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ABSTRACT
Introduction  Tsetse flies (Glossina) transmit Trypanosoma 
brucei gambiense, which causes gambiense human 
African trypanosomiasis (gHAT). As part of national efforts 
to eliminate gHAT as a public health problem, Uganda 
implemented a large-scale programme of deploying Tiny 
Targets, which comprise panels of insecticide-treated 
material which attract and kill tsetse. At its peak, the 
programme was the largest tsetse control operation in 
Africa. Here, we quantify the impact of Tiny Targets and 
environmental changes on the spatial and temporal 
patterns of tsetse abundance across North-Western 
Uganda.
Methods  We leverage a 100-month longitudinal dataset 
detailing Glossina fuscipes fuscipes catches from 
monitoring traps between October 2010 and December 
2019 within seven districts in North-Western Uganda. We 
fitted a boosted regression tree (BRT) model assessing 
environmental suitability, which was used alongside 
Tiny Target data to fit a spatiotemporal geostatistical 
model predicting tsetse abundance across our study 
area (~16 000 km2). We used the spatiotemporal model 
to quantify the impact of Tiny Targets and environmental 
changes on the distribution of tsetse, alongside metrics of 
uncertainty.
Results  Environmental suitability across the study area 
remained relatively constant over time, with suitability 
being driven largely by elevation and distance to rivers. 
By performing a counterfactual analysis using the fitted 
spatiotemporal geostatistical model, we show that 
deployment of Tiny Targets across an area of 4000 km2 
reduced the overall abundance of tsetse to low levels 
(median daily catch=1.1 tsetse/trap, IQR=0.85–1.28). No 
spatial–temporal locations had high (>10 tsetse/trap/day) 
numbers of tsetse compared with 18% of locations for the 
counterfactual.
Conclusions  In Uganda, Tiny Targets reduced the 
abundance of G. f. fuscipes and maintained tsetse 
populations at low levels. Our model represents the first 
spatiotemporal geostatistical model investigating the 
effects of a national tsetse control programme. The outputs 
provide important data for informing next steps for vector 
control and surveillance.

BACKGROUND
Human African trypanosomiasis (HAT), 
commonly called sleeping sickness, is caused 
by subspecies of Trypanosoma brucei transmitted 
by tsetse flies (Glossina). In West and Central 
Africa, gambiense HAT (gHAT) is caused by 
T. b. gambiense transmitted by riverine species 
of tsetse (eg, G. palpalis palpalis, G. fuscipes). 
In East and Southern Africa, T. b. rhodesiense 
transmitted by savanna species of tsetse (eg, 
G. morsitans morsitans, G. pallidipes) causes 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Small panels of insecticide-treated fabric, called 
Tiny Targets, are used to attract and kill riverine tse-
tse, the vectors of Trypanosoma brucei gambiense, 
which causes gambiense human African trypanoso-
miasis (gHAT). In large-scale (250–2000 km2) trials 
conducted in five countries, deployment of Tiny 
Targets reduced the densities of tsetse by between 
60% and >90%.

WHAT THIS STUDY ADDS
	⇒ We report an analysis of, and data from, a large-scale 
(~4000 km2) national tsetse control programme, im-
plemented in Uganda to eliminate gHAT as a public 
health problem. We found that Tiny Targets reduced 
tsetse abundance across the study period (2011–
2019) and maintained densities at low (<1 tsetse/
trap/day) levels. We produce maps that detail spatial 
variations in tsetse abundance in response to vector 
control.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ In 2022, Uganda received validation from the WHO 
that it had eliminated gHAT as a public health prob-
lem. The large-scale deployment of Tiny Targets 
contributed to this achievement. Our findings sug-
gest that Tiny Targets are an important intervention 
for eliminating gHAT in other countries.
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rhodesiense HAT (rHAT). Both diseases are fatal without 
medical intervention. Uganda is the only country where 
both forms of HAT occur.1

The last major epidemic of HAT in Uganda occurred 
in the last~20 years of the 20th century when political 
and economic upheavals disrupted national control 
programmes. Between 1990 and 1999, Uganda reported 
an average of 1384 cases/year (range: 971–2066) of 
gHAT and 516 cases/year (178–1417) of rHAT.2 Since 
then, numbers of both forms of HAT have declined. In 
the last 5 years for which data are available (2018–2022), 
there have been a total of four cases of gHAT and 13 
cases of rHAT reported in Uganda. The dramatic decline 
in gHAT has been achieved through mass screening and 
treatment of human cases supported by the deployment 
of Tiny Targets to control tsetse.3 For rHAT, the decline 
has been achieved through mass treatment of cattle with 
trypanocides and insecticides because Ugandan cattle are 
important reservoir hosts for T. b. rhodesiense4 and cattle 
form the main source of a tsetse’s diet.

The achievements of Uganda over the past 20 years are 
part of a larger continental effort, led by the WHO, to 
eliminate gHAT as a public health problem by 2020 and 
eliminate transmission by 2030. Uganda’s achievement of 
the first goal was ratified by the WHO in May 2022.5 The 
second goal is defined as the ‘reduction to zero of the 
incidence of infection in a defined geographical area, 
with minimal risk of reintroduction, as a result of delib-
erate efforts’; this target will involve 15 endemic coun-
tries by 2030.6

For the last decade, deployment of Tiny Targets has 
formed an important part of Uganda’s strategy to control 
gHAT. Tiny Targets are small panels composed of blue 
cloth (25×25 cm) flanked by a panel (25×25 cm) of black 
netting. The cloth and netting are impregnated with 
insecticide; tsetse are attracted visually to the target and 
die on contacting.7 In Uganda, Tiny Targets are deployed 
at a density of 20 targets per linear kilometre along the 
rivers and streams where riverine tsetse concentrate. This 
intervention reduces the density of tsetse populations by 
60%–99%.7–11 Epidemiological models12 13 and empirical 
evidence10 11 14 suggest that this reduction is sufficient 
to interrupt transmission. The very first trials of Tiny 
Targets were carried out in Uganda in 20117 and from an 
initial trial covering ~250 km2 the intervention grew to an 
operation of ~4000 km2 across seven districts. At its peak, 
Uganda was implementing the largest national tsetse 
control operation in Africa. Tiny Targets are also making 
important contributions to the elimination of gHAT in 
Côte d’Ivoire,9 Chad,10 Democratic Republic of Congo 
(DRC)15 and Guinea.11

The large-scale deployment of Tiny Targets in Uganda 
has been accompanied by an extensive monitoring 
programme comprising a network of entomological 
sentinel sites, where pyramidal tsetse traps are used 
to quantify the abundance of tsetse before and after 
targets were deployed.7 8 This monitoring programme 
has produced a decade of data on the distribution and 

abundance of tsetse in and near the places where Tiny 
Targets have been deployed in North-West Uganda.

Prior analyses of the impact of targets in Uganda7 8 and 
elsewhere9–11 15 have shown that the reductions in density 
varied between 55% and >99%. The causes of this varia-
tion are unknown, but we hypothesise that the differences 
are due, in part, to underlying environmental factors. 
Previous estimates compared catches from individual sites 
before and after an intervention and could not consider 
what happened in places where we did not sample. The 
spatial and temporal scale of the monitoring data accom-
panying control operations in Uganda provides a unique 
opportunity to quantify the impact of a large-scale tsetse 
control programme and assess the relative contributions 
of Tiny Targets and environmental factors to the reduc-
tion in tsetse abundance throughout Uganda, in areas 
which were not measured empirically. To do this, we first 
developed temporally varying estimates of tsetse habitat 
suitability within North-Western Uganda, using prein-
tervention entomological survey data, remotely sensed 
environmental data and a species distribution model 
(SDM). Suitability outputs were then combined with 
data from subsequent postintervention surveys to quan-
tify the impact of both environmental change and vector 
control on the abundance of Glossina fuscipes fuscipes, the 
main g-HAT vector in Uganda, through a spatiotemporal 
geostatistical modelling approach.

METHODS
Patient and public involvement
No patients were involved in this study.

Study area
Trapping was performed to quantify the impact of Tiny 
Targets on the abundance of tsetse.7 16 Between October 
2010 and December 2019, pyramidal traps17 were 
deployed within seven districts in North-Western Uganda 
to monitor the abundance of G. f. fuscipes.7 18 Traps were 
deployed for 1–4 consecutive days (median 2 days), 
with tsetse collected and counted at 24-hour inter-
vals.7 19 Monitoring and control activities were scaled-up 
in phases according to need and available funding. 
Therefore, initial deployment of traps and targets varied 
between and within districts. The year in which interven-
tion was initiated in each district is displayed in figure 1, 
using watersheds as a nominal metric of coverage14—
further detail regarding survey dates and distribution are 
provided within online supplemental methods.

Identification of intervention areas
Tiny Targets are deployed along riverbanks within the 
intervention area two times per year. They are deployed 
at 100 m intervals along each bank, that is, 20 targets 
per kilometre of river, with their location recorded 
using global positioning systems (GPSs). We generated a 
30×30 m resolution grid for the entire study area and the 
distance from the centre of each grid cell to the nearest 
Tiny Target was calculated per deployment period. 
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We assumed that targets were effective for 6 months 
following their deployment (online supplemental table 
1) based on other work.7 These distance surfaces were 
used to produce a categorical variable classifying each 
gridded pixel as (1) within 500 m of a target, (2) >500 m 
but <5000 m or (3) >5000 m from a target.15 Henceforth, 
the three categories are termed inside, edge and outside, 
respectively.

Tsetse data for model
Geographic locations of monitoring traps were recorded 
using GPSs alongside additional variables outlined in 
online supplemental table 2. From collected records, 
we produced two separate datasets: one for use in an 
SDM predicting habitat suitability and another for use 
in a geostatistical spatiotemporal modelling framework 
predicting tsetse abundance over time. The main differ-
ences between the data requirements for the two models 
were that the spatiotemporal geostatistical model was 
fitted to count data of tsetse from all traps, and the SDM 
used presence–absence data with observations being 
limited to traps considered to be unaffected by the inter-
vention, that is, operated before any intervention or 
≥5 km from a Tiny Target. As the geographical extent of 
the intervention increased, some traps classed initially 
as being ‘non-intervention’ transitioned to an ‘interven-
tion’ status.

Assembling explanatory variables
Gridded surfaces for temperature, elevation and vege-
tation were assembled for the seven districts (extent 
shown in figure  1, covariates summarised in table  1). 
These variables have been shown previously to influence 
the distribution of tsetse.20–24 Covariates were generated 
from remotely sensed satellite imagery collected at a 
spatial resolution of 30×30 m during the dry season—
December–February. Cloud coverage and clear scene 
availability affected our capability to collate imagery for 
other times of year. Where available, temporally varying 
covariates were collated annually. Non-temporally varying 
covariates (elevation, distance to rivers, slope) were 
included as synoptic surfaces (table  1). To account for 
tsetse dispersal,25 a buffer with a radius of 150 m was used 
to produce a smoothed mean covariate derived from 
averaging all 30 m cells across 300 m of the true sample 
location. An overview of the covariate production process 
is provided in the online supplemental methods.

Species distribution model (SDM)
To estimate tsetse densities in locations where no sampling 
was performed, we produced annual estimates of habitat 
suitability using a presence–absence SDM. SDMs predict 
the distribution of a species across a landscape26 by 
combining information on species occurrence with envi-
ronmental variables (covariates) at the same location.27 

Figure 1  Districts within North-Western Uganda in which tsetse monitoring was performed, alongside watersheds controlled 
by Tiny Targets. The seven districts which form the basis of this analysis cover a total of ~16 419 km2, combined coverage of 
intervention areas is ~4000 km2. Colours represent the years in which the Tiny Target intervention was first rolled out within 
each district, constructed using data from Bessell et al.14 Targets were replaced every 6 months. Map produced using QGIS 
V.3.16.5.62
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Using the species occurrence dataset and covariates 
detailed above, we constructed a presence–absence BRT 
model using the ‘caret’ package within R (V.3.5.1).28 29

BRTs are a machine learning algorithm, which combine 
both regression trees and boosting (iteratively combining 
a group of simple models) to build a linear combination 
of many trees30 and have been used to predict the distri-
butions of a number of diseases and disease vectors.15 31–33 
The BRT method models a suitability index from 0 to 1 
for tsetse based on the values of environmental covari-
ates at the locations corresponding to presence–ab-
sence inputs.26 In this instance, ‘presence’ and ‘absence’ 
records refer to sampling locations where tsetse were 
caught or not. The absence of tsetse from a monitoring 
trap may reflect the true absence of tsetse or that tsetse 
were present but the trap failed to catch any. Accord-
ingly, ‘absence’ records are commonly referred to as 
‘background points’ and serve the purpose of exposing 
the model to locations where the species is presumed to 
be absent.34 Further information regarding the covari-
ates used within the model, model fitting and methods of 
model evaluation can be found in online supplemental 
methods.

Spatiotemporal model
To evaluate the impact of Tiny Targets and environ-
mental variables on tsetse, a geostatistical spatiotemporal 
model was constructed using catch data. Data for this 
model included repeat catches from sites within the same 
year. Prior to constructing the spatiotemporal model, a 
series of exploratory plots and analyses were performed. 
An empirical variogram was constructed to test for 
spatial autocorrelation and to obtain starting parameter 
values for use within the model; this variogram was fitted 
using the ‘PrevMap’ R package.35 A Pearson’s χ2 test was 
performed to determine the level of dispersion within 
the data using the ‘msme’ R package.36 Given the high 
number of zero catches, our a priori assumption was a 
high level of overdispersion. This was confirmed (disper-
sion=4.79), and therefore a negative binomial distribution 
was most appropriate for modelling.37 As trapping success 
is highly variable, and zeros may arise due to either the 
true absence of the species, or due to trapping failure, we 
opted to model excess zeros independently through use 

of a zero-inflated negative binomial (ZINB) model and 
a type 1 likelihood. A type 1 likelihood accounts for two 
different types of zeros within the dataset: structural or 
true zeros, which represent the true absence of tsetse in a 
location, and sampling zeros, where a zero is recorded as 
a reflection of chance.38 Further information regarding 
model construction, including a full model description, 
can be found in online supplemental methods.

Model fitting and validation
Models were fit through integrated nested Laplace 
approximations (INLA) and a stochastic partial differ-
ential equation representation of the Gaussian-Markov 
random field approximation to the Gaussian process 
model, based on a Matérn covariance function, using 
the R INLA package.39 To evaluate the significance of 
fixed and random effects on tsetse abundance, an itera-
tive process was performed where varying combinations 
of fixed and random effects were used within models to 
identify the optimal model construction.

A priori, we hypothesised that the effect ‘suitability’, 
that is, the output of the BRT environmental suitability 
model, would be positively associated with the catch of 
tsetse. We hypothesised further that the ‘intervention’ 
effect, that is, proximity to Tiny Targets, would have a 
negative association on tsetse abundance. An interaction 
term between ‘suitability’ and ‘intervention’ was also 
included in the fitting process. Temporal effects were 
included in the form of ‘season’, a categorical ‘wet’ and 
‘dry’ variable, to investigate temporal changes in abun-
dance and through the inclusion of an autoregressive 
process of order 1, that is, AR(1). It was hypothesised 
that there will be seasonal changes in abundance, with 
a higher abundance of tsetse being observed in the wet 
season.7 40

Measures of the goodness of fit for the spatiotemporal 
model were obtained using the deviance information 
criterion (DIC). The DIC is a Bayesian generalisation 
of the Akaike information criterion, where models are 
penalised by their deviance and the number of parameters 
included.41 Using the variables identified from the model 
with the lowest DIC, we fitted a separable geostatistical 
spatiotemporal model described fully in online supple-
mental methods. The INLA approach does not allow for 

Table 1  Description and source of covariates used within the presence–absence modelling framework

Temporal resolution Covariate (unit) Rationale (reference) Source

Synoptic Elevation (metres) 22 23 Shuttle Radar Topography Mission (SRTM)63

Distance to rivers (metres) 25 Derived from SRTM elevation data63

Slope (percentage gain) Derived from SRTM elevation data63

Annual (2011–2019)
(dry season)

Land surface temperature day 
(mean) (°C)

20 21 Derived from Landsat 564

Derived from Landsat 865

Normalised Difference 
Vegetation Index (−1 to 1)

24 Derived from Landsat 564

Derived from Landsat 865

Proportion of vegetation (0–1) 24 Derived from Landsat 564

Derived from Landsat 865
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the combined fitting of a regression model for the zero-
inflation probability of the zero-inflated model, therefore 
an additional function (‘​pred.​zinb’) was defined to apply 
the zero-inflation probability to a posterior sample (1000 
draws) of non-zero-inflated data derived from the nega-
tive binomial model.42 Model validation was performed 
using a spatial leave-one-out cross-validation (SLOO-CV) 
approach, based on an adaptation of methods described 
in Le Rest et al and Lucas et al,43 44 and described further 
within online supplemental methods. Validation statistics 
included assessing the correlation between the predicted 
and observed tsetse densities through summaries of the 
root mean square error (RMSE) and the mean absolute 
error (MAE).45

Posterior predictive distributions (1000 draws) were 
simulated for each 30×30 m cell to determine the proba-
bility of tsetse catches exceeding predefined abundance 
categories defined as low, 0–1 flies; medium, >1–10 flies; 
and high, >10 flies. These categories were determined 
by discussion with field entomologists regarding policy-
relevant values. The number of draws within each cate-
gory was used to produce probabilities for each cell, low 
(pL), medium (pM), and high (pH) respectively, and 
each category was assigned a predictive score using the 
log-odds. Following Lowe et al,46 we used the receiver 
operating characteristic (ROC) to define optimal proba-
bility thresholds for assigning a final category to each cell 
by comparing the predictive score with the observed class, 
using the ‘ROCit’ R package.47 The probabilistic results 
were mapped using a ternary plotting technique48 and 
the ‘tricolore’ R package49 to visualise category certainty. 
Within the maps, the predicted category for each cell was 
expressed as a colour determined by a combination of 
the three probabilities assigned, with colour saturation 
used to indicate the associated certainty. Maps of the 
final category per cell were produced using QGIS and 
threshold values obtained from the ROC curves.

Counterfactual analysis
To estimate the relative contribution of Tiny Targets to 
changes in tsetse abundance, a counterfactual analysis 
was performed using a 50% random sample of the longi-
tudinal trapping data, that is, 4180 trap-month records. 
Using the optimal spatiotemporal model, all covariate 
values were held fixed except for the categorical inter-
vention variable. The predicted mean flies per trap day 
was then compared for two predictions, where the value 
assigned to the intervention variable was changed:
1.	 50% of records were assigned the intervention catego-

ry ‘inside’ for the purpose of prediction and estimates 
of the mean daily catch of tsetse were generated for 
these locations.

2.	 In a different model run, the same 50% of records 
were assigned the intervention category ‘outside’, and 
estimates of the mean daily catch were generated for 
these locations.

To compare the abundances predicted by the original 
and counterfactual models, we quantified changes in the 

frequency of catches in the low, medium and high catch 
categories.

RESULTS
Tsetse occurrence data
The dataset comprised 31 426 records from 569 locations 
sampled between October 2010 and December 2019 
(figure 2) (online supplemental file 2). A total of 52 544 
tsetse were captured over 31 553 trapping days (mean 
1.67 flies/trap/day across all locations) (online supple-
mental table 3).

After spatial and temporal aggregation to retain one 
record per 30×30 m cell per year (presence at one time 
point replaces absence at another time within the same 
year), 538 unique location-year records situated outside 
the intervention area remained: 376 presence and 162 
absence. The number of records per year is provided in 
online supplemental table 4. We sampled predominantly 
where we presumed tsetse to be present and so locations 
outside the intervention area reporting absences are rela-
tively few.

Habitat suitability maps
A BRT model was fitted to presence–absence data from 
2010 to 2019 obtained outside the intervention area. 
Optimal values of the BRT model parameters, based on 
minimising the Brier score, were number of trees=350, 
interaction depth=29 and shrinkage=0.1. The evaluation 
measures for the resulting optimal BRT are as follows: 
AUC=0.81 and Brier score=0.21, representing a moderate 
model fit. The specificity and sensitivity of the model were 
0.86 and 0.59, respectively, indicating a greater ability to 
identify absence records correctly (high specificity) and 
a greater error when predicting presence locations (low 
sensitivity). The BRT model may be calibrated to favour 
optimising sensitivity or specificity or calibrated to equally 
prioritise both. For this study, we used default settings for 
balancing sensitivity and specificity.

The relative importance of each of the environmental 
variables included, with respect to their contribution to 
the final BRT, is presented in online supplemental table 
5. Elevation (m), Normalised Difference Vegetation 
Index (NDVI) and distance to rivers (m) were equally 
important contributors (19.14%, 18.57% and 18.47%, 
respectively), to variation in suitability. Using the fitted 
BRT model, predictions of habitat suitability for tsetse 
were made for each 30×30 m cell for 8 years: 2010, 2013–
2019. Maps showing suitability for the years 2010 and 
2019 are presented in figure 3; maps for other years are 
provided in online supplemental figure 1. Areas of high 
suitability follow rivers, vegetated and high-elevation areas 
neighbouring the Albert Nile and parts of Amuru and 
Adjumani districts. Spatial trends are visible across years. 
For parts of Amuru and Adjumani district, predicted suit-
ability was greater in 2019 than 2010; however, this may 
be an artefact of the low sensitivity of the model (0.59).
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Spatiotemporal model
After collating all sampling records, a 100-month 
continuous longitudinal dataset consisting of 416 sites 
was produced for North-Western Uganda. The series 
consisted of records from September 2011 to December 
2019 and included 8360 trap-month combinations, that 
is, one trap-month combination is the total number of 
flies (count) reported at a trap, for a specific month. 
These data formed the basis of the spatiotemporal model.

To identify which fixed and random effects optimise 
the performance of the spatiotemporal model, a range 
of ZINB generalised linear geostatistical models were 
fitted to the series data, varying the fixed and/or random 
effects across models. A list of considered models, 
alongside their corresponding evaluation metrics (DIC, 
Watanabe-Akaike information criterion [WAIC] and 
CPO) is provided in online supplemental table 6. The 
optimal ZINB had an DIC of 35 538, compared with a 
median and maximum DIC of 36 100 and 37 064, respec-
tively (online supplemental table 6).

The equation for the final model is as follows:

	﻿‍

log
(
η
(
s, t

))
=

β0 + β1suitabilitys,t + β2interventions,t+

β3seasons,t + β4LTTs,t + β5suitabilitys,t×

interventions,t + β6seasons,t × interventions,t+

β7LTTs,t × interventions,t + Us + Vs,t ‍�

(1)

where ‍βn, n = 1, . . . , 7‍, represents the coefficients for 
each covariate associated with observations at location ‍s ‍ 
at time ‍t ‍. The abbreviation LTT refers to a linear temporal 
trend, representing the sequential month in the contin-
uous time series. Us represents the spatially uncorrelated 
random effect (siteID), and Vs,t represents the spatially and 
temporally structured random effects fully defined in 
online supplemental methods.

Table  2 displays the posterior mean estimates and 
95% Bayesian credible intervals (CrI) for the effects 
included within the optimal spatiotemporal model, fit 
to all observed locations and time periods (100-month 
series). Posterior distributions and CrI are visualised in 
online supplemental figure 2. Starting parameter and 

Figure 3  Predicted habitat suitability for Glossina fuscipes fuscipes within North-Western Uganda, for 2010 and 2019. Dark 
green locations indicate areas of higher environmental suitability; whiter areas indicate areas of lower environmental suitability. 
Map created using QGIS V.3.16.5.62

Figure 2  Location (left) and number of tsetse traps per parish (right), North-Western Uganda. Parish administrative boundaries 
obtained from www.GADM.org. Map produced using QGIS V.3.16.5.62
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hyperparameter values for priors used within the model 
are provided within online supplemental table 7.

We performed a SLOO-CV using the optimal spatio-
temporal model configuration. In total, 415 separate 
submodels were produced (k–1). Each submodel was 
fitted to data excluding one randomly selected trap, and 

all traps within a radius of 0.097 decimal degrees from 
that trap. This radius was equivalent to ~12.8 km, the 
value defined by the posterior range of spatial autocor-
relation (ρ) identified within the optimal model. The 
zero-inflation probability (﻿‍π‍ = 0.039, 95% CrI = 0.039, 
0.040) was applied to a posterior sample consisting of 

Table 2  Posterior mean estimates and credible intervals (CrI), alongside rate ratio estimates for the best fitting model (model 
10, online supplemental table 6)

Variable Mean 2.5% CrI 50% CrI 97.5% CrI Rate ratio (95% CrI)

Suitability 0.089 −0.079 0.089 0.257 1.09 (0.92, 1.29)

Inside intervention area (<500 m) 0.420 −30.647 0.420 31.461 1.52 (4.90e−14, 4.61e13)

Edge of intervention area (>500 m, ≤5000 m) 0.769 −30.299 0.768 31.810 2.16 (6.94e−14, 6.53e13)

Outside of intervention area (>5000 m) −0.036 −31.104 −0.036 31.006 0.96 (3.30e−14, 2.85e13)

Season: dry – – – – –

Season: wet 0.011 −0.070 0.011 0.092 1.01 (0.93, 1.10)

LTT −0.025 −0.027 −0.025 −0.023 0.98 (0.97, 0.98)

Suitability×inside of intervention area – – – – –

Suitability×edge of intervention area 0.387 0.035 0.388 0.734 1.61 (0.96, 2.69)

Suitability×outside of intervention area 1.463 1.056 1.464 1.867 4.72 (2.66, 8.36)

Wet season×inside of intervention area – – – – –

Wet season×edge of intervention area 0.044 −0.135 0.044 0.223 1.06 (0.81, 1.37)

Wet season×outside of intervention area 0.269 0.098 0.269 0.439 1.32 (1.03, 1.70)

LTT×inside of intervention area – – – – –

LTT×edge of intervention area −0.009 −0.012 −0.009 −0.005 0.97 (0.96, 0.97)

LTT×outside of intervention area −0.009 −0.013 −0.009 −0.005 0.97 (0.96, 0.97)

Spatial range of the RF: ρ 0.097 0.095 0.097 0.715 –

Marginal SD of the RF: σ2 1.597 1.578 1.597 1.616 –

Size for negative binomial zero-inflated observations: α 0.704 0.699 0.704 0.710 –

Zero probability parameter for zero-inflated negative 
binomial: π

0.039 0.039 0.039 0.040 –

Blank (dashed) rows represent the reference category used with each interaction term.
LTT, linear temporal trend; RF, Gaussian random field.

Figure 4  Frequency of catches (tsetse/trap/day) in low (0–1), medium (>1–10) and high (>10) categories for the factual and 
counterfactual models of tsetse abundance. (A) The percentage of traps containing low, medium and high number of flies 
for areas considered ‘inside’ (within 500 m of a target) the intervention area. (B) The percentage of traps for areas considered 
on the edge of the intervention area (>500 m but <5000 m from a target). (C) The percentage of traps for areas outside the 
intervention area (>5000 m from a target).
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1000 draws of non-zero-inflated data within each model, 
and the mean predicted values across all 1000 draws for 
the excluded data were compared with the observed 
values. Resulting validation statistics include an RMSE of 
8.021 and MAE of 6.048, lower than another published 
model from the region (RMSE=15.2).16

Through the conversion of posterior mean values into 
rate ratios, we determined the mean effect of each vari-
able on the predictions. Habitat suitability is significantly 
and positively associated with fly catches outside of the 
intervention area (rate ratio (RR)=4.72, 95% CrI=2.66, 
8.36). This effect weakens at the edge of intervention 
areas (RR=1.61, 95% CrI=0.96, 2.69) and inside the inter-
vention areas (RR=1.09, 95% CrI=0.92, 1.29) (table  2). 
Other significant predictors include a linear temporal 
trend (significant negative effect, RR=0.98, 95% CrI=0.97, 
0.98) and interactions between (1) season (wet) and 
intervention (significant positive effect, edge RR=1.06, 
95% CrI=0.81, 1.37; outside RR=1.32, 95% CrI=1.03, 
1.70), implying higher abundance of tsetse within the wet 
season and on the edge and outside of intervention areas 
compared with the dry season reference class and (2) 

intervention and the linear temporal trend (significant 
negative effect, RR=0.97, 95% CrI=0.96, 0.97) (table  2 
and online supplemental figure 2).

For traps inside the intervention areas, the coun-
terfactual increased the median daily catch from 1.1 
(IQR=0.93–1.28) to 2.3 (IQR=1.79–7.14) tsetse/trap. 
Conversely, for traps outside the intervention area, the 
counterfactual reduced the median daily catch from 3.8 
(IQR=0.77–14.17) to 1.0 (IQR=0.94–1.28) tsetse/trap. 
Treating traps on the edge of the intervention area as 
being in areas affected by Tint Targets, the counterfac-
tual increased the median daily catch increased from 1.2 
(0.94–1.45) to 4.0 (0.95–19.66) tsetse/trap. The coun-
terfactuals had marked effects on the frequency distri-
bution of catches in the high categories (figure 4). For 
traps inside the intervention area, none were predicted 
to have mean daily catches of >10 tsetse/trap whereas for 
the counterfactual, 18.0% were in this category. Similarly, 
traps on the edge of the intervention area were predicted 
to have 34.7% in the high category if targets had not 
been deployed compared with none in their presence. 
Conversely, for traps outside the intervention area, 33.8% 

Figure 5  Comparison of categorised (low, medium and high) Glossina fuscipes fuscipes abundance during four time periods. 
The prediction period relates to February of each year (2012, 2015, 2017 and 2019). The continuous colour palette portrays 
the probabilities assigned to low-abundance, medium-abundance and high-abundance categories, with the low category 
representing 0 flies, medium 1–10 flies and high >10 flies. The greater the vibrancy, the more certain the prediction. Vibrant pink 
represents a high probability of a high abundance of tsetse, vibrant green represents a high probability of low abundance.
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were predicted to have high catches compared with none 
for the counterfactual.

To determine threshold values for converting predic-
tions into categorical estimates, a sample of 1000 draws 
were taken from the posterior distribution of the fitted 
model for each gridded cell. The probability of the 
prediction belonging to low, medium and high fly catego-
ries was produced (pL, pM and pH, respectively). These 
probabilities were compared with the true category from 
observed data, and ROC curves were generated (online 
supplemental figure 3). The model was able to distin-
guish between ‘low’ and ‘high’ categories with high accu-
racy, with AUC values of 0.83 and 0.91. In the operational 
setting, identifying these extremes will help prioritise area 
for control and/or monitoring. The ability to correctly 
identify the ‘medium’ category (between 1 and 10 flies) 
was lower than the other two, with an AUC value of 0.7 
(online supplemental figure 3). Using the ROC curves, 
threshold values were obtained for assigning predictions 
to a specific category. If pL≥0.44, a cell was assigned the 
category ‘low’ abundance, if pL<0.44 and pM≥0.468, a 
cell was assigned the category ‘medium’ abundance, if 
pL<0.44 and pM<0.468, a cell was assigned the category 
‘high’ abundance.

Predictions of tsetse abundance were produced for 
four periods: February 2012, 2015, 2017 and 2019, repre-
senting in turn (1) first trials of Tiny Targets,7 (2) first 
expansion from two to five districts,8 (3) second expan-
sion to cover seven districts and (4) time of maximum 
coverage (2019). The outputs are visualised as ternary 
maps, displaying the assigned abundance category (low, 
medium and high) and associated certainty per gridded 
cell (figure 5). Plots showing the relative abundance of 
tsetse for each period are provided as online supple-
mental figure 4.

Comparing the categorical predictions from 2012 with 
those for 2019 (figure 5) highlights a striking reduction 
in tsetse abundance over time. Generally, many ‘high’ 
abundance areas transition to areas of ‘low’ abundance 
between the two periods, starting with Yumbe district 
(2015) and expanding to areas of Adjumani, Arua and 
Amuru in 2017. The overall relative distribution and 
abundance of tsetse, however, does not appear to change 
across years (online supplemental figure 4), despite the 
overall reductions in absolute abundance (online supple-
mental table 8). Persistent tsetse populations, although 
with a lower abundance, can be seen in North-West and 
Eastern Arua, Maracha, Central Adjumani and North-
Eastern Amuru (figure 5 and online supplemental figure 
4). Several of the relatively high abundance areas, such 
as Central Adjumani and Eastern Arua, are in places 
outside the 2019 intervention area (online supplemental 
figure 4). Maps representing the categorical prediction 
after applying the threshold values determined by the 
ROC curves are given as online supplemental figure 5; 
these maps can be used to inform additional monitoring 
and tsetse control operations.

DISCUSSION
We used a 100-month series of catches of tsetse from traps 
deployed at 416 sites across North-Western Uganda to 
produce species distribution and spatiotemporal models 
of the abundance of G. f. fuscipes, an important vector of 
sleeping sickness in Uganda and neighbouring countries 
(South Sudan, DRC). The SDM showed that the presence 
of tsetse was correlated negatively with elevation and posi-
tively with NDVI and proximity to rivers, in accord with 
previous studies.15 16 While temporal variation in habitat 
suitability occurs over the study period, few locations 
show trends of decreased suitability (areas in Maracha, 
Koboko, Arua and Yumbe when comparing 2013 and 
2019 estimates) with some areas in Amuru and Adjumani 
showing increased suitability over time. In contrast, the 
spatiotemporal model showed that there was a decrease 
in the median and range of abundance of tsetse in areas 
where Tiny Targets were deployed. In particular, catches 
predicted to be high (>10 tsetse/trap/day) were absent 
in areas where Tiny Targets were deployed.

In 2019, as the national incidence of gHAT declined 
to record lows, Uganda commenced scale back of tsetse 
control operations in Maracha district, and currently 
(January 2024) there are no plans to deploy Tiny Targets 
in the future. This will mark the first time that no Tiny 
Targets are deployed in Uganda in over ten years. Our 
results describe the impact of a successful national tsetse 
control programme and also produce maps which iden-
tify places highly suitable for tsetse and where they may 
rebound fastest.

Our findings add to earlier smaller-scale studies 
showing that Tiny Targets are a highly cost-effective 
method of controlling gHAT vectors,50 51 leading to their 
adoption in national programmes to eliminate gHAT.3 We 
leverage one of the most data-rich longitudinal datasets 
of abundance of riverine tsetse in existence (31 553 trap-
ping days), to produce a high-spatial resolution model 
of tsetse abundance. Our predictions span a ~16 000 km2 
extent within which Tiny Targets were deployed over an 
area of ~4000 km2. This approach expanded on earlier 
work performed in select districts, and for one time 
period (2010).16 Here, we produce a separate model 
which considered both spatial and temporal variation, as 
well as the incorporation and assessment of intervention 
measures on abundance, through information on the 
deployment of Tiny Targets between 2011 and 2019. The 
spatiotemporal model outperforms that for the previous 
spatial analysis when looking at metrics of predictive 
power for known trapping locations, that is, RMSE of 
8.02 flies versus 15.2. However, the RMSE for our model 
remains inflated due to the generation of mean esti-
mates across posterior samples containing high numbers 
of zeros. Metrics looking at the accuracy of categorised 
predictions, that is, low (0–1 flies), medium (>1–10) and 
high (>10) indicate greater accuracy than direct counts 
(online supplemental figure 3).

By performing a counterfactual analysis using the fitted 
ZINB geostatistical model and varying the intervention 
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category, we show that Tiny Targets reduced the catches 
of tsetse from monitoring traps between 2011 and 2019. 
Our results accord with analyses from trials of Tiny 
Targets in Uganda7 8 and suggest that implementation 
by District tsetse control teams was highly effective. Our 
results are also comparable to those from the DRC, 
where an 85.5% reduction was attributed to the deploy-
ment of Tiny Targets.15 In Chad, an even higher level 
of control (99.5%) was achieved,10 probably reflecting 
local agroecological differences. The most important 
of such differences was perhaps that the intervention in 
Chad was directed against a relatively small and isolated 
population of tsetse associated with a wetland, whereas in 
Uganda and DRC the tsetse population was distributed 
throughout a complex and extensive river network. The 
targets had a marked impact on the edge of the inter-
vention area in accord with the high mobility of tsetse. 
Empirical evidence8 and theoretical models52 of the 
impact of Tiny Targets on tsetse populations predict 
impact in areas beyond where the targets are deployed.

Our analyses identified several ‘hotspots’ within the 
intervention areas where tsetse were predicted to be 
relatively abundant (online supplemental figure 4). 
Indeed, while the abundance of tsetse declined over 
time (figure 5), we did not see complete elimination of 
tsetse within areas which have been subject to prolonged 
control. Tiny Targets are deployed to reduce populations 
to a level where transmission is interrupted rather than 
eliminate tsetse themselves. Modelling analysis indicates 
a ~60% population suppression is required to achieve 
interruption of transmission within DRC.53

The predicted reduction of tsetse in areas where Tiny 
Targets were not deployed, for example, Central Adju-
mani and Southern Arua (figure 5), may be attributable 
to temporal changes not explicitly incorporated within 
our model but which were captured via the inclusion 
of a temporal random effect, that is, noise within the 
autoregressive order 1 model, and a linear temporal 
trend (RR=0.98, 95% CI=0.97–0.98). Additional tempo-
rally varying covariates to consider incorporating within 
future iterations of the model include human popula-
tion density, climatic variables such as precipitation, and 
land-use change, which may further explain the temporal 
trends observed within the data.54 55 North-Western 
Uganda has experienced large levels of development 
within the last decade, primarily due to an influx of refu-
gees resulting in land-use change, that is, degraded grass-
lands, woodlands and tree plantations56 57 and human 
population growth (averaging 3.4% between 2010 and 
2020),58 among other factors. Despite these develop-
ments, our SDMs show that environmental factors have 
either remained the same or improved for tsetse.

Further research is required to determine the link 
between suitable tsetse habitat and/or tsetse abundance 
and the geographical distribution of reported gHAT 
cases. Prior work has shown that proximity to Tiny Targets 
reduces the risk of gHAT in North-Western Uganda.16 
However, not all tsetse infested areas are areas of gHAT 

risk, with tsetse also transmitting trypanosome species 
pathogenic to livestock but not to humans.19 59 Model-
ling the spatiotemporal variation in gHAT risk requires 
not only the accurate quantification of the distribution 
and abundance of parasite, vector and host populations 
but also treatment seeking behaviour, that is, proportion 
seeking diagnosis and treatment, as well as an under-
standing of diagnostic accessibility. Quantifying each of 
these factors would aid planning and implementation of 
interventions to eliminate transmission of gHAT.

Countries, which have eliminated gHAT or are 
preparing elimination dossiers for submission to WHO, 
need to identify and monitor remaining tsetse popula-
tions.60 The methods and predictions described here may 
be combined with estimates of geographic accessibility to 
provide a rationale for the placement of cost-effective 
sentinel monitoring sites to monitor and confirm tsetse 
population suppression, as demonstrated by Long-
bottom et al.61 Additionally, the models produced identify 
locations for which we have the least certainty regarding 
abundance of tsetse. Estimates of confidence aid the 
identification of areas where further baseline data may 
improve our understanding—quantifying this improves 
a process which was previously driven solely by expert 
opinion and ease of sampling.

CONCLUSIONS
We show that a large-scale national programme of tsetse 
control, covering ~4000 km2 across seven districts, in 
which district-level teams deployed Tiny Targets, greatly 
reduced the overall abundance of tsetse and contributed 
to the elimination of gHAT as a public health problem 
in Uganda.

Tiny Targets reduced the abundance of tsetse in all 
areas where they were deployed. In places where the 
habitat and environment are highly suitable for tsetse, 
populations remained at low numbers, with no locations 
witnessing extinction of local populations. Such sites 
should be monitored for any rebound of tsetse and trans-
mission of gHAT. Maps produced by this study can help 
to optimise surveillance strategies.

There was no clear and consistent decline in the envi-
ronmental suitability for tsetse, suggesting that natural 
and anthropogenic change have had little impact on 
tsetse in North-Western Uganda over the last decade.
X Inaki Tirados @InakiTirados
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