). The limitations of the different 
interventions can be considered together as they all 

address individuals at risk of malaria, with unknown 
infection status, and with the aim of clearing current and 
preventing future infections. However, there are specific 
key gaps in provision and critical unmet needs for each 
group.

The most widely adopted chemopreventive strategy 
in Africa is SMC. Although PMC and IPTsc have been 
piloted in several countries, widespread implementation 
has not followed. Barriers to implementation include 
practical issues such as the need to crush tablets, and 
poor integration with childhood health services [31, 32]. 
In contrast, SMC was administered to over 53 million 
children in 2023.  This success relied on extensive train-
ing of community healthcare workers and community-
based education to promote acceptability among parents 
[31, 32]. The intervention is highly cost-effective, reduc-
ing infection by fourfold in clinical trial settings in chil-
dren under 5 years of age [33, 34]. However, where SMC 
has been deployed, shifts in the disease burden to older 
age groups have been detected [25, 26, 35, 36]. Conse-
quently, MMV supports the expansion of SMC to chil-
dren aged 5–10  years, as currently being implemented 
in some countries [25, 26]. For many years, SMC was not 
deployed in the seasonal zones of Eastern Africa, though 
this is now being tested [37–39]. However, within the 
malaria community, there is continued concern about 
the high prevalence of SP resistance molecular markers 
in some regions [40, 41]. There is also the risk that wide-
spread deployment of SMC will drive further resistance 
selection to SP or to amodiaquine [41–43]. Another key 
limitation is the need to administer amodiaquine for 
three days per month [44, 45].

The adoption of chemoprevention in pregnancy has 
been limited. IPTp with at least three courses of SP is 
recommended after week 13 of pregnancy to protect 
women and reduce adverse outcomes [2, 46]. Despite the 
extremely low cost of IPTp and the single dose monthly 
schedule, adherence and coverage remains poor. The bar-
riers to effective IPTp include gaps between antenatal 
care providers and malaria services, limited health pro-
motion, and low acceptance both by pregnant women and 
healthcare providers [47–50]. This is partially explained 
by concerns about the anti-malarial efficacy of SP [51, 
52]. Insufficient information about the benefits of IPTp 
and the importance of adhering to the recommended 
dosing schedule, traditional beliefs or preferences, and 
stigma or discrimination when seeking healthcare ser-
vices also deter access to IPTp with SP [51]. The recently 
launched community IPTp guidelines address the missed 
opportunities for increasing IPTp coverage by promot-
ing a community-based delivery approach [53]. Another 
important limitation is the lack of options for women liv-
ing with HIV and the unmet need for all women in their 
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first trimester of pregnancy. In the early stages of preg-
nancy, many women are hesitant to discuss their status 
or may not yet be aware of being pregnant, therefore all 
women of childbearing age with unknown pregnancy sta-
tus should be ethically treated as potentially in the first 
trimester.

In summary, an ideal next generation oral medicine 
would have no cross-resistance to existing anti-malarial 
drugs, be administered as a single dose per month, to 
increase adherence and facilitate roll out and would be 
indicated for all populations at risk.

To address the need for infrequent dosing, the con-
cept of long-acting injectables with small molecules also 
requires exploration [54]. For example, in pre-exposure 
prophylaxis (PrEP) for HIV, daily doses of cabotegravir 
have been replaced with an extended-release injectable 
suspension maintaining protection over 2  months [55]. 
Additionally, monoclonal antibodies (mAbs) currently 
in development for malaria show encouraging findings 
[56–58]. However, these are likely to provide protection 
against Plasmodium falciparum only, face challenges 
like vaccines in terms of a limited target population and 
cold chain deployment, and significant work is needed to 
bring the costs to an affordable level [59].

Rationale for revising the target product profile (TPP)
The TPP is designed to set the expectations for the 
next generation of medicines. A previous TPP for oral 
chemoprevention was published by MMV in 2017 [60], 
and one for injectable chemoprevention including 
antibodies  was  published in 2018 [54]. These have 
formed the basis of discussions on preferred product 
characteristics (PPC) for chemoprevention convened by 
the WHO and MMV in 2020 [61, 62]. In the intervening 
period, the landscape has continued to evolve with the 
expansion of SMC, the approval by WHO of vaccines 
for infants, and the potential of mAbs  and injectable 
long-acting medicines [2, 8, 57]. Additionally, data are 
available from market research conducted amongst 
healthcare providers from malaria endemic countries to 
better understand the preferred attributes for long-acting 
injectables (MMV, data on file). It is, therefore, timely 
to consolidate the outcome of various discussions on 
malaria prevention in a revised chemoprevention TPP. It 
is also important to consider to what extent these tools 
can be implemented in an integrated and complementary 
manner for maximal impact. A high-level summary 
(Fig.  2) compares the characteristics of the different 
interventions, underlining the potential of each approach.

Fig. 2  Main attributes of existing and future interventions for malaria prevention [63–68]. SOC standard-of-care, mAb monoclonal antibody, LAI 
long-acting injectable. 1Chemoprevention is recommended by WHO in children up to 15 years of age and pregnant women in their second 
and third trimester. SMC-SPAQ has been widely adopted, as compared to PMC and IPTsc, and was therefore considered as SOC. Main attributes 
for IPTp are similar and are not detailed in the summary Table. 2Most likely infants and children under 5 years of age in the first product label, due 
to injection volume and cost limitations. 3mAbs requiring more than one dose to protect throughout the malaria season may be considered 
based on cost-effectiveness [63]. 4Preventive efficacy of SPAQ was 83% in a controlled clinical trial [64]. 5RTS,S/AS01 preventive efficacy was of 39% 
for clinical malaria over 48 months [65]. R21/Matrix-M vaccine efficacy over 12 months was 75% at the seasonal sites and 68% at the standard sites 
for time to first clinical malaria episode [66]. 6WHO mAbs for malaria prevention preferred product characteristics, 2023 [63]. 7Average economic 
cost of dispersible SPAQ—26 cents per 3-days treatment course; and 28 cents for SP doses for adults [67]. 8RTS,S vaccine costs a maximum of EUR 
9.30 per dose. R21 vaccine currently costs US$ 3.90 per dose for a two-dose presentation. Vaccines cost may decrease in future years as additional 
demand materializes [68]. 9Vaccines require a cold-chain for transportation and storage; and there are likely to be similar requirements for mAbs
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A single TPP is proposed for long-acting oral and 
injectable drug combinations specifically developed 
for malaria chemoprevention both for populations liv-
ing in endemic regions and for those from malaria-free 
areas. This latter group traditionally included travellers. 
However, as malaria elimination programmes progress, 
heterogeneity in transmission is inevitable. Thus, trav-
ellers within the same country moving from formerly 
endemic areas where malaria has been eliminated to 
regions still subject to ongoing transmission must be 
considered. With climate change, the frontier of malaria 
is moving upwards in altitude and latitude, exposing new 
populations to the malaria parasite for the first time [69]. 
Malaria epidemics associated with heavy rains and floods 
occurring in usually dry areas have also been reported 
[70].

Notably, all medicines currently used in chemopreven-
tion were developed as treatments and repurposed for 
chemoprevention without stringent regulatory approval. 
Also, formerly published anti-malarial product profiles 
were conceptually built around atovaquone-proguanil 
malaria prophylaxis for travellers [54, 60]. Thus, the TPP 
is needed to support discussions around the development 
of potential regulatory pathways for new chemopreven-
tive oral and long-acting injectable medicines.

Updating the target product profile for malaria 
chemoprevention
Strategy for developing new malaria prevention tools
The simplest option for chemoprevention drug develop-
ment is repurposing existing combinations approved for 
malaria treatment for use in chemoprevention [62]. How-
ever, this approach is sub-optimal, as medicines used for 
chemoprevention should ideally be different from those 
used for the treatment of malaria to mitigate against the 
risk of resistance selection [43].

The second approach is the recombine individual mol-
ecules from existing treatment combinations to make 
new products [62]. Although the safety of the individual 
medicines is well known, there is the potential for emer-
gent adverse events with the new combination [71]. Thus, 
potential drug–drug interactions, safety, tolerability, and 
efficacy of the recombination must be evaluated. Again, 
there is a risk for resistance selection where chemopre-
vention drugs and treatment drugs contain the same 
active ingredients. From both a development and regula-
tory perspective, recombination is more demanding than 
repurposing [62].

The third strategy is the most challenging, but with 
greatest potential for developing products that address 
the limitations of current interventions. This requires 
identifying and developing new chemical entities and 
incorporating these into novel combinations specifically 

targeted at chemoprevention. This is a longer-term 
approach with a higher risk of attrition than repurpos-
ing or recombination, given the unknown clinical safety, 
tolerability and efficacy of the molecules [62]. It requires 
molecule optimization in the discovery phase to pro-
duce pharmacological duration of protection of at least a 
month. To facilitate this process, over the last five years, 
MMV has developed a modelling and simulation pack-
age, MMVSola, which enables the human dose to be esti-
mated from metabolism and parasitology data (https://​
mmvso​la.​org/). This can be fine-tuned for molecules 
which have very low intrinsic clearance, the key param-
eter for long pharmacokinetic duration, and so will facili-
tate the optimization of new candidates for the pipeline.

Regardless of the drug development strategy used, or 
whether an oral or long-acting injectable formulation 
is developed, the revised TPP provides guidance to the 
desired attributes of the next-generation chemopreven-
tion drugs (Table 1).

Target populations
The minimum essential target populations include those 
most at risk of malaria (Fig. 1). Different target popula-
tions will generate different risk:benefit requirements 
for drug development and one single product is unlikely 
to be suitable for all populations at risk. Thus, the TPP 
considers several options (OR statements) so that a drug 
which has value in one population is not discarded.

Children under 10 years of age living in malaria-endemic 
regions are particularly vulnerable to malaria infection 
and its associated complications. Malnourished children 
and those with sickle cell disease represent high-risk 
subgroups and should ideally be considered in product  
development. Recently WHO has included children at 
elevated risk of subsequent death from malaria due to 
underlying and unresolved anaemia as a special sub-
group (post-discharge malaria chemoprevention).

Pregnant and breastfeeding women represent another 
important target population, especially women in their 
first trimester of pregnancy, who currently are left with-
out any chemopreventive option. The Sustainable Devel-
opment Goals promoting equity to maximize impact, 
underline the need to undertake research and fill the gap 
in this underserved population [22]. To address this need, 
compounds with no teratogenic signals in animal studies 
should be prioritized for development. Safety, tolerabil-
ity, and efficacy data in the first trimester of pregnancy 
should be obtained as soon as possible. Typically, this 
requires sufficient data in non-pregnant women, women 
in the second and third trimester of pregnancy, and is 
ideally supported by inadvertent exposures from regis-
tries like the ongoing MiMBa pregnancy registry [22, 72]. 
In the initial stages of pregnancy, women are commonly 

https://mmvsola.org/
https://mmvsola.org/
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reluctant to discuss or disclose their status or may not be 
aware of the pregnancy. Thus, all women of child-bearing 
age whose pregnancy status is unknown must ethically be 
treated as if they are potentially in the first trimester.

Beyond children and pregnant women, malaria chemo-
prevention would be valuable to any individuals with-
out significant immune protection against the disease, 
including those living with HIV. Groups that could ben-
efit from chemoprevention include migrant temporary 
workers, displaced people, nomadic populations, board-
ing school students, military personnel, and tourists 
travelling into malaria endemic regions. It also includes 
those who are impacted by climate change causing pre-
viously malaria-free altitudes and latitudes to become 
receptive to malaria transmission. As malaria elimination 
progresses, there will be an increasing number of older 
children for whom effective chemoprevention or vacci-
nation has delayed the acquisition of semi-immune sta-
tus, and adults where immunity to malaria has dissipated 
with declining transmission, or where there is a risk of re-
establishment of transmission in regions where malaria 
has been locally interrupted.

Anti‑malarial effects and efficacy
The primary parasite target population is P. falciparum, 
which causes almost 98% of the malaria cases, and most 
deaths. Thus, efficacy against this parasite, including 
against resistant parasites to currently available anti-
malarial medicines, is the minimum requirement. How-
ever, in contrast to vaccines and candidate mAbs, new 
chemical entities are often effective against all Plasmo-
dium species, and this should be considered a reasonable 
goal. Plasmodium vivax has become the most prevalent 
parasite in areas where malaria transmission is declin-
ing [73]. The same consideration applies to Plasmodium 
ovale and Plasmodium malariae, which are particularly 
relevant in the context of malaria elimination and often 
occur as co-infections with other Plasmodium species 
[74]. Routine surveillance of these parasites is limited in 
endemic regions, but P. ovale is the second most frequent 
cause of malaria in returning travellers to the UK [75]. 
There also remains the threat of primate malaria, such 
as Plasmodium knowlesi, whose long-term impact on 
malaria elimination remains unclear.

The ability to target multiple lifecycle stages is an 
advantage but not an absolute requirement. Chemopre-
vention originally relied purely on activity against blood 
stage parasites both for quinine family (quinine, chloro-
quine, amodiaquine and mefloquine) as well as the later 
sulfadoxine-pyrimethamine. Atovaquone-proguanil 
brought the additional benefit of activity against hepatic 
schizonts. For this revised TPP, a minimal essential 
profile would be two compounds with activity against 

parasite blood stages. However, compounds with activity 
against liver schizonts or even those with transmission 
blocking would bring additional value to the product [3]. 
Prevention of transmission would be of additional benefit 
in elimination efforts, and the prevention of re-establish-
ment of malaria in populations with declining immunity 
[3].

In terms of clinical efficacy, long-acting oral and inject-
able drugs or prodrugs should clear pre-existing asymp-
tomatic infections and provide long-lasting protection 
over weeks or months in endemic areas. Preventive 
efficacy may vary with local transmission dynamics, for 
example in seasonal versus holoendemic regions and in 
areas of low versus high transmission. Given that malaria 
transmission within countries becomes increasingly het-
erogeneous as malaria control and elimination efforts are 
enhanced, achieving sufficient preventive efficacy across 
various regions will be important to maximize commu-
nity acceptance.

The target efficacy and duration of response is bench-
marked against existing medications. The preventive effi-
cacy achieved with SPAQ over a season in a controlled 
clinical trial (i.e., 80%, [64]) is proposed as minimum 
essential for oral drugs, in line with the WHO PPC [61]. 
Monthly oral chemoprevention should provide preven-
tive efficacy of ≥ 90% over 1 month [61], or ≥ 80% over at 
least 4 months against symptomatic malaria infections in 
children and non-immune individuals. One major issue 
with SPAQ is that amodiaquine must be administered for 
three days per month; and this may contribute to lower 
effectiveness in real-life settings. Ideally, the next gen-
eration therapy should only require single-day monthly 
dosing. The target efficacy for long-acting injectable 
medicines would be similar with a preventive efficacy of 
80% against clinical disease over 3–4 months with a sin-
gle administration and is aligned with the WHO PPC 
for injectable mAbs [63]. This goal was originally set 
on the efficacy targets for pre-exposure prophylaxis in 
HIV, where 2–3  months was targeted with cabotegravir 
injectable [55]. More recent developments have led to 
lenacapavir, the first long-acting injectable HIV treat-
ment medication administered twice yearly [76]. Simi-
larly, a single injection that offers an efficacy of 75% over 
6 months has been adopted as the ideal case for malaria 
chemoprevention in the TPP.

In pregnancy, women may have acquired partial 
immunity over time through repeated exposures and 
may have asymptomatic infection [77, 78]. This endan-
gers the health and well-being of the mother, the fetus 
and the newborn child [79–81]. Therefore, oral or 
injectable drugs should provide at minimum a preven-
tive efficacy of ≥ 75% against maternal malaria infec-
tions, regardless of symptoms, over 6  months. The 
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incidence of placental malaria infection, severe malaria, 
hospital admission, death, and adverse pregnancy out-
comes should also be considered as potential preventive 
outcomes in clinical trials [82]. From a public health 
perspective, chemoprevention in pregnancy should also 
improve maternal anaemia and birth outcomes, such as 
low birthweight. A reduction in the risk of low birth-
weight has been observed with the current standard-
of-care SP, which may be mediated by its antibacterial 
efficacy [83]. However, it is important to underline that 
any regimen which can confer a malaria-free pregnancy 
for the mother is a significant breakthrough. Therefore, 
maternal malaria is recommended here as the primary 
endpoint for minimal acceptable chemopreventive 
efficacy.

Potential for drug resistance
Owing to the high number of individuals dosed, deploy-
ment of new chemoprevention drugs will inevitably reach 
individuals with high parasitaemia levels, increasing the 
risk of de novo resistance emergence. It is, therefore, fun-
damental that for any new compounds developed, there 
should ideally be no evidence of resistance selection 
in vitro or in vivo [84]. The minimal acceptable resistance 
threshold should have a value for the minimum inocula-
tion for resistance (MIR) of 107 and ideally undetectable 
resistant parasites recrudescing after clearance of 109 
parasites in culture (MIR > 9). Ideally, there should be no 
emergence of resistant parasites in monotherapy studies 
in mice, human volunteers, or patients, and there should 
be confirmation of activity against known drug-resistant 
clinical isolates.

Combination therapy will reduce the risk of infec-
tion by using two or more drugs with different modes of 
action and with different parasite resistance mechanisms. 
It is important to demonstrate that the second molecule 
is more active against resistant parasites generated by 
the first molecule, either because of increased sensitiv-
ity or increased fitness cost. Ideally, partner drugs should 
have matched pharmacological duration of cover, or time 
above the minimum inhibitory concentration, to ensure 
that neither drug is exposed to parasites as a pharmaco-
logical monotherapy. Parasite densities during the liver 
stage infection are low, so ideally if at least one of the 
drugs in the combination displays causal prophylaxis, this 
would reduce the potential selection of resistance during 
blood-stage infection when parasite densities are higher 
[3]. Finally, the drugs used for malaria chemoprevention 
should preferably not be used for case management in 
the same regions. This would reduce drug selection pres-
sure for each drug class with the aim of retaining anti-
malarial efficacy for longer.

Safety and tolerability
The clinical safety and tolerability requirements and 
risk–benefit balance for chemoprevention are more 
demanding than for malaria case management. Preven-
tive medication is administered to healthy or asympto-
matic individuals who are not at immediate risk of poor 
outcome. The safety and tolerability thresholds should 
therefore be comparable to that of established stand-
ard-of-care as a minimum, providing a favourable risk–
benefit profile with only mild, transient drug-related 
adverse events and rare and manageable drug-related 
severe adverse events.

In terms of ideal characteristics, there are opportu-
nities to improve safety, tolerability, and acceptability 
over the standard-of-care. For example, developing 
medicines with the potential for use throughout all tri-
mesters of pregnancy would be a significant advance. 
Pregnancy testing is not always accepted, particularly 
for young unmarried women, and may not be avail-
able to identify women in their first trimester. For IPTp, 
current SP dosing is a single administration of three 
large tablets with 525  mg active ingredient. The toler-
ability and acceptability of an oral fixed-dose combi-
nation therapy need to be considered for pregnant 
women who may find taking oral medication difficult, 
and studies of recombining either mefloquine with SP 
or azithromycin with chloroquine have failed partly 
because of poor tolerability [85]. Notably, a long-acting 
injectable medicine or mAb does not have the issues of 
vomiting, pill burden, unpalatable ingredients and food 
effect that can impact adherence and efficacy for oral 
medications [57].

Food effect and drug–drug interactions
Ideally, oral chemoprevention should have no require-
ments for food intake. Any regimen that does not allow 
food before drug administration is likely to be unrealis-
tic operationally since a fasting requirement is almost 
impossible to control, especially in children and preg-
nant women. However, food restrictions after oral drug 
administration may be acceptable if they are limited 
in duration. Without a full clinical assessment of the 
risk–benefit, it is difficult to set a numerical bound-
ary on the fasting duration and degree of food effect. In 
case management, the food restrictions for piperaquine 
and lumefantrine which showed three-fold effects when 
administered with high-fat meal are manageable but not 
ideal [86, 87]. A food effect study with a high-fat meal 
should be conducted for all orally administered drugs 
[88]. However, the effect of a local diet should ideally be 
considered as it may be more pertinent to the habits in 
malaria-endemic regions. For example, no significant 
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impact on piperaquine exposure was observed with local 
low-fat meals in South-East Asia [89].

Ideally, there would be no clinically significant drug–
drug interactions affecting the efficacy or safety of anti-
malarial therapy or essential concomitant medications. 
The target population may be exposed to concomitant 
medications like antibiotics, HIV and TB drugs, and oral 
contraception. Therefore, manageable drug–drug inter-
actions with dose adjustments should be expected as a 
minimum. These restrictions are particularly important 
for the long-acting injectable medicines. In HIV PrEP, 
one of the main reasons for the successful deployment of 
injectable cabotegravir is the relative lack of drug interac-
tions compared to previous HIV therapies.

Dosing regimen, formulation and stability
For an oral formulation, a directly observed single 
monthly dose would be consistent with the current 
standard-of-care in IPTp and PMC (i.e., SP). However, for 
SMC, a maximum of three consecutive days dosing once 
a day with a directly observed administration on the first 
day of dosing is the current standard-of-care (i.e., SPAQ) 
and is defined as the minimal acceptable profile. In addi-
tion, a 3-day dosing regimen would also be acceptable 
in cases where no other options are available or recom-
mended. Oral products should preferably be formulated 
as fixed dose combinations. However, co-packaged part-
ner drug formulations may be acceptable if fixed dose 
combination is not feasible. Formulations need to have 
high acceptability by the target population. Palatability 
and convenience are key considerations for chemopre-
vention to avoid sub-optimal dosing. For example, dis-
persible tablets can be given more easily to children and 
should be taste-masked and/or sweetened. Similarly, the 
pill burden needs to be acceptable, for example, in preg-
nant women who may be nauseous.

For a long-acting injectable product, market research 
showed that a 6-month duration of protection was per-
ceived as ideal, and 3  months was acceptable (MMV, 
data on file). In addition, injections on two separate sites 
was deemed acceptable. The injection volume and nee-
dle size were of less importance, if they remained within 
the currently accepted standards (injection volumes from 
0.5 mL to 2 mL, needle size of 25 gauge to 27 gauge). This 
is in line with the characteristics of most vaccines includ-
ing RTS,S/AS01 and R21/Matrix-M, which are delivered 
via 0.5 mL intramuscular injections with a 25-gauge nee-
dle for each dose. Pre-filled syringes may be preferable to 
vials for ease of administration, but they increase the cost 
of the product, and depending on the target populations, 
multiple strengths may have to be developed.

It should be highlighted that the route of adminis-
tration has an influence on the delivery channel. Oral 

medication can be delivered in very rural areas through 
community health workers making it more accessible 
than injectables which are currently administered by 
health care professionals at health facilities or  advance 
via an health posts strategy where health facilities are too 
far or harder to reach.

Stability is important as malaria drugs will be deployed 
in areas that are hot and humid (zones IVa and IVb, with 
temperatures at 30 °C and relative humidity up to 75%). A 
minimum shelf life of 2 years at these conditions is nec-
essary for both oral and injectable products. Accelerated 
stability data at 40°C/75% relative humidity should be 
generated to support short-term excursions, as it is often 
the case in some of the target areas of implementation.

Logistical and cost considerations
With a malaria prevention toolkit including vector con-
trol, vaccines, chemoprevention drugs, and potentially 
mAbs, the cost–benefit balance of the different options 
depending on operational circumstances will need to be 
understood. The costs of oral medication are likely to be 
less than those of an injectable chemoprevention drug 
and should be no more than $1 for adults and $0.25 for 
infants < 2  years old, and ideally not more than the cur-
rent cost of standard of care, although this is most likely 
unachievable with any new chemical entities at launch. 
However, it is expected that long-acting injectables 
would be significantly cheaper than vaccines when pro-
duced at scale, which are price-limited by the high cost of 
the specialized adjuvants used. A target of $4 for adults, 
$2 for children and no more than $1 for infants per injec-
tion appears achievable within the public sector (Fig. 2). 
The cost ofmAb remains a challenge; at $50/g production 
costs, the use cases are limited to infants and newborns 
who would need low doses. Operational costs with long-
acting injectable small molecules would be lower than 
for vaccines and mAbs since it is assumed they would 
not require such extensive cold storage and transporta-
tion. Thus, chemoprevention complements vaccines and 
mAbs in settings and populations where access to these 
interventions may be unfeasible or not cost-effective.

Malaria chemoprevention pipeline
The malaria prevention pipeline landscape is shown in 
Fig. 3.

Currently, the MMV chemoprevention portfolio 
for long-acting small molecule injectables includes 
MMV371 and MMV055 (also known as ELQ300) 
[90–93]. Both are potent inhibitors of P. falciparum 
cytochrome bc1, though with different binding site tar-
gets [94, 95]. MMV371, an ester-linked acetyl derivative 
of atovaquone, has completed preclinical safety testing 
and will progress into phase 1 first-in-human studies in 
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2024. Preclinical formulation development and testing of 
MMV055, both alone and in combination with MMV371, 
is ongoing.

For oral medicines, ganaplacide (KAF156) is a novel 
anti-malarial agent which belongs to the imidazolopip-
erazines class of anti-malarial drugs [96–98]. In a con-
trolled human malaria infection (CHMI) model, KAF156 
had an acceptable safety and tolerability profile and dem-
onstrated high levels of pre- and post-CHMI protective 
efficacy [97]. Cabamiquine (M5717) is a first-in-class 
compound, targeting the Plasmodium cytosolic protein 
synthesis “Elongation Factor 2” for the treatment and 
chemoprevention of malaria [99–102]. A Phase 1b CHMI 
study showed that cabamiquine could be developed as a 
single-dose monthly regimen for malaria chemopreven-
tion [102]. In addition, CMQ069, a P. falciparum cyclic 
amine resistance locus (PfCARL) inhibitor, has recently 
successfully passed candidate selection. As PfCARL con-
fers parasite resistance to several anti-malarial drugs, 
inhibitors of this pathway could have utility in protecting 
partner drugs from resistance selection in combination 
[103, 104].

Molecules currently marketed or under development 
for case management may have potential for chemopre-
vention. A new combination of the existing anti-malarial 
actives pyronaridine and piperaquine was selected from 
all current recombining possibilities and is currently 
being investigated in phase 1 [105]. Both molecules have 
good tolerability, acceptable benefit:risk profiles, different 
mechanisms of action and similar long-lasting activity 
[86, 105–110]. Importantly, because neither molecule has 
shown any teratogenic liabilities [111, 112], or significant 

adverse events in pregnancy clinical trials and registries, 
the combination has potential for use in pregnant women 
in their first trimester of pregnancy.

Aside from small molecules, mAbs have been pro-
gressed into clinical trials for malaria prevention. The 
most advanced is L9LS, an anti-CSP-1 antibody which 
has shown high efficacy in volunteer infection studies and 
is now in two phase 2 studies in Africa (ClinicalTrials.gov 
Identifier: NCT05400655 and ClinicalTrials.gov Identi-
fier: NCT05304611) [58, 113]. Further mAbs are in early 
stage of development, including MAM01/ATRC-501, an 
engineered version of a human antibody isolated from a 
RTS,S/AS01 vaccine trial participant, currently in phase 
1 (ClinicalTrials.gov Identifier: NCT05891236) [114].

Considerations for drug development
The medicines currently used for chemoprevention 
are legacy medications, developed for the treatment of 
uncomplicated malaria and have not undergone stringent 
regulatory approval for chemoprevention. For example, 
SMC with SPAQ consists of a complete treatment course 
of amodiaquine plus SP given at monthly intervals. SP 
is used at its registered treatment dose and the dose of 
amodiaquine is the historical treatment dose. For future 
chemoprevention interventions, it may not be neces-
sary to demonstrate efficacy for the treatment of acute 
uncomplicated malaria [62]. Instead, the clinical develop-
ment strategy would aim for an indication of ‘prevention 
of malaria’, with a robust dosing justification, and will not 
have to be limited to a specific use case, such as SMC, 
PMC, IPTsc, or IPTp.

Fig. 3  Research and development projects in malaria prevention (post-candidate selection). BMG MRI Bill & Melinda Gates Medical Research 
Institute, CARL cyclic amine resistance locus, CSP circumsporozoite protein, mAb monoclonal antibody, MMV MMV Medicines for Malaria Venture, 
NIH National Institutes of Health, P.f. Plasmodium falciparum, PYN pyronaridine, PQP piperaquine, TBD to be determined



Page 11 of 15El Gaaloul et al. Malaria Journal          (2024) 23:315 	

Developing drugs specifically for use in malaria pre-
vention is a new concept. During scientific consulta-
tions with a stringent regulatory agency, no objections 
to the development of new chemical entities (NCEs) for 
malaria prevention without a treatment indication were 
indicated. In addition, utilizing the intramuscular route 
of administration for a long-acting NCE in a first-in-
human study in the absence of prior oral clinical data was 
accepted provided that robust support from non-clinical 
data is available. Further discussions with stringent regu-
latory authorities, national regulatory bodies, and WHO 
will need to continue in concert with drug development 
to ensure a seamless and efficient progression. The regu-
latory path may be through a stringent regulatory author-
ity, preferably by a process which includes WHO and 
participation of malaria-endemic country national regu-
latory authorities. For example, the European Medicines 
Agency EU-Medicines for all or ’EU-M4all’ procedure 
[115], or the Swissmedic procedure for scientific advice 
and Marketing Authorization for Global Health Products 
[116], followed by WHO Prequalification [117]. How-
ever, the recent progress of the R21/Matrix-M vaccine 
demonstrates an alternative pathway, where the approval 
is granted by endemic countries ahead of stringent regu-
lators, following their own analysis of the needs of their 
populations.

Clinical development of a novel anti-malarial will start 
with a phase 1 single ascending dose study in healthy 
adult participants to characterize the safety, tolerabil-
ity and pharmacokinetics of the new molecules when 
administered alone and in combination. Physiologically-
based pharmacokinetic (PBPK) modeling will be used 
to predict potential drug–drug interactions. The avail-
able non-clinical package and phase 1 clinical data will 
support a preliminary estimation of the preventive dose 
range and duration of protection before phase 2 pro-
gramme initiation. Human volunteer infection studies 
may be conducted to further inform on the prophylactic 
activity and minimum efficacious concentration of the 
new agents. Exposure–response analyses of these stud-
ies may be used to support the dosing justification (doses 
and dosing regimen) and possibly to demonstrate the 
contribution of each individual agent to the preventive 
efficacy of the combination.

In malaria endemic regions, clinical trials will need 
to show preventive efficacy and evaluate the ability of 
the new combination to clear existing asymptomatic P. 
falciparum infections. The primary endpoint, compar-
ator, malaria seasonality, transmission intensity, drug 
sensitivity patterns, expected level of efficacy and the 
size of the safety dataset will be key drivers for the sam-
ple size estimation to ensure adequate characterization 

of the safety and tolerability profile of the drug com-
bination in the target population. The phase 2 and 3 
clinical development pathway depends on the target 
population and the availability of standard-of-care. For 
example, in children, preventive efficacy is evaluated 
as an incidence rate ratio of symptomatic infections 
over 28 days and 4 months, as has been done for SMC 
with SPAQ [118]. In pregnant women, IPTp efficacy is 
primarily measured as maternal malaria incidence over 
the second and third trimester, i.e., a 6-month period 
[61]. Where no chemoprevention standard-of-care 
is implemented, placebo-controlled studies are pre-
ferred, enabling measurement of the baseline infection 
rate. The level of protection could then be established 
with the incidence rate ratio of clinical episodes and 
infections in the active treatment arm compared to the 
placebo arm. Where standard-of-care is available, non-
inferiority to the recommended preventive treatment 
should be demonstrated and will inform the future 
decision on implementing the new product in the field.

Demonstrating safety in children and pregnant 
women presents challenges to drug development [22]. 
The size of the safety database adequately support-
ing the registration and/or recommendation of a spe-
cific chemoprevention combination will need to be 
discussed with regulators and policymakers. For com-
pounds with clean teratogenic profiles in animal spe-
cies, the generation of evidence in women in their first 
trimester of pregnancy should be initiated as soon 
as sufficient safety and efficacy data in non-pregnant 
adults and in pregnant women in second and third 
trimester are available [22]. Pregnancy registries col-
lecting data from women inadvertently administered 
drugs during pregnancy could also contribute to risk 
assessment [72]. Prior to including women in the sec-
ond or third trimester of pregnancy in a clinical trial, 
PBPK modelling will be used to predict if dose adjust-
ments are necessary and to assess the potential foetal 
exposure to the tested drugs. As drugs may be given 
repeatedly, toxicities due to accumulation should be 
considered and ruled out in the pre-clinical setting/
studies.

Efficacy, safety, and tolerability targets need to be 
considered in conjunction with key drivers of public 
health impact in the target population. For example, the 
convenience, acceptability, and feasibility of the dosing 
regimen and adherence when delivered through rou-
tine healthcare systems. It is also important to consider 
the presence of other preventive measures, the cost-
effectiveness, coverage, and sustainability of the new 
intervention when delivered at scale, and operational 
implementation studies will be required.
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Conclusions
Highly effective preventive interventions have the 
potential to reduce the burden of malaria including 
severe cases and mortality. Current approaches have 
protected millions of people in malaria endemic coun-
tries, but the limitations of available interventions have 
resulted in inadequate deployment and restricted bene-
fits for some key populations and settings. Also, the effi-
cacy of current chemoprevention drugs is threatened 
by the emergence and spread of resistance. From the 
currently available technologies, or those which might 
be available in the future, long-acting chemopreven-
tion drugs, either oral or injectable, by virtue of their 
simplicity and relative anticipated low cost, particu-
larly compared to biologics, will be a critical element in 
the toolbox for malaria prevention. Even greater ben-
efits are possible if such agents show improved efficacy, 
convenience, and feasibility over currently available 
drugs. As new tools emerge, it is essential to recognize 
that certain existing ones may become obsolete due 
to factors like drug resistance or limited acceptance. 
Innovation is occurring across all streams of malaria 
prevention, with new chemoprevention drugs, new vac-
cine development, and the opportunities for mAbs. The 
integration of these tools must be tailored to the tar-
get population and local conditions [119]. Ultimately, 
deploying and implementing malaria prevention inter-
ventions, drugs, vaccines, and mAbs in an integrated 
and complementary manner will fast track reduction of 
the disease burden, delay the onset of resistance to anti-
malarial drugs and accelerate elimination of malaria in 
endemic countries.
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