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ABSTRACT Virulence screens have indicated potential roles during Streptococcus 
pneumoniae infection for the one-carbon metabolism pathway component Fhs and 
proline synthesis mediated by ProABC. To define how these metabolic pathways affect 
S. pneumoniae virulence, we have investigated the phenotypes, transcription, and 
metabolic profiles of Δfhs and ΔproABC mutants. S. pneumoniae capsular serotype 6B 
BHN418 Δfhs and ΔproABC mutant strains had strongly reduced virulence in mouse 
sepsis and pneumonia models but could colonize the nasopharynx. Both mutant strains 
grew normally in complete media but had markedly impaired growth in chemically 
defined medium, human serum, and human cerebrospinal fluid. The BHN418 ΔproABC 
strain also had impaired growth under conditions of osmotic and oxidative stress. The 
virulence role of proABC was strain specific, as the D39 ΔproABC strain could still cause 
septicemia and grow in serum. Compared to culture in broth, in serum, the BHN418 Δfhs 
and ΔproABC strains showed considerable derangement in global gene transcription that 
affected multiple but different metabolic pathways for each mutant strain. Metabolic 
data suggested that Δfhs had an impaired stringent response, and when cultured in sera, 
BHN418 Δfhs and ΔproABC were under increased oxidative stress and had altered lipid 
profiles. Loss of proABC also affected carbohydrate metabolism and the accumulation 
of peptidoglycan synthesis precursors in the BHN418 but not the D39 background, 
linking this phenotype to the conditional virulence phenotype. These data identify the S. 
pneumoniae metabolic functions affected by S. pneumoniae one-carbon metabolism and 
proline biosynthesis, and the role of these genetic loci for establishing systemic infection.

IMPORTANCE Rapid adaptation to grow within the physiological conditions found in 
the host environment is an essential but poorly understood virulence requirement for 
systemic pathogens such as Streptococcus pneumoniae. We have now demonstrated an 
essential role for the one-carbon metabolism pathway and a conditional role depend­
ing on strain background for proline biosynthesis for S. pneumoniae growth in serum 
or cerebrospinal fluid, and therefore for systemic virulence. RNAseq and metabolomic 
data demonstrated that the loss of one-carbon metabolism or proline biosynthesis has 
profound but differing effects on S. pneumoniae metabolism in human serum, identifying 
the metabolic processes dependent on each pathway during systemic infection. These 
data provide a more detailed understanding of the adaptations required by systemic 
bacterial pathogens in order to cause infection and demonstrate that the requirement 
for some of these adaptations varies between strains from the same species and could 
therefore underpin strain variations in virulence potential.

Month XXXX  Volume 0  Issue 0 10.1128/mbio.01758-24 1

Editor Justin A. Thornton, Mississippi State 
University, Mississippi State, Mississippi, USA

Address correspondence to Jeremy S. Brown, 
jeremy.brown@ucl.ac.uk, or Elisa Ramos-Sevillano, 
e.ramos-sevillano@ucl.ac.uk.

The authors declare no conflict of interest.

See the funding table on p. 22.

Received 11 June 2024
Accepted 9 July 2024
Published 18 October 2024

Copyright © 2024 Ramos-Sevillano et al. This is an 
open-access article distributed under the terms of 
the Creative Commons Attribution 4.0 International 
license.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 0

6 
N

ov
em

be
r 

20
24

 b
y 

2a
00

:2
3c

5:
4a

0c
:4

d0
1:

c8
d4

:2
0f

a:
bc

ca
:8

d7
7.

https://crossmark.crossref.org/dialog/?doi=10.1128/mbio.01758-24&domain=pdf&date_stamp=2024-10-18
https://doi.org/10.1128/mbio.01758-24
https://creativecommons.org/licenses/by/4.0/


KEYWORDS Streptococcus pneumoniae, proline synthesis, formate-tetrahydrofolate 
ligase, stringent response, virulence

S treptococcus pneumoniae is a common upper respiratory tract commensal but 
frequently causes invasive infections responsible for approaching a million deaths 

a year in children (1–3). S. pneumoniae has multiple virulence factors (4), including 
the polysaccharide capsule required for immune evasion (5) and surface proteins also 
involved in immune evasion as well as adhesion to host cells (6–9). Another essential 
requirement for virulence is bacterial replication under host physiological conditions 
(10), and growth in serum differentiates S. pneumoniae from the less virulent streptococci 
(11). Host physiological conditions include a temperature of 37°C, a pH of 7.4, serum 
osmolality of around 285 mmol/kg, and restricted availability of multiple cations and 
micronutrients needed for bacterial replication (12, 13). As a consequence, the virulence 
of S. pneumoniae is dependent on cation, polyamine, and amino acid transporters (14–
19); effective osmoregulation (18, 20); and synthesis of nutrients with limited availability 
in the host (21–23). However, our understanding of the S. pneumoniae factors required to 
replicate under physiological conditions remains incomplete.

We analyzed published transcriptome and transposon screen data to identify 
metabolic pathways involved during infection but yet to be characterized in detail 
(24–26). Two loci of interest were identified, the proABC (SP_0931–33) operon and 
fhs (SP_1229). ProA (Sp_0932) is a γ-glutamyl phosphate reductase, ProB (Sp_0931) a 
γ-glutamyl kinase, and ProC (Sp_0933) a pyrroline-5-carboxylate reductase responsible 
for proline synthesis from glutamate (27). Proline protects bacteria against osmostress 
(28–30), and proline synthesis or transport is important for Salmonella Typhimurium and 
Mycobacterium tuberculosis virulence (31, 32). Mutation of proABC operon reduced S. 
pneumoniae virulence in mice (24, 33, 34). fhs is predicted to encode a formate-tetrahy­
drofolate ligase that catalyzes the formation of 10-formyl-tetrahydrofolate from folate (as 
tetrahydrofolate [THF]) and formate. Fhs is part of the one-carbon metabolism pathway 
which provides cofactors for the synthesis of multiple products. THF donates carbon for 
the synthesis of amino acids and purines (35, 36), and may contribute to the synthesis 
of alarmones guanosine-pentaphosphate and -tetraphosphate [(p)ppGpp] that initiate 
the bacterial stringent response required for adaptation to nutritional and physiological 
stress (37). THF synthesis in most bacteria is catalyzed by FolD, but a minority of bacteria 
including S. pneumoniae use Fhs (38–41). The one-carbon metabolism pathway could be 
important for multiple metabolic pathways involved in adaptation to host physiological 
conditions, and S. pneumoniae increases fhs expression in media containing low levels of 
methionine and during mouse meningitis (26, 35). S. pneumoniae fhs is described as an 
essential gene for some strains (37). Mutation of fhs reduced S. pneumoniae virulence in 
mouse models of pneumonia or meningitis (24, 26), but its role during infection has not 
been investigated and could be relevant for other bacterial pathogens that contain fhs 
(41).

Previously we have used S. pneumoniae Δfhs and ΔproABC strains as live-attenuated S. 
pneumoniae vaccines, demonstrating their potential clinical utility (42, 43). In this study, 
we have characterized S. pneumoniae ∆proABC and ∆fhs strain phenotypes in detail to 
determine the roles of proline synthesis and the one-carbon metabolism pathway during 
disease pathogenesis.

RESULTS

Bioinformatic analysis of fhs and proABC

Analyzing 20,924 pneumococcal genomes demonstrated that the fhs and proABC genes 
were highly conserved; all four genes were present in almost all genomes. The excep­
tions were proA and proC, which were absent in one serotype 6A strain (GPS_NP_6691). 
Mean nucleotide similarity across S. pneumoniae strains was 99.4%, 98.6%, 96.2%, and 
99.9%, respectively, for proB, proA, proC, and fhs. The amino acid identity of S. pneumo­
niae TIGR4 ProA, ProB, and ProC predicted proteins was 48%, 42%, and 28% to Bacillus 
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subtilis (strain 168) and 46%, 38%, and 40% to Escherichia coli (strain K12) ProA, ProB, 
and ProC (44). The predicted amino acid sequence of S. pneumoniae Fhs contains the 
described active sites, including the ATP-binding domain (PTPAGEGKXT, X is S or T), 
a glycine-rich nucleotide binding consensus sequence, and folate (Trp412, Phe 385), 
para-aminobenzoic acid (Pro385, Leu408), or THF (95–103 EPSLGPX2G, aspartate at 
residue 29) binding residues (36, 45–47). PSI-blast based secondary structure prediction 
(PSIPRED) analysis (48) indicated that Fhs is intracellular. Mutants containing complete 
deletion of proABC or fhs were constructed in the serotype 6B strain BHN418 using 
overlap extension PCR and transferred to the capsular serotype 2 D39 strain using 
transformation with genomic DNA (Fig. S1). A ∆fhs + fhs 6B serotype complemented 
mutant was constructed by insertion of fhs into a neutral genome site using the 
integration vector pPEPY (49). The ΔproABC strain was not genetically complemented 
as the in vitro phenotype was linked to proline directly using growth supplementation 
(see below).

∆proABC and ∆fhs strain in vivo phenotypes

The BHN418 ΔproABC and Δfhs strains had similar invasive infection phenotypes to Δcps, 
failing to disseminate from the lungs to the blood (Fig. 1A) and with non-significant 
reductions in lung CFU in a pneumonia model (Fig. 1B) and showing large reductions in 
blood or spleen CFU in the sepsis model (Fig. 2A and B). Genetic complementation of 
BHN418 Δfhs with fhs restored virulence in both pneumonia and sepsis models (Fig. 1C 
and D; Fig. 2C and D), confirming the virulence defect was due to deletion of fhs. The D39 
Δfhs had a similar virulence phenotype to BHN418 Δfhs in pneumonia (Fig. 1E and F) and 
sepsis models (Fig. 2E and F), and D39 ΔproABC strain had a similar phenotype to BHN418 
ΔproABC in the pneumonia model (Fig. 1E and F). However, in the sepsis model, the D39 
ΔproABC strain remained partially virulent with statistically non-significant reductions in 
blood and spleen CFU (Fig. 2E and F). In contrast to sepsis and pneumonia models and 
unlike Δcps, the BHN418 ΔproABC and Δfhs maintained nasopharyngeal colonization at 
similar levels to wild type at 7 days (Fig. 1G), and 12 days post-colonization still colonized 
the nasopharynx, although with reduced nasal wash CFU compared to wild type (Fig. 
1H). To confirm the differences in target organ CFU-altered disease lethality, pneumonia 
development was monitored for 7 days after infection with BHN418 ΔproABC or Δfhs 
strains. Furthermore, 50% of the mice inoculated with wild-type 6B or the complemented 
∆fhs mutant developed fatal infection (Fig. 2G), while 90% and 100% of mice infected 
with ∆proABC or Δfhs, respectively, survived. These data demonstrate that the loss of fhs 
has a profound effect on systemic virulence in both 6B and D39 backgrounds, whereas 
the effects on virulence of loss of proABC were partially strain dependent.

S. pneumoniae fhs and proABC were not required for immune evasion

Confocal microscopy provided no evidence that loss of proABC or Δfhs altered cell 
morphology or capsule thickness (Fig. S2A). Neither strain showed increased recognition 
by complement or antibody or reduced resistance to killing by human neutrophils (Fig. 
S2B through F). Furthermore, in a nematode infection model that reflects host toxicity 
caused by S. pneumoniae (50, 51), the Δfhs mutant strains killed Caenorhabditis elegans 
as rapidly as the wild type (Fig. S2G and H). The ΔproABC mutant showed some delay in 
killing, with 100% of the worms killed only after 24 hours (Fig. S2H). Overall, these data 
indicate the reduced virulence of the ΔproABC and Δfhs mutant strains was not related to 
increased susceptibility to immune effectors.

Growth of ∆proABC and ∆fhs in media and under stress conditions

In rich media (Todd-Hewitt broth [THY]), BHN418 ∆proABC and ∆fhs had identical growth 
to wild type. Induction of osmotic or oxidative stress by addition of NaCl or paraquat 
impaired growth of the ∆proABC strain (Fig. 3A and B) (44, 52, 53) but did not consistently 
affect ∆fhs growth (Fig. 3E and F). Cation depletion slightly impaired the growth of both 
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FIG 1 Virulence of the Δfhs and ΔproABC mutant strains in pneumonia and colonization models. Log10 

mL−1 bacteria CFU recovered from blood (A, C, E) and lung (B, D, F) of 5-week-old CD-1 mice 18 hours 

post-intranasal inoculation with 1 × 107 CFU of the wild-type 6B or D39 and mutant strains ∆proABC and 

∆fhs. Each symbol represents CFU data from a single mouse, horizontal bars represent median values, 

error bars represent interquartile range, and asterisks represent statistical significance compared to the 

wild-type strain (Kruskal-Wallis with Dunn’s post hoc test to identify significant differences between

(Continued on next page)
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∆proABC and ∆fhs (Fig. 3C and G). Under conditions with restricted nutrient availability 
(growth in chemically defined medium, CDM), both ∆proABC and ∆fhs had severe growth 
defects compared to wild type (Fig. 3D and H). ∆proABC growth in CDM was restored 
by adding 1 mg mL−1 proline (Fig. 3D) but not by proline-containing peptides imported 
by AliA and AliB or an eight-proline residue oligopeptide (54) (Fig. S3A through C), 
indicating environmental proline compensated for loss of proline synthesis through 
proline-specific rather than oligopeptide transporters. Despite the probable role of Fhs 
in purine synthesis, the addition of purine, adenine, formate, or glycine (known to 
compensate for poor growth of E. coli ΔfolD/p-fhs) (39) did not restore ∆fhs growth in 
CDM (Fig. 3H, data not shown).

Poor growth of Δfhs and ΔproABC in physiological fluids

The above experiments suggested poor growth in host physiological conditions could 
cause the reduced virulence of Δfhs and ΔproABC. Hence, their growth was compared 
to wild type in ex vivo 100% human sera or cerebrospinal fluid (CSF). The BHN418 
ΔproABC mutant was markedly attenuated in growth in sera and CSF (Fig. 4A and 
B), with growth improved by proline supplementation (Fig. 4A and B). Δfhs also had 
markedly impaired growth in sera and CSF, which was partially restored for the Δfhs + 
fhs complemented strain (Fig. 4C and D) or (in sera) by supplementation with purine 
(Fig. 4E). In a laboratory medium that mimics fluid nasal (55), only the Δfhs mutant had 
reduced growth compared to wild type (Fig. 4F). When incubated in serum, both mutant 
strains showed increased chain formation and variable bacterial cell sizes compared to 
the wild type (Fig. 5). To assess the potential effects of strain background, the growth 
of D39 ∆fhs and ΔproABC in serum was investigated. Similar to BHN418 ∆fhs, D39 ∆fhs 
had severely impaired growth in serum (Fig. 4G). In contrast, serum could sustain growth 
of D39 ΔproABC (although still impaired compared to wild type), a result compatible 
with this strain’s maintained ability to cause septicemia in mice. Overall, these data link 
impaired systemic virulence of the BHN418 and D39 ∆fhs and BHN418 ΔproABC strains 
to poor replication in serum and a strain-dependent role for proline synthesis during S. 
pneumoniae pathogenesis.

RNAseq in THY

To characterize how S. pneumoniae adaptations to growth under physiological condi­
tions were affected by the ΔproABC and Δfhs mutations, RNAseq was performed on 
BHN418 wild-type, ΔproABC, and Δfhs 6B incubated in 100% human serum or THY 
for 60 min. Principal component analysis showed clear separation of serum RNAseq 
data between strains (Fig. S4), with 90% of the variability from the first two principal 
components (PC) and 66% from PC1. Selected operons showing changes in expression 
in serum compared to THY for the wild-type strain are shown in Table 1 and Table S2. In 
THY, the ΔproABC and Δfhs mutant strains showed increased or decreased expression of 
a similar number of genes compared to the wild-type strain (Fig. 6A and D). Differences 
in the ΔproABC transcriptome in THY to wild type were dominated by genes involved in 
carbohydrate utilization and biosynthesis (Fig. 6B; Table S3) (56), whereas the ∆fhs strain 
showed upregulation of operons affecting multiple biochemical functions, including 
amino acid metabolism and synthesis, iron uptake, and other aspects of metabolism (Fig. 
6E; Table S3). In THY, both Δfhs and ΔproABC upregulated fatty acid synthesis genes and 
downregulated genes encoding the chaperon proteins GroEL, DnaJK, and the chaperon 
regulator HrcA (Fig. 6B and E). These data show that despite maintaining growth in THY, 

Fig 1 (Continued)

groups, *P < 0.05; **P < 0.01). (G and H) Colonization model; CFU in nasal washes of CD1 mice 7 (G) or 

12 days (H) post-colonization with 1 × 107  CFU of wild-type 6B or single-mutant S. pneumoniae strains. 

The lower limit of detection reported was 50 CFU mL−1; therefore, any values below this threshold are 

represented as zero.
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FIG 2 Virulence of the Δfhs and ΔproABC mutant strains in a sepsis model and survival analysis of CD-1 

mice during pneumococcal pneumonia. Log10 mL−1 bacteria CFU recovered from blood (A, C, E) and 

spleen (B, D, F) of 5-week-old CD-1 mice 24 hours post-intraperitoneal inoculation with 5 × 106 CFU of the 

wild-type (6B or D39) or mutant strains ∆proABC, ∆fhs, and the fhs complemented mutant strain ∆fhs + 

fhs. Each symbol represents CFU data from a single mouse, horizontal bars represent median values, error 

bars represent interquartile range, and asterisks represent statistical significance compared to the

(Continued on next page)
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the ∆proABC and ∆fhs strains had significant changes in gene expression likely to reflect 
bacterial adaptation to the loss of biochemical functions related to each mutation.

Marked disruption of gene expression by the ΔproABC and Δfhs strains in 
serum

When cultured in serum, there was a marked increase in genes showing increased 
expression compared to wild type for both ∆proABC (133 in serum vs 36 in THY) and 
∆fhs (116 in serum vs 51 in THY) (Fig. 6A and D), demonstrating the mutants under­
went major compensatory gene expression changes under infection-related conditions. 
In serum ΔproABC, increased expression of 10 operons involved in sugar uptake and 
metabolism and 4 operons containing genes of unknown function (Fig. 6C; Table 2; 
Table S4). In contrast, in sera ∆fhs, upregulated operons involved in amino acid uptake 
or biosynthesis, teichoic acid and coenzyme A biosynthesis, and competence (Fig. 6F; 
Table 2; Table S4). Genes showing increased expression in serum for both ΔproABC and 
∆fhs included ply (encodes pneumolysin), fatty acid and purine biosynthesis operons, 
and bacteriocin systems. Which pathways were enriched among the upregulated genes 
were identified using the KEGG biological pathway annotations for S. pneumoniae strain 
SP670-6B and over-representation analysis (57). ΔproABC showed significant enrichment 
for fatty acid biosynthesis, galactose metabolism, PTS systems, and amino acid and sugar 
metabolism pathways (Fig. 6G). The ∆fhs strain showed enriched expression of genes 
from multiple metabolic pathways, including biosynthesis of secondary metabolites, 
competence, and purine, pyruvate, propanoate, amino acid, and sugar metabolism (Fig. 
6H). To provide a more detailed analysis, expression of all genes within six pathways 
selected from the above results was analyzed (Fig. S5). In THY, the ∆proABC and the ∆fhs 
strains had increased gene expression for two (Fig. S5C and F) and none, respectively, of 
the six pathways assessed. In contrast, in serum, both mutant strains showed significant 
increases in gene expression for all six pathways. This result further demonstrates that 
culture in serum triggered multiple compensatory metabolic responses by ∆proABC (Fig. 
S5A through F) and ∆fhs (Fig. S5G through L), which partially differed between the two 
strains, reflecting the specific roles of fhs or proABC for S. pneumoniae physiology during 
systemic infection.

Metabolomic analysis of ΔproABC and Δfhs

To further explore the role of ProABC and Fhs for S. pneumoniae metabolism and during 
growth in sera, a metabolomic analysis was performed for BHN418 and D39 wild-type, 
ΔproABC and Δfhs strains incubated in THY or sera. Initially, we assessed the stringent 
response by incubating bacteria with mupirocin and measuring levels of the alarmones 
pGpp, ppGpp, and pppGpp. In THY, both the BHN418 and D39 Δfhs had reduced levels 
of pGpp compared to wild type, indicating a potentially impaired stringent response (Fig. 
7A and B). In contrast, the BHN418 ΔproABC (but not D39 ΔproABC) had increased levels 
of pGpp and ppGpp, indicating an exaggerated stringent response. Significant artifact 
effects on alarmone levels prevented measuring the stringent response in serum (data 
not shown). Unexpectedly, there were only small differences in intracellular concentra­
tions of proline and other amino acids between the corresponding wild type and 
BHN418 or D39 ΔproABC and Δfhs cultured in serum (Fig. 7C and D; Fig. S6). Instead, 
BHN418 ∆proABC (but not the D39 ΔproABC) had higher concentrations of intracellular 
2- and 3-phosphoglycerate and phosphoenolpyruvate (PEP) (Fig. 7E and F), compatible 

Fig 2 (Continued)

wild-type strain (Kruskal-Wallis with Dunn’s post hoc test to identify significant differences between 

groups, *P < 0.05; **P < 0.01; *** P < 0.001). (G) Survival of 5-week-old CD-1 mice (n = 10) infected via 

intranasal inoculation with 1 × 107 CFU of the wild-type 6B or mutant strains monitored over a 7-day 

period. Survival curves were compared using the log rank (Mantel-Cox) test (*P < 0.05; **P < 0.01). 

The lower limit of detection reported was 50 CFU mL−1; therefore, any values below this threshold are 

represented as zero.
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FIG 3 Growth characterization of the ΔproABC and Δfhs mutant strains in stress media. Growth of wild-type 6B and 

ΔproABC strains in THY supplemented with (A) 50, 100, and 200 mM of NaCl, (B) 1 and 5 mM of paraquat, or (C) 200 μM 

of ethylenediamine-N,N′-diacetic acid (EDDA), or (D) in CDM media with and without proline supplementation (1 mg mL−1). 

Growth of wild-type 6B and Δfhs strains in THY broth supplemented with (E) 50, 100, and 200 mM of NaCl, (F) 1 and 5 mM 

of paraquat, or (G) 200 µM of EDDA, or (H) in CDM media with or without purine supplementation (1 mg mL−1). Growth in all 

conditions was assessed at 37°C and 5% CO2 every 30 min for a period of 24 hours by using a plate reader and measuring 

OD595.
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with impaired metabolism through the Krebs cycle or pentose phosphate pathway and 
with the RNAseq data, indicating that sugar metabolism was affected by loss of proABC. 
Intracellular phosphorylated uracil nucleotides involved in peptidoglycan synthesis were 
increased in both the BHN418 ∆proABC (UMP, UDP) and Δfhs (UDP) strains but not the 

FIG 4 Growth characterization of ∆proABC and ∆fhs mutant strains in biological fluids. Growth of wild-type 6B and ΔproABC 

mutant strains in (A) human serum or (B) human cerebrospinal fluid with or without proline supplementation (0.1 or 1 mg 

mL−1). Growth of wild-type 6B, Δfhs, and Δfhs + fhs in (C) human serum, (D) CSF, or (E) human serum supplemented with 

purine 1 mg mL−1. (F) Growth of wild-type 6B and mutant strains ∆proABC and Δfhs in nose-like media (main carbon source 

N-acetylglucosamine). (G) Growth of wild-type D39 and ΔproABC mutant strains in human serum. Growth in all conditions was 

assessed at 37°C and 5% CO2 every 30 min for a period of 24 hours by using a plate reader and measuring OD595.
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FIG 5 Light microscopy of wild-type 6B and ∆proABC and ∆fhs mutant strains. Bacteria were incubated in either (A, B, C) BHI 

media or (D, E, F) human sera (HS) for a period of 3 hours. The scale bar (bottom right) represents 10 µm. (G) Cell size measured 

from pole to pole in micrometers; diplococci without a clear septum were considered as a single cell. Fifty cells were counted 

in total for each condition from three independent biological experiments, using Fiji imageJ to measure cell sizes. (H) Average 

chain length. Each circle symbol represents a single chain measurement result, and error bars represent standard deviations. 

Differences were analyzed using two-way ANOVA, and multiple comparison of columns means (*P = 0.0332; **P = 0.0021; ***P 

= 0.0002; ****P < 0.0001).
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FIG 6 Transcriptome changes for wild-type 6B and ∆proABC and ∆fhs mutant strains in THY and human serum. (A) Total 

number of differentially expressed genes (DEGs, defined as a log2 fold change of >1.5 and false discovery rate [FDR] of <0.05 

genes) for ∆proABC compared to wild type. Volcano plots showing the individual profiles of DEGs for the ∆proABC strain grown 

in (B) THY or (C) human serum. (D) Total number of DEGs for ∆fhs compared to wild type in THY or human serum in THY or 

human serum. Volcano plots showing the individual profiles of DEGs for the ∆fhs strain grown in (E) THY or (F) human serum. 

Red dots represent DEGs upregulated by the mutant strains, and blue dots represent downregulated DEGs. Gray-colored dots 

are transcripts that did not meet logFC and FDR thresholds for DEGs. Short gene names of DEGs are annotated on the plot 

when available. Data are from three biological replicates. Pathway enrichment analysis for growth of mutants in human serum, 

compared to wild type. Pathways enriched among the upregulated genes for the (G) ∆proabc and (H) ∆fhs mutant strains 

cultured in serum identified using the KEGG database biological pathway annotations for the S. pneumoniae strain SP670-6B 

and over-representation analysis.
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FIG 7 Metabolomic analyses of wild-type strains BHN418 and D39 compared to ∆proABC, ∆fhs, and ∆fhs + fhs mutant strains. Intracellular levels of metabolic 

components were measured after 1 hour incubation in THY (A and B) or human serum (C–I) and represented as relative normalized abundances. Intracellular 

levels of the alarmones pGpp, ppGpp, and pppGpp in response to the addition of mupirocin in (A) BHN418 and (B) D39. (C and D) Selected intracellular amino

(Continued on next page)
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D39 ∆proABC (Fig. 7G and H), indicating this metabolic effect could be affecting 
differences in serum growth and morphology phenotypes between BHN418 and D39 
∆proABC (Fig. 4 and 5). In sera, both the BHN418 ∆proABC and Δfhs had raised intracellu­
lar oxidized glutathione, indicating they were under increased oxidative stress (Fig. 7I). 
Lastly, compatible with upregulation of the fatty acid synthesis operon, there was a 
significant shift in fatty acid mix for BHN418 ∆proABC and Δfhs (Fig. 8) from a mixture of 
di-saturated and mono- and di-unsaturated phosphatidylglycerol (PtdGro) species with 
predominant peaks of 28, 30, 32, and 34 total carbons for wild type to mostly mono- and 
di-unsaturated PtdGro species with an increase in the 36 total carbon peaks and a 
decrease in 28, 30, and 32 total carbon peaks.

DISCUSSION

We have investigated S. pneumoniae fhs and proABC, which are predicted to be important 
for different key aspects of bacterial metabolism, and shown both the BHN418 Δfhs 
and ΔproABC 6B strains were severely attenuated in virulence in mouse models to a 
similar level as the unencapsulated mutant. In vitro characterization demonstrated poor 
growth of the BHN418 Δfhs and ΔproABC strains in serum or CSF, phenotypes that 
will largely prevent S. pneumoniae from causing septicemia or meningitis, respectively, 
thereby explaining the loss virulence. Culture under specific stress conditions identified 
the ΔproABC but not Δfhs had increased sensitivity to osmotic and oxidative stress. 
Furthermore, we demonstrated there were major differences between the ΔproABC and 
Δfhs strains in their RNAseq and metabolomics response to culture in serum, represent­
ing different defects in metabolic pathways relevant for growth in serum.

The amino acid proline can be synthesized from glutamate or acquired from the 
environment (58, 59). The BHN418 ∆proABC strain only grew in CDM (contains 0.1 mg/mL 
of proline) supplemented with 1 mg/mL proline, linking its growth defect to loss of 
proline synthesis and demonstrating a central role for proline synthesis for S. pneumoniae 
growth that can only be bypassed by high levels of environmental proline. S. pneumoniae 
has no known equivalent to the high-affinity proline transporters of Bacillus subtilis 
(opuE) (58, 59) or S. aureus (putP and proP) (60). Proline concentrations in human serum 
(0.002 mg/mL) are far lower than in CDM (61), explaining why the BHN418 ΔproABC 
mutant was unable to grow in serum or CSF without proline supplementation. Why 
proline supplementation with 0.1 mg/mL partially restored ΔproABC growth in serum, 
but not CDM, is not clear; possibly, serum and CSF provide some proline from peptide 
sources or have higher concentrations of other nutrients that compensate for loss 
of proline. As the metabolomic data are not quantitative, we cannot state what the 
concentration of intracellular proline was in S. pneumoniae. Unexpectedly, the metabolo­
mic data demonstrated that intracellular proline levels were not reduced in ΔproABC; 
potentially, the intracellular proline pool was maintained by restricting proline use for 
biosynthesis and secondary metabolism, thereby creating significant metabolic stress. 
We reasoned that genes showing increased expression by ΔproABC in serum represent 
compensatory metabolic pathways activated in response to loss of proline availability 
and, therefore, the metabolic stress placed on the organism by loss of proABC. Unexpect­
edly, these pathways were dominated by carbohydrate rather than amino acid uptake 
and metabolism genes, results which were reinforced by the metabolomic data showing 
significant increases in glycolytic pathway intermediates in BHN418 ΔproABC. These 
results suggest that proline deficiency adversely affects S. pneumoniae carbohydrate 
metabolism during growth in serum or CSF. Proline availability could also affect S. 
pneumoniae growth via its role in osmoregulation (29, 62–65), and the ΔproABC mutant 

Fig 7 (Continued)

acids, (E and F) tricarboxylic acid cycle components, (G and H) UMP and UDP nucleotides, and (I) markers of oxidative stress in BHN418 and D39 wild-type strains. 

Asterisks indicate significant differences between the wild-type and the mutant strains when assessed using two-way ANOVA (*P  <  0.05; **P  <  0.01; ***P  < 

0.001; ****P  <  0.0001).
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was indeed more sensitive to osmotic stress. In addition, loss of proline synthesis could 
impair synthesis of proline-rich virulence proteins, such as PspC and PspA (66, 67).

FIG 8 Fatty acid abundance for wild-type BHN418, ∆proABC, and ∆fhs strains in the presence of serum. 

Total abundance of saturated and unsaturated acyl chains as determined by LC/MS metabolomic for 

(A) BHN418, (B) ∆proABC, and (C) ∆fhs strains, showing an increase in fatty acid chain length (a shift to the 

right) for the mutant strains compared to wild type.
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Although fhs was identified by S. pneumoniae virulence screens (24, 26) and is 
required for Streptococcus suis infection (68), the role of Fhs during infection seems to 
be under-appreciated. S. pneumoniae growth in serum or CSF was totally dependent 
on fhs, demonstrating a central role for one-carbon metabolism (37, 41) for S. pneumo­
niae metabolism under physiological conditions. Several metabolic roles have been 
identified for Fhs in other bacteria, including anaerobic growth (39), purine synthesis 
(36), and folate homeostasis (41). Exogenous purines partially restored ∆fhs growth in 
serum, and ∆fhs upregulated purine pathways in serum. In addition, both D39 and 
BHN418 ∆fhs strains had impaired formation of alarmones in response to mupirocin. 
These data suggest S. pneumoniae purine metabolism and the stringent response are 
both dependent on Fhs. In addition, the RNAseq and metabolomic data indicated S. 
pneumoniae Fhs has multiple metabolic roles during growth in serum, with loss of fhs 
resulting in increased oxidative stress and altered lipid metabolism. Furthermore, the 
accumulation of UDP, increased expression of beta-lactam resistance genes, and changes 
in bacterial morphology in Δfhs indicated potential effects on peptidoglycan synthesis. 
In combination, these effects severely impaired growth in sera or CSF and rendered the 
∆fhs strain incapable of systemic virulence.

Despite the severe attenuation of the 6B Δfhs and ΔproABC strains during invasive 
infection, these strains were still able to persist in the nasopharynx, a phenotype we 
exploited to make live-attenuated S. pneumoniae vaccines (42, 43). Why the physiological 
conditions in the respiratory tract result in reduced dependence on proline synthesis 
and one-carbon metabolism for S. pneumoniae growth is not clear. This could reflect 
different carbohydrate sources, with the nasopharynx containing several alternative 
carbohydrates to glucose known to support S. pneumoniae growth (glucose) (69) or 
the more rapid replication by S. pneumoniae in blood (increasing from 0 CFU to 
approximately 104/mL within 24 hours). S. pneumoniae essential genes can be divided 
into universal, core-strain-specific, and accessory essential gene categories (37). fhs was 
described as a core-strain-specific essential gene, but we and others (24, 26) have shown 
fhs is non-essential for growth in rich media but essential for growth in blood, CSF, 
or CDM, further illustrating that gene essentiality is dependent on growth conditions. 
Unlike the BHN418 ΔproABC strain, the D39 ΔproABC strain could replicate in blood ex 
vivo and caused a reduced level of septicemia in the sepsis model, demonstrating that 
the ProABC role during S. pneumoniae invasive infection is strain dependent. The effects 
of ΔproABC mutation in BHN418 on carbohydrate metabolism and phosphorylated uracil 
nucleotides were largely absent in D39 ΔproABC, indicating these metabolic effects may 
underpin the differences in serum growth rates between these strains.

In conclusion, we have demonstrated that Fhs and therefore one-carbon metabolism 
have multiple effects on the metabolic pathways required for S. pneumoniae growth 
in human serum or CSF and therefore virulence, data that are potentially relevant 
for multiple other pathogens that contain Fhs. In addition, we have identified a strain-
dependent role for proline biosynthesis for S. pneumoniae virulence, showing that 
bacterial virulence genes can be divided into universal and core-strain-specific catego­
ries reflecting differences between strains in their growth requirements under physiolog­
ical conditions. These differences in metabolic function could also be one mechanism 
why different strains of S. pneumoniae (and other pathogens) vary in their virulence 
potential.

MATERIALS AND METHODS

Strains and growth conditions

Bacteria were cultured in Todd-Hewitt broth (Sigma) supplemented with 0.5% yeast 
extract (Sigma) in 5% CO2 at 37°C or in Columbia agar supplemented with 5% horse 
blood (CBA) (Oxoid). Bacteria were stored as 0.5 mL single-use aliquots in THY broth 
at −80°C with 15% glycerol (OD595 0.4–0.5). Plasmids and mutant strains were selected 
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using spectinomycin (Spec) 150 µg/mL or kanamycin (Kan) 250 µg/mL. S. pneumoniae 
growth in THY, CDM, 100% human sera, or cerebrospinal fluid was determined using 
a TECAN Spark plate reader (5 × 106 CFU/well in 200 µL volume measuring OD595). 
Stress conditions were generated by adding up to 5 mM paraquat (oxidative stress, 
Sigma-Aldrich), 200 µM ethylene diamine di-o-hydroxyphenylacetic (cation restriction, 
EDDA), or NaCl (increased osmolarity). When required, media were supplemented with 
proline, oligopeptides (pro8x PPPPPPPP, AliAPro FNEMQPIVDRQPPPP, AliBPro AIQSE­
KARKHNPPPP) (54), or purines, adenine, and/or glycine.

Construction of mutant S. pneumoniae strains

Plasmids and primers are described in Table S1. Mutant strains were constructed by 
overlap extension PCR as described (70), replacing the target gene with Spec or Kan 
cassette (71–73). Gene deletions were confirmed by PCR and sequencing. Mutation 
stability was confirmed by multiples rounds of growth in THY without antibiotics then 
plating onto blood agar plates with and without antibiotics (data not shown). The Δfhs 
strain was complemented by ectopic insertion of fhs using the promoterless integrative 
plasmid pPEPY (gift from Jan-Willem Veening) (Addgene plasmid # 122633) (49).

Mouse infection models

Mouse infection experimental procedures were approved by the local ethical review 
process and performed according to UK national guidelines under the UK Home Office 
project license PPL70/6510. Outbred CD1 female mice (Charles River Breeders) 4–6 
weeks old were infected with S. pneumoniae by intraperitoneal injection (5 × 106 CFU 
in 100 µL, sepsis model), or by intranasal inoculation under isoflurane anesthesia for the 
pneumonia (1 × 107 CFU bacteria in 50 µL) or nasopharyngeal colonization (1 × 107 CFU 
bacteria in 10 µL) models. Target organs (nasal washes, lung and spleen homogenates, 
or blood) were recovered at pre-specified time points, and CFU concentrations calculated 
by plating serial dilutions onto blood agar plates (14, 74).

Microscopy

Bacterial cultures grown to OD595 0.2–0.3 were incubated with 1/500 dilution of serotype 
6 antiserum (Statens Serum Institute, Denmark), then 1/500 dilution of an anti-rabbit 
Alexa Fluor 546 antibody (Abcam, UK) (75), and 1/10,000 dilution of DAPI (Biolegend, 
San Diego, CA, USA). For light microscopy, strain stocks grown in BHI were resuspended 
in 100% human serum or BHI and cultured for 3 hours, washed, and viewed using a 
compact confocal laser scanning microscope Zeiss LSM 800 with a 100× objective.

Flow cytometry C3b, IgG, and phosphocholine binding and neutrophil killing 
assays

Binding of complement C3b/iC3b or IgG in human sera to live S. pneumoniae was 
detected by flow cytometry as previously described (76). Killing assays using fresh 
human neutrophils at an MOI of 1:100 and 25% baby rabbit complement (BioRad) were 
performed as previously described (70), using plating onto blood agar plates to calculate 
surviving CFU.

Serum and CSF sources

Human serum from healthy volunteers unvaccinated against S. pneumoniae was 
obtained after obtaining informed consent according to institutional guidelines and 
stored as single-use aliquots at −80°C. CSF obtained from normal pressure hydrocepha­
lus patients was a kind gift from Diederik van de Beek at UMC, The Netherlands.
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Genome and RNA methods

SP_0931, SP_0932, SP_0933, and SP_1229 conservation among 20,924 pneumococcal 
genomes in the GPS database was detected using Abricate (version 0.8), using bowite2 
version 2.5.3 to calculate coverage (defined as ≥80% identity to the reference genes). 
For RNAseq, triplicate S. pneumoniae OD595 of 0.4–0.5 THY cultures was centrifuged 
and resuspended in 100% fresh human sera or THY for 60 min, before centrifugation 
and resuspension in RNAprotect (Qiagen). RNA was extracted using Mirvana RNA Kit 
(Applied biosystems) with an additional lysis step using vigorous shaking with 0.1 mm 
glass beads (MP Biomedicals), then treated with Turbo DNAse (Applied biosystems). 
Ribosomal RNA was removed using MICROBExpress (Thermo scientific), and 100 ng was 
used to construct libraries using the KAPA RNA HyperPrep Kit (Roche Diagnostics, eight 
amplification cycles), which were single-end sequenced using the NextSeq 500 desktop 
sequencer (Illumina) and a 75-cycle High-Output Kit (UCL Pathogen Genomics Unit). 
Raw FASTQ reads were checked by FastQC v0.11.5, Babraham Bioinformatics, UK (77), 
visualized using multiQC v1.9 (78), trimmed using Trimmomatic v0.39 (79), checked by 
FastQC and multiQC before mapping to the KEGG annotated S. pneumoniae serotype 
6B genome sequence (670-6B, accession: CP002176.1) using bowtie2 v2.4.4 with default 
settings (80). Conversion into BAM files was performed using SAMtools (81). Mapped 
reads were visualized in the Integrated Genome Browser (82). FeatureCounts v2.0.0 
summarized read counts for each annotated feature in multimapping mode (-M) (83). 
The generated count matrix was imported into R-studio (R v3.4.2), normalized, and 
differential gene expression analyzed using DESeq2 (84) using log-transformed data for 
heatmaps and clustering. Differential gene expression was performed on raw counts, 
using a log2 fold change >1.5 and false discovery rate of <0.05 to categorize differentially 
expressed genes. KEGG pathway enrichment and module analysis were performed in R 
studio using clusterProfiler (85).

Lipid mass spectrometry and metabolomics analyses

Strains were grown in THY to an OD620 0.5, centrifuged, and washed twice with 
PBS before resuspension in human serum at 37°C for 1 hour. Mass spectrometry was 
performed as described previously (86, 87), with the lipids extracted from washed cells 
using the Bligh and Dyer method, resuspended in chloroform:methanol (1:1). PtdGro 
were analyzed using a Shimadzu Prominence Ultra-Fast Liquid Chromatograph (UFLC) 
attached to a QTrap 4500 operated in the Q1 negative mode and equipped with a 
Turbo V ion source (Sciex). Samples were injected onto an Acquity UPLC BEH HILIC, 
1.7 µm, 2.1 × 150 mm column (Waters) at 45°C with a flow rate of 0.2 mL/min. Solvent 
A was acetonitrile, and solvent B was 15 mM ammonium formate. The HPLC program 
was starting solvent mixture 96% A/4% B, 0–2-min isocratic with 4% B; 2–20-min 
linear gradient to 80% B; 20–23-min isocratic with 80% B; 23–25-min linear gradient 
to 4% B; 25–30-min isocratic with 4% B. Ion source parameters were ion spray voltage, 
−4,500 V; curtain gas, 25 psi; temperature, 350°C; ion source gas 1, 40 psi; ion source 
gas 2, 60 psi; and declustering potential, −40 V. The system was controlled, and data 
analyzed by the Analyst software (Sciex). For metabolomic analyses, cell pellets were 
resuspended in 80% methanol containing 0.5 µM warfarin, incubated at −80°C for 1 hour, 
centrifuged, and the supernatant removed to a new glass tube and dried overnight 
using a Savant SP1010 SpeedVac. Metabolites were resuspended in 80% methanol and 
analyzed using UFLC as described above. Samples were injected into an XSelect HSS 
C18column (2.5 µm pore size, 3.0 by 150 mm) using a flow rate of 0.3 mL/min. Solvent 
A contained 100 mM ammonium formate (pH 5.0), 2% acetonitrile, and 0.1% t-butanol. 
Solvent B was composed of 95% acetonitrile, 50 mM ammonium formate (pH 6.3), and 
0.1% t-butanol. The HPLC program was starting solvent mixture 0% solvent B, 0–2-min 
isocratic with 0% solvent B; 2–12-min linear gradient to 5% solvent B; 12–17-min linear 
gradient to 90% solvent B; 17–25-min isocratic with 90% solvent B; 25–27-min linear 
gradient to 0% solvent B; 27–30-min isocratic with 0% solvent B. The Sciex QTrap 4500 
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system was operated in positive (ion spray voltage, 5,500 V; curtain gas pressure, 20 
psi; temperature, 400°C; collision gas setting, high; ion source gas 1 pressure, 25 psi; ion 
source gas 2 pressure, 40 psi) or negative (ion spray voltage 4,500 V; curtain gas pressure, 
40 psi; temperature, 500°C; collision gas setting, high; ion source gas 1 pressure, 50 
psi; ion source gas two pressure, 50 psi) mode, depending on the metabolite analyzed. 
The system was controlled by the Analyst software and analyzed with MultiQuant 3.0.2 
software (Sciex, Inc.). Metabolites were quantified as normalized abundance to warfarin.

Statistical analysis

Statistical analyses were performed using GraphPad Prism 8 (GraphPad Software, La Jolla, 
CA, USA) or R (R v3.4.2). Quantitative results are expressed as median and interquartile 
range for animal experiments and analyzed using the Kruskal-Wallis non-parametric test. 
Dunn’s multiple comparisons test was used for post hoc analysis. P‐values <0.05 (95% 
confidence) were considered statistically significant.
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