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adistinct cellular signature of fatal lung
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W Check for updates

Postmortem single-cell studies have transformed understanding of lower
respiratory tract diseases (LRTDs), including coronavirus disease 2019
(COVID-19), but there are minimal data from African settings where HIV,

malaria and other environmental exposures may affect disease pathobiology
and treatment targets. In this study, we used histology and high-dimensional
imaging to characterize fatal lung disease in Malawian adults with (n = 9)

and without (n=7) COVID-19, and we generated single-cell transcriptomics
datafromlung, blood and nasal cells. Data integration with other cohorts
showed a conserved COVID-19 histopathological signature, driven by
contrastingimmune and inflammatory mechanisms: in US, European

and Asian cohorts, by typel/lllinterferon (IFN) responses, particularly in
blood-derived monocytes, and in the Malawian cohort, by response to IFN-y
inlung-resident macrophages. HIV status had minimal impact on histology
orimmunopathology. Our study provides a dataresource and highlights the
importance of studying the cellular mechanisms of disease in underrepres-
ented populations, indicating shared and distinct targets for treatment.

Progress toward a human cell atlas (HCA) using single-cell
RNA-sequencing (scRNA-seq) and high-dimensional imaging is trans-
forming understanding of cells and their states in health and disease
andisrapidly becomingamajor resource for the development of novel
treatments and vaccines' >, However, data within this atlas are heavily
biased toward populations in the Northern Hemisphere. Populationsin
sub-Saharan Africa (SSA) are particularly underrepresented®. Genetic
and environmental factors may lead to important differences in cell
development and cell compositionsindifferent organs, thus affecting
cellular responses to diseases, vaccines and therapies®®. Capturing data
from SSA populationsis critical to assure more equitable benefit from
the treatment advances derived from the HCA.

Immunomodulation playsacritical role in coronavirus disease 2019
(COVID-19) outcomes. Single-cell data from lung tissue facilitated iden-
tification of specific immunomodulatory targets® ™. Apart from our
high-dimensionalimaging datafromaBrazilian cohort”, single-cell data
arerestrictedto populationsinthe NorthernHemisphere, suchas clinical
trial datavalidating their efficacy™ . For future outbreaks of severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) or related viruses, this
knowledge gap needstobe addressed. Indeed, given fewer intensive care
facilities, the benefit of immunomodulation for severe disease is even
more important in SSA. Althoughimmunomodulatory therapies canbe
lifesaving, they can also be harmful'®. Immunomodulation has broadly
focused ontwo opposing strategies: augmenting inflammatory responses
to aid viral clearance or attenuating inflammatory response to reduce
hyperinflammation. Extensive studies in Northern Hemisphere cohorts
have established that, by the time patients present with life-threateningill-
ness, viralloads are declining, hyperinflammation generally predominates
and, thus, anti-inflammatory interventions are more effective™. Given
evidence that repeated exposure to malaria and other parasitic infec-
tions can induce immune tolerance''®, and because parasitic infections
occur at higher levels in SSA populations'®?, we hypothesized that the
immune balance may be differentin patientsin SSA. Although sometimes
this clinical context may be protective, in those who progress to severe
disease atolerance-skewed response might bluntimmune-mediated viral
clearance, leadingtoamoreviral-driven pathology. However, the reverse
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isalso possible. High pathogen exposure caninduce anaccelerated inflam-
matory response on re-exposure to pathogens’. Either scenario might
impactcellularresponsesinthelungand haveimportantimplicationsto
inform treatment choices in SSA populations. To address some of these
knowledge gaps, we conducted an autopsy study in well-characterized
patientsatalarge public hospital in Malawi, alow-income country in SSA
with high rates of malaria, tuberculosis (TB) and HIV.

Results
A conserved histological signature of COVID-19 in Malawian
patients
We recruited patients with fatal illness aged 45-75 years who were
admitted to Queen Elizabeth Central Hospital (QECH), Blantyre, from
October2020toJuly 2021 and stratified theminto three groups based
on clinical criteria: (1) COVID-19 acute respiratory distress syndrome
(ARDS) (n=9); (2) lower respiratory tract disease (LRTD) (n = 5) with
ARDS of diverse non-COVID-19 etiology; and (3) non-LRTD (n=2)
(Fig.1a,b, Extended Data Table 1, Supplementary Table 1and Methods).
Most patients with COVID-19 were overweight or obese (78%), and four
had type 2 diabetes (44%). Patients with LRTD and non-LRTD patients
were generally underweight. HIVinfection was common across groups:
five patients with COVID-19 (56%), three patients with LRTD (60%) and
two non-LRTD patients (67%) had been living with HIV. In three patients,
this diagnosis was not known during life; the other six had been on
antiretroviral treatment, although drug availability was limited dur-
ing the pandemic. All patients had low CD4 counts (median, 134 cells
per mm®) (Extended Data Table 1and Supplementary Tables 1and 2).
Using minimally invasive autopsy*, we obtained lung, liver and
brain samples in 16 patients, bone marrow in 15 patients and spleenin
eight patients. A pathologist read hematoxylin and eosin (H&E)-stained
tissue slides alongside patients’ history and antemortem laboratory
results.Inthelung, the pathologist identified classical features of COVID-
19 (refs.26-32), whichwere less frequentin patients with LRTD (Supple-
mentary Fig.1and Supplementary Table 3). COVID-19-specific changes
were absentin other organs, focusing our further investigations onthe
lung. Then, two additional pathologists, blinded to diagnosis, scored the
lung pathology inall 16 patients using more detailed semi-quantitative
criteria®. Inour patients with COVID-19, type ll pneumocyte hyperplasia,
vascular congestion, syncytia, granulation of tissue and lymphocyte
infiltration were more common and severe than in the non-COVID-19
LRTD group (Extended Data Fig. 1a). No significant histopathology
differences were observed due to HIV status (Extended Data Fig. 1b).
Lack of international consensus in COVID-19 lung pathology cri-
teria, and of studies with systematic scoring, prevented quantitative
comparison with other cohorts to assess similarities and differences.
Therefore, we compared proportions of pulmonary lesiontypes with a
study that combined cohorts from Europe and the United States (US)*
and with our published Brazilian cohort® (Fig. 1c and Extended Data
Fig.1c). Acute alveolar changes, defined by neutrophil infiltration and
fibrin deposition, were more frequent in the Malawian and Brazilian
cohorts thaninthe US cohort. ‘Chronic’ alveolar changes with mono-
cytes, macrophages or fibrosis were detected more frequently in the
US and Malawian cohorts. In the Malawian cohort, ‘chronic’ disease
was predominantly characterized by macrophage and monocytes with
less fibrosis thaninthe US and Brazilian cohorts. Thus, despite ashort
durationfromillness to death and demographic differences, patients
in our Malawian cohort exhibited classical COVID-19 lung pathology
but with amacrophage predominancein alveolar lesions.

Resident macrophages predominate in COVID-19 and
neutrophilsin LRTD

Toassess pathology at the cellular level, tissue microarrays (TMAs) from
130 representative regions of interest (ROIs) from nine patients with
COVID-19, three patients with LRTD and two non-LRTD patients, contain-
ing specific pathological lesions or normal lung areas, were analyzed by

imaging mass cytometry (IMC). We used a 39-antibody panel optimized
forstainingin lungtissue®. After cell sesgmentation and quality control,
76,369 cells were annotated from 118 ROIs and classified into subtypes
(Fig. 2a, Extended Data Fig. 2a-d and Supplementary Table 4).

In our Malawian cohort, neutrophils (CD66bP*CD11bP*CD14"&/ov)
were significantly more numerous in the patients with LRTD (49.6%)
thaninnon-LRTD patients (21.1%) or in patients with COVID-19 (16.1%,
P<0.001) (Fig.2b,d, Extended Data Fig. 2e and Supplementary Table 4).
Reciprocally, macrophages were increased in patients with COVID-19
(44.1%) compared to patients with LRTD (30.4%) and non-LRTD patients
(23.6%; P<0.0001, Fig. 2b,c, Extended Data Fig. 2e and Supplemen-
tary Table 4). In contrast to data in prior published US and European
cohorts®***, these were predominantly tissue-resident alveolar mac-
rophages (CD206"¢"CD163""bal**MHCII'"CD14"*¢) with a lower
proportion of monocyte-derived CD14""" macrophages.

No consistent differences were observedin T cellnumbersamong
the COVID-19, LRTD and non-LRTD disease groups, but, among patients
with COVID-19, there was anexpansioninregulatory T cellsand proliferat-
ing T cellsand a decrease in the ratio of effector memory (CD45RO"e") to
naive (CD45R0"") CDS T cells (Fig. 2b and Supplementary Table 4). B cell
numbers were not markedly different in COVID-19, although our panel
had few markersto characterize B cells (Fig. 2b). Consistent with vascular
pathology visualized by histology (fibrin deposition and thrombosis),
there was increased endothelial cell activation in patients with COVID-
19 compared to patients with LRTD and non-LRTD patients (Fig. 2b).
Alveolar macrophages were the most common SARS-CoV-2" immune
cell, followed by Arg"e" neutrophils and interstitial macrophages (Fig. 2b
and Supplementary Table4).In the stromal compartment, typell pneu-
mocytes (AT2) and epithelial cells were the most frequent SARS-CoV-2*
cells. We found no SARS-CoV-2* endothelial cells or fibroblasts. Surpris-
ingly, total numbers of SARS-CoV-2" cells were lower in HIV* patients
(Extended DataFig.2d and Supplementary Table 4).

Exploiting the spatial and cellular resolution of IMC, we character-
ized cellular compositions of lesion types (Extended Data Fig. 2f) and
then quantified lesion type levels by group (Fig. 2e). Type Il pneumo-
cyte hyperplasia was specific to the COVID-19 group. Diffuse alveolar
damage occurred in both LRTD and COVID-19 but had different com-
positions, indicating different pathological processes: in LRTD, with
neutrophil-driven fibrinopurulentinflammation; in COVID-19, amore
heterogeneousimmune cell composition, dominated by the presence
of macrophages, except fibrin-containing lesions, which were neutro-
philic. Together, these dataimplicate macrophagesin alveolar damage
and neutrophils in vascular damage and coagulopathic processes.

Common and unique myeloid compositions across cohorts
To systematically compare data across cohorts, we integrated IMC data
from the Malawian patients with COVID-19 (n = 9) with our Brazilian
cohort (n=11) thatemployed the same antibody panel”and a US cohort**
(n=10) thatused several of the same markers (Fig. 2f). Many similarities
in cell proportions were observed among the three cohorts but also
important differences (Fig. 2g,h and Supplementary Table 4). In the
myeloid compartment, the Malawian and Brazilian cohorts were domi-
nated by high levels of alveolar and interstitial macrophages compared
to the US patients (Malawi 44.1%; Brazil 51.9%; US 26.3%). Reciprocally,
the US cohort had the highest proportion of neutrophils (34.1%), and the
Malawian cohort had the fewest (16.7%; Brazil 21.4%; P< 4.25x10°). The
proportionof B cells was also significantly higher inthe Malawian cohort
(6.89%; Brazilian cohort <0.1%; US cohort 0.7%; P=1.85 x107%). In the
stromal compartments, there was a lower proportion of fibroblasts in
the Malawian cohort, in keeping with lower levels of fibrosis on histology.
SARS-CoV-2antigengives anindication of the quantity of viral mate-
rial, although it does not distinguish replicating virus. The US cohort
had the highest number of SARS-CoV-2" immune cells (23.7%; Malawi
7.6%; Brazil 8.3%). These were principally monocytes and neutrophils
inthe US cohort versus CD206"&" tissue-resident alveolar macrophages
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Scoring & ROI Cellular Single-cell Prediction Explore
Clinical selection pathology states Do blood or nasal samples therapeutic targets
pathology Compare other cohorts Integration and Integration with Reflect dominant lung Cellular interactions and
Cause of death (Brazil, US, Europe) comparison with Brazil Human Lung Cell Atlas responses responses
Select 130 lesions and US data Orthogonal validation
b c
Cohort Group n= Age SStodeath HIV (%) Path Sys.Hist IMC Lungsc Nasalsc Blood sc 100
COVID-19 9 56(48-72)  7(1-20) 56 9 9 9 5 5 4 Neuts/Fibrin
Malawi LRTD 5 60(49-60) 10 (5-17) 60 5 5 5 3 2 2
o
No LRTD 2 51.5(51-52) 3(2-4) 50 2 2 2 1 1 1 Macro/Fibrosis 80 g
Other cohorts Group n= Age SStodeath HIV (%) Path Sys.Hist IMC Lungsc Nasalsc Blood sc Hy Memb ‘8
o
Brazil (De Silva Filho et al.) COVID-19 30 61(27-88) 18 (5-43) 0o 30 30 n 0o (0] (0] 60 g‘
Qo
US/Euro Borczuk etal) | COVID-19 65 73(30-96) 11(5-27) 3 65 0 o 0 o o T2N 3
US (Rendeiro et al.) COVID-19 10 64(52-75) 25 (1-49) 0 (0] (0] 10 0o (0] (0]
Thrombi 40
COVID-19 60 (21-77) NR NR (0] (0] 0o 60 (0]
Human Lung Cell Atlas
(Sikkema et al.) LRTD 13 NR NR NR 0 0 13 0 US/Euro  Malawi  Brazil
No LRTD 178 49 (20-76) NR NR (0] (0] (0] 178 (0]
US (Delorey et al.) COVID-19 16 (30-89) 17.5 (1-41) NR (0] (0] (0] 16 (0] (0]
COVID-19 19 72.8(58-84) (4-63) NR (0] (0] (0] 19 (0]
US (Melms et al.)
Non-LRTD 7 70 (68-79) N/A NR (0] (0] 7 (0]

Fig.1|Study overview, overview of our cohort and comparator cohorts and
histological lesion comparison with other cohorts. a, Overview of study
approach, created with BioRender.com. b, Summary of the characteristics of
our Malawian cohort versus published cohorts that we have used for different
comparisons. ¢, Heatmap shows the proportion of patients in the three cohorts
(US/European, Malawian and Brazilian) who have each given lesion type. SS to
death, symptom start to death in days; Path, pathology, denotes the number of
patientsincluded in each cohort in which postmortem pathological features are
described; Sys. Hist., systematic histopathology, denotes the number of patients

included in each cohort with scoring of the frequency and severity of different
lesions scored based on pre-defined criteria; IMC, imaging mass cytometry,
denotes the number of patients with data for this; Lung sc, lung cell single-cell
RNA-seq, denotes the number of patients with scRNA-seq data from lung tissue;
Nasal sc, nasal cell single-cell RNA-seq, denotes the number of patients with
scRNA-seq data from nasal tissue; Blood sc, blood cell single-cell RNA-seq,
denotes the number of patients with these data. Hy Memb, hyline membranes;
Macro, macrophages; N/A, not applicable; NR, not recorded; Neuts, neutrophilis;
T2N, type Il pneumocyte hyperplasia.

and neutrophilsinthe Malawian cohort and interstitial macrophagesin
the Brazilian cohort (Fig. 2g and Supplementary Table 4). In the stromal
compartment, SARS-CoV-2 was detected in epithelial cells in all three
cohorts butwassignificantly lower in the Malawian cohort (Fig. 2h; 5.8%,
P=1.18 x107°) compared to the Brazilian (13.1%) and US (12.1%) cohorts.

A possible explanation for different myeloid compositions in
Malawian versus Brazilian and US patientsisillness duration. Previous
COVID-19 studies demonstrated that patients dying within 2 weeks of
illness onset (early death) have differentimmune responses from those
dying after 2 weeks (late death)™**, Only one Malawian case was late
death, and the medianillness duration before death was shorter than
inUS and Brazilian cohorts (Fig. 1b). Therefore, instead, we compared
early versus late death US patients. If illness duration was a major
driver of cell compositions, myeloid cell proportionsin early death US
patients should be more like the Malawian patients (lower neutrophils
and monocytes, higher macrophages). Instead, early death US patients
had an even higher proportion of neutrophils (40.4% US early, 13.7%
US late, 13.4% Malawi) and monocytes (11.1% US early, 7.0% US late,
3.8% Malawi) and a lower proportion of lung-resident macrophages
(15.0% early versus 40.1% late, versus 44.1% Malawi early) (Extended
DataFig.3aand Supplementary Table 4). Furthermore, onadimension
reduction plot, samples clustered by population (Malawian, US and
Brazilian) rather than by illness duration (early versus late) (Extended
Data Fig. 3c). SARS-CoV-2 variant may also be an important driver of
variance, as all US and Brazilian patients were of the ancestral variant,

whereas Malawian patients were a mixture of Beta and Delta variant.
However, cell proportions between patients with Beta or Delta vari-
ants in the Malawian patients were similar (Extended Data Fig. 3b).
Furthermore, onadimensionreduction plot, we observed grouping by
population, not viral variant (Extended Data Fig. 3d), suggesting that
population is the main driver of lung immune composition.
Contrarytoourinitialhypothesis of atolerized immune response
in SSA populations, we found a highly inflammatory response and low
levels of viral antigenin the Malawian patients versus other cohorts. The
prominence of alveolar macrophagesin lunglesions and enrichment of
CD206"etissue-resident macrophages in Malawian patients prompted
further investigation of the inflammatory response in these cells.

scRNA-seq reveals an interferon-gamma-dominated lung
macrophage response

To explore cellular responsesin the lung at greater depth in Malawian
patients, we used single-nuclei and single-cell RNA-seq in four patients
with COVID-19, three patients with LRTD and one non-LRTD patient.
Integrating 66,882 cells resulted in16 cell clusters composed of a mix-
ture of immune and stromal cells (Fig. 3a, Supplementary Fig. 2 and
Supplementary Tables 5-7).

We detected few SARS-CoV-2 reads, suggesting that, at time of
death, there was minimal replicating virus (Supplementary Fig. 4),
consistent with our IMC data supporting inflammatory rather than
direct viral-driven pathogenetic mechanisms.
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We then undertook finer annotation ofimmune cell (Fig. 3b) and
stromal cell (Fig. 3c) pools. Consistent with IMC data, we identified
alveolar, interstitialand monocyte-derived macrophages and mature
and immature neutrophils. Stromal cells included adventitial and
alveolar fibroblasts, typeland type Il pneumocytes (AT1and AT2) and
basal, secretory and ciliated epithelial cells. Cell proportions should
beinterpreted with caution given the few patients per group, but they
showed cell diversity expansioninthe COVID-19 and LRTD groups not
observed or absent inthe LRTD group (Extended Data Fig. 4a,b).

Principal differences in COVID-19 compared to LRTD were in mye-
loid cells, particularly alveolar macrophages (Fig. 3d-f), with few differ-
encesinlymphocytes, dendritic cells or stromal cells (Supplementary
Tables 6 and 7). In alveolar macrophages, top differentially regulated
genesincluded markers of tissue residency (CIQCand CIQB)* and fac-
tors shown to mediate lung fibrosis (CCL18)*® and apoptosis (51006)*”
and myeloid activation and recruitment (SPP1)*®. Interferon-gamma
(IFN-y) response protein (/FI30) and major histocompatibility com-
plex (MHC) proteins (HLA-DRA and HLA-DRBI) were all upregulated,
indicating response to IFN-y.

This IFN-y-dominant response contrasts with type I and type
Il dominant IFN responses shown to be critical in pathogenesis in
Northern Hemisphere COVID-19 cohorts'®*, Given the prominence
ofalveolar macrophagesintheimmuneresponse andin alveolar dam-
ageidentified by IMC, we analyzed alveolar macrophage IFN response
pathways. IFN-y modules were expressed in a high proportion of cells
(Fig.3e) and strongly upregulated in COVID-19 compared to LRTD (log
fold change, 0.1136; Fig. 3f). IL6/JAK/STAT pathway was also expressed,
buttoalower extent, and the difference from LRTD was less clear (log
fold change, 0.0418). In contrast, IFN-a, IFN-f3 and IFN-A were mini-
mally expressed, without clear differences from LRTD. Thisincreased
IFN-y response could be due either to increased IFN-y production
or to increased responsiveness in macrophages. Using a pseudob-
ulk approach, IFNG (IFN-y gene) in T cells was not different between
patients with COVID-19 and patients with LRTD (Extended Data Fig. 4c).
In contrast, IFN-y response genes were consistently upregulated in
alveolar macrophages (Extended Data Fig. 4d), together implying
thattheincreased IFN-y responsein patients with COVID-19isduetoa
heightened response propensity of lung-resident macrophages rather
than simply a heightened inflammatory response. In support of this,
across other myeloid cells, IFN responses were heterogeneous, and
TNF response was upregulated inthe LRTD group in several cell types
(Extended DataFig. 4e).

Contrasting IFN responses between Malawian and other
cohorts

To compare IFN responses with Northern Hemisphere cohorts,
we integrated our Malawian single-cell data with multi-cohort
COVID-19 (five cohorts, 60 patients), LRTD (one cohort, 13 patients)

and non-LRTD (23 cohorts, 178 patients) data from the Human Lung
Cell Atlas'™® (HLCA) (Fig. 4a; cohorts summarized in Fig. 1b).

Pathways indicative of IFN-y response were increased across all cell
typesinthe Malawian cohort (Fig. 4b, orange arrow) and were particu-
larly upregulatedin alveolar macrophages (Fig. 4c). Furthermore, IFNG
(IFN-y gene) was specifically increased in the Malawian cohortin CD4
and CD8T cells versus HLCA COVID-19 and non-LRTD groups (Extended
DataFig.5a). Otherinflammatory pathways showed a mixture of upreg-
ulationand downregulationinthe Malawian cohort compared to HLCA
cohorts, including IL6/JAK/STAT (Fig.4b, green arrow) and TNF-NFKB
(Fig. 4b, blue arrow)—key targets for therapies being used in COVID-
19. Many of the other IFN response genes were more upregulated in
the HLCA cohorts or had a heterogenous distribution across cells,
although, notably, monocyte-derived macrophages generally had a
higher IFN response in HLCA COVID-19 cohorts (Extended DataFig. 5a).

As with IMC data, we explored whether bias in illness duration
explains differences in IFN responses among cohorts. Specifically, we
compared IFN gene module scores in early versus late death patients
inaUS study with these metadataavailable. If the population-specific
profiles were a function of illness stage, then, in the US cohort, we
would expect higher IFN-y levels in early death and higher IFN-o,3,A
levels in late death. Instead, IFN-«,3,A responses were significantly
stronger in early death, whereas the IFN-y response was not different
(Extended DataFig. 5b).

Although many inflammatory pathways were shared between
Malawian and Northern Hemisphere cohorts, the Malawian cohort
exhibited amplified IFN-y responses in lung-resident macrophages.

Nasal cell responses may be a useful proxy for lung cell
responses
Although the lung is the principal organ involved in severe COVID-19
disease, it would be useful to know if we can predict lung responses
using nasal or blood samples that can readily be obtained duringlife.
We performed scRNA-seq on nasal cells in eight patients (five
COVID-19, two LRTD and one non-LRTD) and peripheral blood mononu-
clear cells (PBMCs) in seven patients (four COVID-19, two LRTD and one
non-LRTD). Werecovered 8,098 nasal cells that mapped to 10 clusters
composing immune and stromal cells and 13,350 blood cells (Fig. 5a,b
and Supplementary Fig. 3). Nasal macrophages had several differen-
tially expressed (DE) genes in patients with COVID-19 versus patients
with LRTD that mirrored alveolar macrophage responses (SPP1,LGALS1
and TMSB10), including IFN-y response genes (HLA-DPBI1, HLA-DQA1
and CI1QB) (Fig. 5¢). There was also IFNG (IFN-y gene) upregulation in
T cellsin patients with COVID-19 (Fig. 5d). Pathway analysis also showed
higher levels of IFN-y response in macrophages and T cells (Fig. 5e). In
blood, there was upregulation of inflammatory (AREG) and vascular
damage (VDRGI) genesin COVID-19 inmonocytes but no upregulation
of IFNG or IFN-y response genes (Fig. 5f). Hence, in our small cohort,

Fig.2|IMCreveals animmunopathological landscape of COVID-19 in
Malawian patients driven by alveolar macrophages. a, UMAP embedding of
the cell typesidentified in the lung samples by IMC, after supervised assignment
to major cell types. Each major cell type was clustered, and resulting clusters were
annotated and merged to extract the final set of cell types. Color key for cell types
ison the right-hand side of b. Frequency of the immune cell types was identified
inthe postmortem lung samples by IMC according to clinical groups. The stacked
bar plot shows the averaged frequency of the cell types by grouping the values
from ROIs according to the clinical groups. Dashed lines highlight principal
differences in major cell populations between COVID-19 and other respiratory
disease groups. ¢, Representative denoised IMC images from one of 84 ROIs

for patients with COVID-19 show abundant CD206"&" macrophages (yellow)

and few neutrophils (CD66b, red) and monocytes (CD14, purple). Scale bar,

140 pm. d, Representative denoised IMC images from one of 19 ROIs for anon-
COVID-19 LRTD case show abundant neutrophils (CD66b, red) and few CD206"
macrophages (yellow). Scale bar, 140 um. e, Frequency of histopathological

lesions based on matched H&E and IMC analysis of postmortem lung samples
from the different clinical groups. The cellular composition and frequency of
different cell types areindicated in Extended Data Fig. 3f. Dotted lines highlight
the differences in proportions of broad response categories. f, UMAP embedding
shows good integration (using the scvi-tools package) of IMC lung datasets
from the Brazilian, US and Malawian COVID-19 cohorts based on17 common
antibody markers. g, Comparison ofimmune cell frequenciesin IMC data from
Brazilian, Malawian and US cohorts after integration shown in f; some major
cellgroup differences are highlighted by dotted lines. Dashed box highlights
apoptotic alveolar macrophages that are present only in the Malawian cohort.

h, Comparison of stromal cell frequencies in IMC data from Brazilian, Malawian
and US cohorts after integration shown in f. AM, alveolar macrophage; DAD,
diffuse alveolar macrophage; EM, effector memory; IM, interstitial macrophage,
mac, macrophage; neut, neutrophil; NK, natural killer; Treg, regulatory T; T2N,
type Il pneumocyte hyperplasia.
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nasal cells better paralleled lung response than blood cells, support-
ing previous COVID-19 (refs. 40,41) and non-COVID-19 (ref. 42) studies
that highlighted the utility of nasal cells to predict respiratoryimmune
responses.

We also assessed whether cytokine responses in plasma or nasal
fluid could distinguish the inflammatory or IFN-y response in patients
with COVID-19 versus patients with LRTD. In nasal fluid but not blood,
there was anon-significant trend toward several cytokines being higher

in patients with COVID-19 thanin patients with LRTD (Supplementary
Fig.5a,b). Using a pseudobulk approachinblood, nasal and lung cells,
there was also no difference between IFNG or other cytokine genes
between patients with COVID-19 and patients with LRTD (Supplemen-
tary Fig. 5c-e). Thus, IFN responses identified in single-cell data were
notidentified by bulk protein or transcriptomic approaches. This may
reflect the greater discriminatory power of single-cell methods given
small numbersin our study.
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Different myeloid interactions predict alveolar and vascular
damage

To assess the role of IFN-y-responding resident macrophages in
lung parenchymal pathology and neutrophil interactions in vascu-
lar pathology, and to predict molecular interactions for potential
therapeutic targets, we used cell interaction methods. First, we per-
formed unbiased receptor-ligand analysis of lung scRNA-seq data.
A high proportion of predicted interactions involved lung-resident
macrophages interacting with stromal cells and immune cells (Sup-
plementary Fig. 6), fitting with findings from lesion analysis. We then
did atargeted analysis of theinteraction between T cells and alveolar
macrophages, whichidentified a specificreceptor-ligand interaction
between /FNG from T helper cells (Th1) and IFN-y receptor 1 (/FNGRI)
on alveolar macrophages (Fig. 6a).

To validate these interactions in a spatial contextin IMC, we con-
ducted neighborhood enrichment analysis, which models cell prox-
imity to predict likely cellular interactions. In the non-LRTD group,
there were no significant interactions, whereas the LRTD group was
completely dominated by neutrophil interactions (Extended Data
Fig. 6a,b).Inthe COVID-19 group, several neighborhood enrichments
were prominent—principally CD206"¢" alveolar macrophages (with
and without SARS-CoV-2 and apoptosis) with stromal cells, apoptotic
fibroblasts and type Il pneumocytes (Fig. 6b, left, and Extended Data
Fig. 7a,b). This supports arole in tissue damage of CD206"€" mac-
rophages. In contrast, the most prominent neighborhood enrichment
for neutrophils was between SARS-CoV-2*, Arg"&" neutrophils and acti-
vated endothelial cells, implicating neutrophilsin vascular pathology
(Fig. 6b, left, and Extended Data Fig. 7c).

To spatially resolve this IFN-y response in Malawian patients, we
integrated scRNA-seq and IMC data and mapped gene expression
profiles onto IMC cells using a recently developed pipeline* (Fig. 6b).
Theintegrated output showed upregulation of IFN-y response genes,
including HLA-DR, IFI30 and APOE, and the inducible component of
the IFN-y receptor (/FNGR2) in tissue-resident CD206"€" alveolar and
interstitial macrophages (Fig. 6¢, right). Notably, the IFN-y response
was most prominentin the SARS-CoV-2* and apoptotic CD206"&" mac-
rophage populations, predicted tointeract withapoptotic fibroblasts
and type Il pneumocytes in the neighborhood analysis (Fig. 6c, left).
Thus, mapping scRNA-seq data onto our IMC datanotonly validates the
IFN-y response but also implicates these IFN-y-responding cellsin lung
stromal cell damage. Additionally, in situ hybridization staining across
patients and 138 ROIs also highlighted significantly higher numbers of
IFNGR2" cells in patients with COVID-19 thanin non-LRTD controls but
not between non-LRTD patients and patients with LRTD (Fig. 6d and
Extended Data Fig. 8a—f).IFNGR2 was predominantly in CD206"" cells,
which could be observed in diffuse alveolar damage lesions (Fig. 6e).
In contrast, the number of IFNG" cells was not significantly increased
in patients with COVID-19 (Fig. 6f), validating findings from scRNA-seq
(Extended Data Fig. 4c). Thus, multiple orthogonal methods demon-
strate an IFN-y response in CD206"¢" lung-resident macrophages, and
this is best explained by the responsiveness of these cells rather than
increased inflammation and /FNG production.

We then looked at validated interactions in COVID-19 in closer
detail in scRNA-seq data to predict interactions that might indicate
therapeutic targets. Macrophage interactions were frequently with
type Il pneumocytes (Extended Data Fig. 9a,b), in keeping with type

Il pneumocytes cells being a principal infected cell**. Several of these
interactions involved macrophage inhibitory factor (MIF) from typell
pneumocytes with CD74, CD44 and CXCR4 on macrophages, aclassical
response chain in macrophages and a key initiator of proliferation,
chemotaxis and activation*. ICAM-1 on type Il pneumocytes was pre-
dicted tosignal tointegrins (/TGB2-ITGAM) on alveolar macrophages,
an interaction involved in cellular attachment during recruitment.
Another strong predicted interaction was /L-34-CSFIR, involved in
triggering macrophage activation and chemotaxis. Reciprocally, there
were several interactions between alveolar macrophages and epithe-
lial cells that support their role in alveolar pathology, consistent with
IMC data. These included SPP1 and TGFB1 with integrin (/TGB6) in AT1
cells (Extended Data Fig. 9a), interactions implicated in lung pathol-
ogy and fibrosis*****’, We identified multiple neutrophil interactions
with endothelial cells, indicating processes involved in neutrophil
attachment to the vascular wall (for example, ITGAL-ICAM-1) and of
activation by neutrophil granule proteins (GRN-TNFRSF1A) (Extended
Data Fig. 9¢,d), providing molecular validation supporting their role
incoagulation, endothelial activation and vascular pathology, as sug-
gested by analysis of lesions using IMC.

Discussion

We conductedapostmortemstudy and characterized pulmonary, blood
and nasalimmune responses in COVID-19 using histology, scRNA-seq
and high-dimensional imaging in a Malawian population. We initially
hypothesized that an attenuated immune response to SARS-CoV-2
in SSA populations might lead to high lung viral burden and, thus, to
severe disease being the consequence of direct viral effects. This would
indicateaneed for different treatment approaches from Northern Hem-
isphere cohorts where hyperinflammation is predominant. Reassur-
ingly, instead, we found arobust immune response, comparatively low
levels of virus and many histopathological and immunological similari-
ties to non-African cohorts, eveninimmunosuppressed patients with
HIV.However, there were also differences that may have implications for
therapy. Weidentified adominant IFN-y response in lung-resident mac-
rophages, increased in comparison to alarge multi-countryintegrated
HLCA dataset. Spatially resolved interaction analysis and scRNA-seq
receptor-ligand analysis implicated these IFN-y-responding resident
macrophages in lung damage. In contrast, IL6, TNF and type I/IIl IFN
responses were not as prominent as in other cohorts.

There is crossover among the responses of different IFNs, yet
this dominant IFN-y response is noteworthy in this context as prior
infection exposures, including malaria, have been shown to induce
augmented IFN-y response”, specifically through epigenetic changes,
termed trained immunity'®, and IFN-y, enhanced by prior Bacille
Calmette-Guérin (BCG) exposure, has been implicated in clearance
of SARS-CoV-2 infection*®. Such responses may be a double-edged
sword in COVID-19, being generally protective (through more rapid
viral clearance) but, in a subset of patients, leading to accelerated
hyperinflammation and collateral tissue damage. To test the specific
hypothesis that malaria, or other infections, is the driver of these differ-
entimmune responsesin COVID-19 in SSA populations would require
larger studies of both SSA and non-SSA populations with different levels
of exposure to these infections.

Considering the potential for immediate translation, existing
therapies for COVID-19 target JAK/STAT (baricitinib), IL6 (toculimazab/

Fig. 3| Lung single-cell atlas highlights IFN-y response in alveolar
macrophages. a, UMAP visualization of 66,882 lung cells across our cohort,
colored by broad cell types cluster. b, UMAP visualization of 29,217 lung immune
cellsreclustered at a higher resolution to characterize the immune landscape,
colored by cell type. ¢, UMAP visualization 0of 37,090 stromal lung cells reclustered
atahigherresolution to characterize the stromal landscape, colored by cell
type.d, Volcano plot showing top DE genes in alveolar macrophages in COVID-19
compared to LRTD withasignificant adjusted Pvalue (<0.05) and alog fold change

of more than 0.5 using MAST followed by Bonferroni multiple test correction.

e, Dotplot showing the average gene module score of IFN response pathways
across alveolar macrophages in COVID-19 and LRTD. f, Violin plots showing the
gene module score across alveolar macrophages in gene sets associated with

the gamma, alpha, beta, lambda and IL6 response in COVID-19 compared to
LRTD. Black lines indicate the mean value across all cells, with the log fold change
between means across conditions annotated above the plots. gdT cell, gamma-
delta T cell; NK, natural killer; NS, not significant; Treg, regulatory T.
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Fig. 4 |Integration with HLCA COVID-19 cohorts highlights dominant T

cell macrophage IFN-y axis in Malawian patients with COVID-19. a, UMAP
visualization 0f 147,935 lung cells deriving from integrating cells from patients
with COVID-19, patients with LRTD and non-LRTD patients from our cohort with
cells from the HLCA from COVID-19, patients with LRTD and non-LRTD patients.
Clusters are colored by cell type. b, Heatmap showing pathway analysis for DE
genes in our COVID-19 cohort compared to the HLCA COVID-19 cohort. Shown
are the 50 canonical hallmark gene sets (for list, see Supplementary Information)

colored by the normalized enrichment score for each cell type. Gene Ontology
pathways of interest are indicated by arrows (IL6 JAK STAT3 SIGNALING, green;
TNFA SIGNALING VIANFKB, blue; INTERFERON GAMMA RESPONSE, orange).

¢, Dotplot showing the average expression of top DE genes in the lung alveolar
macrophages that contribute the highest in the hallmark gene set INTERFERON
GAMMA RESPONSE’ pathway in our COVID-19 cohort compared to the HLCA
COVID-19 cohort. NK, natural killer; Treg, regulatory T.

sarilumab) or TNF (infliximab)'>'®, JAK/STAT signaling is a conserved
pathway for IFN responses, including IFN-y*. Thus, our data, if cor-
roborated, support potential efficacy of baricitinib over other treat-
ments. Baricitinib is a small molecule (tablet) and, thus, highly suited
towide distribution®.

Our data have several limitations. Our cohortissmallandinasingle
center. We could not fully control for all variables, leaving the cause of
different immune responses uncertain, including a potential impact
of different viral variants. Although single-cell methods have a higher
capacity toresolve complex datain small sample sizes, many analyses
inour study are underpowered. Itis, thus, unclear how representative
our data are of the wider Malawian or other SSA populations. Studies

in other settings, and, ideally, large multi-center studies, are needed.
Although this would be acomplex undertaking, we have demonstrated
that single-cell methods are feasible in an SSA setting, and our study
provides useful templates. Although lung samples cannot readily be
obtained in live patients, postmortem studies have limitations: cells
may change or degrade, and pathological processes present early in
disease are likely missed. However, postmortem studies in Northern
Hemisphere settings with longer postmortem intervals identified
validated targets’. Although minimally invasive autopsy is more fea-
sible and acceptable than traditional open autopsy, blinded sampling
may attenuate the identification and sampling of areas of pathology.
However, except for large airway pathology, which was not sampled,
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Fig. 6 | Spatially resolved cell interaction analysis predicts molecular
mechanisms of alveolar and endothelial pathology. a, Circos plot showing

the top cell-cell interactions from immune cells to alveolar macrophages in
Malawian patients with COVID-19 versus Malawian patients with LRTD. Segments
are colored by cell type with ligands and receptors labeled on the outside.
Direction of the arrows shows the senders of communications that are expressing
agivenligand to the receiver cell type expressing its cognate receptor. Inner
tracks on sender segments are colored by the receiving cell type for ease of
interpretation. b, UMAP plots to show expression levels of different hallmark
proteins in different clusters by IMC and then below RNA levels from scRNA-seq
dataimputed by MaxFuse. ¢, Heatmaps showing co-localized cell types from

IMC data, providing insight into potentially interacting cell types in the lung

in patients with COVID-19; comparator LRTD and non-LRTD are in Extended
DataFig. 9.d-f, Quantification of mRNA in situ staining for IFINGR2 and IFNG in
tissue. In total, 138 ROIs were taken based on multiple sampled areas from the
left and right lung in nine patients with COVID-19, in three patients with LRTD and
intwo non-LRTD patients. Separate TMA sections were dual stained for either
IFNGR2 and MRC1 (CD206) or IFNG and CD3E mRNA by in situ hybridization,

and then the number of cells positive for each stain within respective cells

ofinterest IFINGR2in CD206" cells and IFNG in CD3E" cells was analyzed by
automatic quantification. Each dot represents the quantities of positive cellsin
anindependent tissue core that were used as replicates for analysisind and f.
These data were log transformed and analyzed using one-way ANOVA and Tukey’s
multiple comparison test to adjust for multiple comparisons and a pre-defined
alphalevel of 0.05. Colored bars show the geometric mean, and error bars show
the 95% confidence interval. d, Compared to non-LRTD patients, there were
significantly higher numbers of IFNGR2" cells in patients with COVID-19 but not in
patients with LRTD (*P = 0.0441). e, Co-staining of IFNYR2 (red) and CD206 gene
(green) using mRNA probes in lungs of patients infected with SARS-CoV-2. Lung
of patients with COVID-19 shows, in the periphery of the damaged alveolar space
fibrin (empty arrows) and in the lumen of the alveoli, cells with macrophage
morphology expressing IFNGR2 (red signal, rectangle). The insert shows a

higher magnification of the rectangle with a macrophage expressing CD206
ingreen (black arrows) and abundant IFNGR2 in red. Scale bars, 60 pm and

15 um, respectively. Hematoxylin counterstaining. f, No significant difference
was observed in quantities of IFNG* cells among the different groups (NS,
notsignificant; P=0.111). EM, effector memory; macs, macrophages; neuts,
neutrophils; Treg, regulatory T.

most COVID-19 features were identified. The studies that we used for
comparisons had considerable variationin methods and demographics
from ours, which may induce noise and bias. We used data integra-
tion methods that reduce, but do not eliminate, these. Reassuringly,
findings were validated both by comparison to other cohorts and by
orthogonal IMC data and targeted in situ staining.

Our data highlight the value of a combined scRNA-seq and
high-dimensional imaging approach. They provide spatial and recep-
tor-ligand validation for a role of IFN-y-responding tissue-resident
macrophages in alveolar damage and for neutrophils in endothelial
activation. The data highlight specific molecularinteractionsinvolvedin
these processes. If validated by further work, some of these interactions
may highlight additional plausible targets for intervention—for example,
MIF, for which several small molecules are in clinical development for
therapy in inflammatory disorders®. Our de-identified data, provided
openaccessand through visualizationtools, make animportantresource
for furthering the global understanding of COVID-19 pathogenesis and
immune responses in SSA populations, as part of the HCA.

Online content
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Methods

Ethics

This study complies with all relevant ethical regulations. The protocol
for the Malawian study was approved by the National Health Scientific
Research Committee in Malawi (protocol number 07/09/1913) and
by the Medical Veterinary Life Sciences ethics committee in Glasgow
(protocol number 200190041). The study protocol for the Brazilan
study was approved by the local research ethics committee at Tropi-
calMedicine Foundation Dr. Heitor Vieira Dourado, Manaus, Western
Brazilian Amazon (protocol numbers CAAE:30152620.1.0000.0005
and CAAE:32077020.6.0000.0005). Additional studies on this cohort
were published separately*°. We also used open-access de-identified
IMC datafrom apublished US-based autopsy study conducted at New
York Presbyterian/Weill Cornell Medicine Hospital, for which the study
protocol was approved by theinstitutional review board at Weill Cornell
Medical College®*. Informed consent was taken from the families of
deceased patients for all patients at all sites.

Patients

We recruited patients aged 45-75 years who were admitted to QECH,
Blantyre, between October 2020 and July 2021, during which there were
two epidemiological waves driven by different SARS-CoV-2 variants:
Beta (December 2020-February 2021) and Delta (May-July 2021)*..
Patients admitted with respiratory signs were routinely tested for
SARS-CoV-2 at QECH. We recruited patients into three groups based
on clinical criteria: (1) a COVID-19 group (n = 9) with clinical features
suggesting acute respiratory distress (ARDS, oxygen requirement
and respiratory signs on either clinical examination or chest X-ray
changes or both) and who had at least one nasal swab positive for
SARS-CoV-2 on admission; (2) a non-COVID-19 LRTD group (n =5)
with clinical signs of ARDS but negative for SARS-CoV-2 on admission
and during hospitalization; and (3) a no-LRTD, COVID-19-negative
group (n =2) withno oxygen requirement and no clinical signs of LRTD
and for which the admission and any subsequent nasal swabs were
negative for SARS-CoV-2 on polymerase chain reaction (PCR) (Fig. 1b
and Extended Data Table 1). Clinical, premortem and postmortem
laboratory datawere entered into REDCap; double entry was used and
checked by a third investigator, with discrepant results resolved by
consulting the original source. The study only recruited patients who
died between 24:00 and 12:00 to minimize the postmortem interval
andtoavoid doing any autopsies at night. None of the patientsincluded
had received any SARS-CoV-2 vaccine; only approximately 2% of the
Malawian population had received a first dose by study completion.

Minimally invasive autopsy

We used minimally invasive tissue sampling (MITS) to conduct autop-
sies with large-bore needle biopsies of organ samples rather than full
autopsy”. Being more culturally acceptable, MITS is widely used to
determine cause of death in pediatric studies”, showing good con-
cordance with full autopsy?*. From our ongoing pediatric MITS studies
in Malawi, we adapted protocols for adult patients with COVID-19 to
obtain tissue suitable for scRNA-seq and IMC, based on the protocol
from the Child Health and Mortality Prevention Surveillance (CHAMPS)
network but with adaptations. A larger-caliber needle (11 gauge) was
used for biopsies to obtain larger tissue samples. Samples were taken
fromthebrain through supraorbital sampling from both left and right
sides. From each lung, samples were taken from lower-middle and
upper zones from a single entry point, angling the needle to sample
different areas. Nasal cells were collected from the nasal inferior turbi-
nate using curettes (ASL Rhino-Pro, Arlington Scientific). Two curettes
were collected from each nostril, and the cells were placed immediately
into ice-cold HypoThermosol (STEMCELL Technologies). Cells were
transported oniceinacold boximmediately to thelaboratory and were
spunat300gfor 5 minfor eitherimmediate processing for scRNA-seq
orstorageinaCryoStor10 (see below). Nasal fluid was collected using

matrix strips (Nasosorption, Hunt Developments). One strip was used
per nostril. Personal protective equipment (PPE) was worn by all staff
involvedinthe autopsies and for allworkin the laboratory. Laboratory
work on samples was performed in vented laminar flow hoods.

Processing and storage of samples

Biopsies from each organ were collected in three different ways for dif-
ferent downstream workflows: (1) for paraffin embedding for histology
and IMC, put in10% neutral buffered formalin; (2) for viable cells, put
inice-cold HypoThermosol (STEMCELL Technologies) for transport
to the laboratory and then slow freeze in a CryoStor 10 (STEMCELL
Technologies); and (3) for snap-frozen cells, put in cryovials and then
seal and immediately submerge in liquid nitrogen.

Biopsies were fixed in 10% neutral buffered formalin for 4-8 h,
rinsed in water and then embedded in paraffin blocks. Samples for
viable cells wererinsed and cut into pieces of approximately 20-50 mm
and then put into ice-cold CryoStor for 15-30 min before transfer to
a-80 °C freezer in a chilled cryogenic storage container (CoolCell,
Corning).

Blood cells collected into sodium heparin tubes were separated
from plasma by spinning at 400g for 10 min. Plasma was then removed
and spun for an additional 10 min at 1,500g, and plasma was frozen
inaliquots at —80 °C. Cells were resuspended in 10% FBS in PBS, and
PBMCs were separated using Ficoll-Paque with a 27-min spin at 450g
and either used immediately for scRNA-seq or pelleted and resus-
pendedinice-cold CryoStor 10 and then moved to a-80 °C freezer in
a chilled cryogenic storage container (CoolCell, Corning). The next
day, samples were moved from the —80 °C freezer to liquid nitrogen
forlong-termstorage. Snap-frozen samples were transferred inaliquid
nitrogen dewar and then moved to liquid nitrogen storage tanks for
long-term storage.

Pathology and organ-specific scoring

Formalin-fixed tissues were paraffin embedded (FFPE) for lung, bone
marrow, brain, spleen and liver to make blocks. FFPE blocks were sec-
tioned at 2-4-pm thickness, mounted on glass slides and stained with
H&E. A medical pathologist (S.K.) reviewed tissue slides, alongside
patient histories and antemortem laboratory results per standard
clinical practice, and completed an organ-specific scoring proforma
thatincluded COVID-19 features (Supplementary Table 3). Then, for a
non-biased assessment, two additional pathologists, blinded to diag-
nosis, scored the lung pathology in all patients using systematic scor-
ing criteria. Lung tissue was scored independently by two additional
pathologists (C.A. and V.H.) who were blinded to patient history and
previous diagnoses. After individual scoring, any discrepancies were
discussed by joint review of the slides until a consensus was reached.
Thelung scoring was semi-quantitative for the parametersindicatedin
Extended DataFig.1a-c.Subsequently, we characterized each sample
with a dominant histological characteristic—for example, fibrinopu-
rulent inflammation/pneumonia in case the neutrophil infiltration
with fibrin extravasation was marked next to a mild infiltrate of lym-
phocytes, plasma cells and macrophages. Whole-tissue slides from
lung samples in our nine patients with COVID-19 can be accessed in
their entirety and visualized at various magnifications, as if they were
observed under a microscope, using our virtual microscope tool:
https://covid-atlas.cvr.gla.ac.uk (de-identified slides will be uploaded
and publicly viewable upon publication).

After scoring, in each lung biopsy, the most representative
areas were manually selected based on the scoring performed on the
H&E-stained section to create the TMAs with cores of 1 mm in diam-
eter using the TMA Grand Master (3DHISTECH) and CaseViewer soft-
ware (version 2.4.0119028). At least eight ROIs were taken from each
case (four left, four right). From the newly created TMA-FFPE blocks,
4-mm-thick sections were cut and used for downstream IMC, in situ
hybridization or bright-fieldimmunohistochemistry.
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Cause of death attribution

A panel consisting of the pathologist who reviewed the patients, res-
piratory physician, intensive care physician, infectious disease physi-
cianandtwo trainee doctors reviewed all the patients to assign a cause
of death. Codes assigning death were given according to International
Classification of Diseases (ICD) codes and using the standard coding
system used for death certification. The review consisted of a review
of the clinical notes, premortem and postmortem laboratory results
and the pathology report. Each member reviewed the documents
independently and reached an individual verdict. When there were
discrepancies, a consensus was reached through discussion.

Multiparameter cytokine assay

Cytokine levels were measured in plasma and nasal fluid samples
using Luminex with the Inflammation 20-Plex Human ProcartaPlex
panel (Thermo Fisher Scientific, EPX200-12185-901) according to the
manufacturer’s protocol and levels measured with a Luminex MagPix
device. Datawere transformed with alog, and for the visualization with
ComplexHeatmap in R with az-score by cytokine.

IMC

Sections from TMAs underwent deparaffinization, followed by antigen
retrieval at 96 °C for 30 minin Tris-EDTA at pH 8.5. Non-specific bind-
ing was blocked with 3% BSA for 45 min, followed by incubation with
lanthanide-conjugated primary antibodies (overnight at4 °C), which
werediluted in PBS with 0.5% BSA (Supplementary Information). Anti-
bodies were conjugated with metals using Maxpar Antibody Labeling
Kits (Standard BioTools) and were validated with positive control tissue
(tonsil and spleen forimmune-targeted antibodies). Slides were then
washed with 0.1% Triton X-100 in PBS, followed by nuclear staining with
iridium (1:400; Intercalator-Ir, Standard Bio Tools) for 30 minatroom
temperature and, finally, briefly (10 s) washed with ultrapure water and
airdried.Images were acquired on aHyperionimaging mass cytometer
as perthe manufacturer’sinstructions (Standard BioTools). Each TMA
corewasimagedinaseparate ROl

IMC analysis

Pre-processing, imaging denoise, cell segmentation and extraction
of single-cell features were performed using acombination of Python
and R packages, including ImcSegmentationPipeline, IMC-Denoise”
and DeepCell>***2, For the single-cell analysis, the annotated data
object was generated, and protein expression raw measurements were
normalized at the 99th percentile to remove outliers. In Scanpy (ver-
sion1.9.1), principal component analysis (PCA), batch correction and
Harmony data integration were performed to compute and plot the
uniformmanifold approximation and projection (UMAP) embeddings
(umap-learn Python package, version 0.5.3). Next, automated cell type
assignment using the Python package Astir (version 0.1.4) was applied
toidentify the major cell types expected to be found in the lung tissue
accordingtotheantibody panelused. For cell assignment with Astir, the
followinginformationto label cells based onabroad ontogeny (meta-
clusters and major celltypes) and the proteins (lineage markers) tobe
most expressed ineach expected cell type were used: (1) macrophage:
CD163,CD206,CD14,CD16,CD68, CD11c, Ibal; (2) neutrophil: CD66b,
Arginasel; (3) CD8 T cells: CD3, CDS8; (4) CD4 T cells: CD3, CD4; (5) B
cells: CD20; (6) endothelium: CD31; (7) fibroblast: Collagen1; (8) SMC:
smooth muscle actin; epithelial: PanCK; RBCs: CD235ab.

After cell assignment, cells labeled as ‘other’ or ‘unknown’ were
filtered out from downstream analysis, and the annotated data object
was subset into the major cell types identified—that is, macrophages,
neutrophils, lymphoid, vascular, epithelial and stromal—and Pheno-
graph Louvain clustering (with200 nearest neighbors) was performed
for each cell population separately using a small set of specificlineage
marker and functional proteins. The finer cell type annotation was
used to evaluate the frequency and absolute counts of cell types across

clinical groups, histopathological lesions and HIV status. Differential
abundance analysis was also performed using the scanpro and scCODA
Python packages® and the miloR R package (version 1.4.0)**. Spatial
statistics analysis based on the coordinates of the cellsin the ROlIs was
performed using the Python package Squidpy (version1.2.2)*. These
coordinates were used to plot spatial graphs and to calculate and plot
neighborhood enrichmentscores®.

Integration of Malawian IMC data with other available IMC
COVID-19 lung data

IMC COVID-19 data from postmortem lung samples from published
Brazilian” and US** fatal cohorts were integrated with the Malawian IMC
dataset. First, datasets were concatenated in Scanpy taking the ‘inner’
(intersection) of all common protein markers in the panels across
the three IMC datasets. Then, with scvi-tools®, we applied different
integration methods, such as Harmony and variational autoencoder
(VAE)-based methods, such as scVI and scANVI. Analysis of the UMAP
embedding of the integrated versus non-integrated datashowed that
Harmony and scANVI performed better, and, in downstream analysis,
we used Harmony-integrated output. Next, cell identities were stand-
ardized (label harmonization), which refers to a process of checking
thatlabels are consistent across the datasets that are being integrated.
Finally, cell frequenciesin the postmortem lungacrossall three cohorts
were plotted, and differential abundance analysis was performed using
scanpro (https://github.com/loosolab/scanpro) and scCODA Python
packages® and the miloR R package (version1.4.0).

Dissociation of lung cells from frozen samples and
single-nuclei preparation

Lung samples were dissociated both from fresh samples and
from slow-frozen samples that had been stored in liquid nitrogen.
Slow-frozen cells were defrosted inawater bathat 37 °C,and then pieces
of tissue were transferred to RPMI1640 medium with25 mMHEPES and
L-glutamine (Thermo Fisher Scientific) and 40% heat-inactivated FBS
(Thermo Fisher Scientfic). Fresh or defrosted frozen cells were then
dissociated, adaptinga previously published protocol for lung disso-
ciation®’. Samples were dissociated in abuffer containing400 mg ml™*
Liberase DL (Sigma-Aldrich), 32 U mI™ DNAse I (Roche) and 1.5% BSA
in PBS (without calcium and magnesium). The tissue was putin buffer
(four times weight:volume) in a GentleMACS C-tube (Miltenyi Biotec,
130-096-334), minced using scissors and then runon a GentleMACS dis-
sociator (MiltenyiBiotec,130-093-235) on the manufacturer’s program
‘C-lung 01_02". Dissociation was achieved by warming the tissue on an
orbital shaker in a chamber at 37 °C for 30 min and running ‘C-lung
01_02’ twice more: once at 15 min and once at 30 min. The enzyme
was neutralized by diluting with 10 ml of ice-cold 20% FBS, contain-
ing 32 U mI™ DNase. The sample was then filtered through a 100-pm
strainer (Corning, 352360), and samples were subsequently kept on
icewithall centrifuge and antibody incubationstepsat 4 °C. Cellswere
pelleted by spinning at 300g for 5 min at 4 °C. RBCs were removed by
incubating with ACK lysing buffer (Thermo Fisher Scientific, A1049201)
for 5 min at room temperature. For frozen cells, debris and dead cells
were removed using a debris removal solution (Miltenyi Biotec, 130-
109-398) and a dead cell removal kit (Miltenyi Biotec, 130-090-101),
respectively, according to the manufacturer’s protocol.

Single nuclei were isolated from snap-frozen lung tissue samples
usinga previously published method’. Tissue was kept on dry ice/liquid
nitrogen until processing was started. Tissue was placed into a Gen-
tleMACS C-tube containing 2 ml of freshly prepared nuclei extraction
buffer that contained RNAse inhibitors: 0.2 U pl™ RNaseIN Plus RNAse
inhibitor (Promega) and 0.1 U pul™' SUPERasin RNAse inhibitor (Thermo
Fisher Scientific). Dissociation was achieved by running the C-tube on
the GentleMACS dissociator on program ‘m_spleen_01' for 1 min. The
sample was filtered using a40-pm strainer and spun at 500g for 10 min
at 4 °C. Pellet was then resuspended in 500 pl of 1x ST without RNAse
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inhibitor and filtered again using a 35-um strainer. A10-pl volume was
loaded ona hemocytometer for counting.

Single-cell and single-nuclei partitioning and library
preparation

10x 3’ v3 chemistry was used for all samples. For fresh lung samples,
we loaded 10,000 cells into one channel of a 10x chip (1000120). For
fresh nasal and blood samples, we labeled the nasal and blood sam-
ples with different hashtags and pooled them at al:1ratio and loaded
10,000-20,000 cells. For frozen nuclei and single-cell samples, we
pooled samples from 3-6 different patients aiming for equal ratios
and loaded 20,000-40,000 cells per nuclei. Libraries were prepared
according to the manufacturer’s protocol and sequenced with an Illu-
minaNextSeq2000. To make these data available for analysis by others,
reads were submitted to ArrayExpress (E-MTAB-13544).

Single-cell data processing

For alltissue compartments, the datawere analyzed through the follow-
ing steps. (1) Processing of the raw reads. 5 scRNA-seq data along with
the 3’snRNA-seq runs were demultiplexed using Cell Ranger ‘mkfastq’.
Reads were mapped to a concatenated human GRCh38, SARS-CoV-2
(severe acuterespiratory syndrome coronavirus 2 isolate Wuhan-Hu-1,
GenBank MN908947.3) and HIV (humanimmunodeficiency virus 1, Gen-
Bank AF033819.3) reference genome to generate count matrices using
CellRanger ‘cellranger count’ (version 7.0). (2) Ambient RNA removal. To
reduce potential noise driven fromempty droplets or ambient RNA cap-
tured inour samples, we used the tool SoupX (version1.6.2)** and used
corrected expression matrices in subsequentanalyses. (3) Quality con-
troland filtering. Datawere analyzed using the Seurat package (version
4.3)*’inR (version 4.2) with mitochondrial gene expression thresholding
applied on individual samples. In addition, cells that were expressing
morethan150 genes were retained to maximize discovery of cell types.
(4) Normalizationand variance stabilization. Samples were merged and
normalized using the SCTransform() function, selecting the top 3,000
variable genes to drive the downstream clustering. Additionally, effects
of mitochondrial gene expression, ribosomal gene expression and cell
cycle were regressed out. (5) Integration. PCA was run on all merged
dataobjects. Theembeddings were then fed into the standard Harmony
(version 0.1.1)* integration pipeline. (6) Clustering and dimensionality
reduction. Anappropriate number of principal components (PCs) were
selected togenerate the UMAP. PCs were used to determine the k-nearest
neighbors for each cell for the shared nearest neighbor (SNN) graph
construction, followed by clustering at resolution 0.3. (7) Celltype anno-
tation. Identification of cluster markers for the lung and nasal datasets
were calculated by running FindAllMarkers() using MAST, followed by
Bonferroni multiple test correction. We specified that genes must be
expressed in atleast 25% of cells (min.pct = 0.25) with alog fold change
of 0.25. Cell types were manually annotated, leveraging canonical cell
type markers reported from existing literature and curated datasets.
Peripheral blood clusters were annotated using the consensus label
transfer algorithm SingleR (version 2.0.0)*° using the Azimuth Reference
PBMCatlas (https://zenodo.org/records/4546839). Cells with low map-
pingscoreswere reanalyzed and manually annotated asabove. (8) Gene
Ontology (GO) and pathway analysis. DE genes across conditions were
calculated using the FindMarkers() function using MAST. Genes were
defined as DEwith asignificance threshold of less than 0.05 and alog fold
change threshold of 0.25, followed by Bonferroni correction. Gene set
enrichment analysis (GSEA) was done using the fgsea package (1.3.0)*
using 50 canonical hallmark gene sets as described in the Molecular
Signatures Database (MSigDB) (version 7.5.1)°%. (9) Module scoring.
Gene module scoring was calculated using the AddModuleScore() func-
tion of gene sets taken from MSigDB and AmiGO 2 (ref. 63) that related
to IFN responses (lambda (GO:0034342), alpha (GO:0035455), IFN-3
(GO:0035456), IFN-y (GO:0034341), IL6/JAK/STAT (HALLMARK_IL6 JAK_
STAT3 SIGNALING) and TNF (HALLMARK_TNFA_SIGNALING_VIA_NFKB)).

log fold changes in module scores were calculated using thelog2 + 1 of
the differential means acrossacell type. (10) Cell-cell communication
analysis. Inference of cellular communications was computed using the
multinichenetR (version 1.0.3) package®* with alog fold change cutoff
of 0.5 being expressed in at least 10% of cells across conditions.

Hashtag demultiplexing

Hashtag reads were quantified using CITE-seq-Count (version 1.4.4)%
and demultiplexed using cellHashR (version 1.0.1)°. The following
methods were tested: BFF,,, BFF,,, (10), GMM-Demux®’, Seurat
HTODemux*’ and DropletUtils hashedDrops®, with HTODemux
resultingin the highest number of singlets that were used for analysis.

Single-nucleotide polymorphism splitting of multiplexed
runs

Demultiplexing of runs was carried out using the single-nucleotide poly-
morphism (SNP) clustering algorithm Souporcell® toidentify distinct
genotypes and assign cells to differentindividuals. For each run, we set
the number of clusters (k) to the expected number of genotypesin the
run (k=2-6), and cell barcodes were assigned to each cluster. Cluster
barcodeswerethenusedto subset the input BAM file across humanleu-
kocyte antigen (HLA) loci of the multiplexed runs, under the assumption
that these would be distinct regions of the genome for eachindividual.
Using Integrative Genomics Viewer (IGV), we visualized SNP distribu-
tionsatasetallelefrequency of 0.2 and compared the subset BAM files
to BAMfiles fromindividual runs. Iteratively, Souporcell clusters were
assigned to samples through the following rationale: (1) matching SNP
distributionstoindependent sequencingruns, (2) through mappingto
sex chromosomes or (3) through the process of elimination where an
independent sequencing run genotype was not available. In scenarios
where Souporcell failed to identify the expected number of genomes,
we assigned cluster barcodes to matching genotypes fromindependent
samplerunsregardless of expected k. After successful demultiplexing,
we identified which cells derived from which patient and were able
to proceed with downstream single-cell analyses as outlined above
(see ‘Single-cell data processing’ subsection).

HLCAintegration

The HLCA™ was filtered down, retaining cells that were taken from the
lung and lung parenchyma. These included studies originating from
the Northern Hemisphere, with lung cell data in COVID-19, pneumo-
nia and healthy controls. Cell type annotations harmonized with our
analyses (AT1, AT2, EC arterial, EC capillary, EC venous, Fibroblasts,
Innate lymphoid cell, NK, Macrophages, Monocytes, T cell lineage) were
selected. To have sufficient power for downstream analyses with our
cohort, we randomly subsampled each cell type within each disease
condition to create a normalized atlas of 100,000 cells to integrate
with our lung atlas. Processing and integration steps were followed
as described previously for the Malawian cohort using 38 PCs and a
clustering resolution of 0.2. Manual cluster annotation was performed
by running FindAlIMarkers(), leveraging canonical cell type markers.

Pseudobulking single-cell nasal and blood

To make our nasal and blood scRNA-seq comparable with Luminex
cytokine data, we assigned all cells to a unified identifier (‘pseudo_clus-
ter’) to pool cells belonging from different cell type clusters together.
Then, the average expression of the different cytokines on the Luminex
panel were visualized using ComplexHeatmap’® and a z-score of the
counts (Supplementary Fig. 5). For the statistical tests of genes associ-
ated with the IFN-y pathway, we used a Welch two-sample t-test.

Exploring viral reads in samples

Toidentify SARS-CoV-2-infected cells inour lung dataset, we quantified
the number of unique molecularidentifiers (UMIs) that were detected
after mapping with Cell Ranger across our single-cell datasets. A given
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cellwasdeemed to beinfected ifit expressed atleast two UMIs of genes
mapping to the SARS-CoV-2 genome.

Integration of Malawian COVID-19 lung IMC data with
Malawian COVID-19 lung snRNA-seq data

LungIMC and snRNA-seq data, exclusively from Malawian patients with
COVID-19, wereintegrated with the recently developed integration tool
MaxFuse, whichintegrates data across weakly linked modalities, such
as protein and RNA expression, through cross-modality matching and
iterative smoothed embedding*. Highly variable features (s.d. > 0.3 for
the RNA expression and s.d. > 0.1 for the protein expression) shared
betweenboth datasets were retrieved based on a protein-to-gene corre-
spondencelist, produced by the MaxFuse authorsand edited toinclude
specific protein markers in our IMC panel (Supplementary Informa-
tion). Cell counts used for each modality included IMC (53,762 cells) and
snRNA-seq (36,616 cells). Previously normalized and batch-corrected
IMC protein expression and snRNA-seq RNA expression were used as
MaxFuse input. All values were capped between 5% and 95% quantiles
for visualization purposes. With the resulting integration, expression
levels of IFN-y response-related genes (/FNGR1, IFNGR2, HLA-DRA,
HLA-DRBI, CIQA, APOE, IFI30 and CD74) and IFN-y signature score were
determined and plotted in the lung cells derived from the IMC data.

Insitu hybridization co-staining for CD3 and IFNG and CD206
(MRCI) and IFNGR2

In situ staining was performed on TMAs with 138 ROIs using the same
TMAs and patients used for IMC, covering multiple lung regions from
leftand right lungs in nine patients with COVID-19, three patients with
LRTD and two non-LRTD patients. Consecutive slides were used for
two dual staining panels: one for /FNG and CD3E and the other for
IFNGR2 and MRCI (CD206). Slides were stained according to the manu-
facturer’s instructions (product codes: 322452 and 322500, ACD, Bio
Techne) using the probes Hs IFNG-C1, Hs IFNGR2-C1, Hs-MRC1-C2
and Hs CD3E-C2 (product codes: 310501, 553971-C2,1269501-C1 and
583921-C2, ACD, Bio Techne) and positive and negative control probes
PPIB/POLR2A and DapB (product codes: 321641 and 320751, ACD Bio
Techne). Slides were digitized and scanned with standard settings at
x80 magpnification using the Motic EasyScan Infinity 60 digital slide
scanner (. Miller Microscopes). For quantification of positive cells,
we used HALO software (version 3.6.4134.362) with the Al module
(3.6.4134) and the FISH module (version 3.2.3) for cell detection after
deconvolution.

Immunohistochemistry

Immunohistochemistry was performed in an autostainer using the
Envision kit and DAB chromogen (product codes: K4003 and K4001,
Agilent Technologies) with anti-CD206/MRCI1 (E2L9N) or anti-CD3
antibodies (product codes: 91992, Cell Signaling Technologies, and
A0452, Agilent Technologies). Slides were digitized and scanned at x20
magnification using an Aperio VERSA 8 slide scanner (Leica Biosystems)
and Aperio VERSA 1.0.4.125 software (Leica Biosystems).

Statistics and reproducibility

No statistical method was used to predetermine sample size. We
excluded nine single-cell sequencing runs that had few tono cells and
that did not pass standard quality control metrics. Withinour lungatlas,
a population of cells (n =1,348) was excluded that we deemed to be
low-quality cells that almost exclusively derived from one multiplexed
single-nuclei sequencing runthat exhibited extremely low UMI counts.
Two non-COVID-19 patients with LRTD were excluded from IMC runs
as they had evidence of active TB lung disease because of theoretical
safety concerns, as IMC can generate aerosol. Pathologists wereblinded
to patientgroups for systematic scoring of the lung, and investigators
conducting theinsitu validation experiments undertook staining and
automated scoring on the TMAs blinded to which samples were from

which case or group. For other experiments and analyses, investigators
werenot blinded to case groups. Samples were sequenced as multiplex,
including patients from different groups, and IMC was run on TMAs as
asinglerun,inbothinstances toreduce batch effect.

Ethics and inclusion statement

Malawianresearchers with clinical, laboratory, analysis and medical eth-
ics expertise were involved throughout the research process from con-
ceptionto manuscript preparation. The main research questions were
determined by Malawian clinicaland laboratory researchers alongside
international researchers who were living and working in Malawi. Before
conducting the study, we undertook a full sensitization process for the
study with all staff on the recruiting wardsin our hospital to discuss the
study and consider the best way of sensitively conducting recruitment
andinformed consent. This work was led by two social scientists (L.S.and
D.N.), one specialized in bioethics (D.N.). Details of our approach and
considerations for recruitment are published as achapterinacasebook
separately”. Extensive research and laboratory infrastructure already
exists in Malawi through a medical university (Kamuzu University of
Health Sciences) and severalinternationally funded research programs.
Building on this, as part of this project, local research capacity was
enhanced by establishing a single-cell platform in Malawi and training
local scientists and by additional training of local scientists in tissue
processing. As aresult, all tissue processing and cell partitioning and
library preparation for single-cell and single-nuclei sequencing were
done in Malawi. The research protocol was approved by a Malawian
research ethics review committee (National Health Service Research
Ethics Committee) and, in the United Kingdom, by the University of
Glasgow Medicine Veterinary and Life Sciences Research Ethics Com-
mittee. Safety of staff was ensured by conducting renovations to create
adedicated autopsy room for COVID-19 autopsies and by providing PPE
and cleaning solutions and training all staff that were patient facing or
involved in sample collection and handling in their appropriate use.
Laboratory work was conducted inalaminar flow hood using PPE. Local
andregional research, including autopsy studies and investigative work,
were considered throughout the study and are appropriately cited.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
scRNA-seq: Raw data and processed count matrices are deposited at
the EBI ArrayExpress (accession number E-MTAB-13544). Fully pro-
cessed RDS objects of the scRNA-seq analysis and IMC can be found
through the GitHub repository (https://github.com/olympiahardy/
COSMIC_Malawi_Covid_Atlas) and through the following Zenodo
records: https://doi.org/10.5281/zenodo.13898422 (ref. 72) and
https://doi.org/10.5281/zenod0.13899297 (ref. 73).

The atlases are browsable using the Cellxgene VIP platform hosted
by the University of Glasgow at the following URLs:

Lung Atlas: https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/
COSMIC_Lung_Atlas.h5ad/

Lung Immune Atlas: https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/
view/COSMIC_Lung_Immune_Atlas.h5ad/

Lung Stromal Atlas: https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/
view/COSMIC_Lung_Stromal_Atlas.h5ad/

Nasal Atlas: https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/
COSMIC Nasal Atlas.h5ad/

Blood Atlas: https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/
COSMIC Blood Atlas.h5ad/

Histopathology slides on virtual microscope: https://covid-atlas.
cvr.gla.ac.uk

Metadata for the patients (without identifying information) are
provided in Extended Data Table1and Supplementary Tables1and 2.
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IMC: https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COS-
MIC_IMC_Lung.hSad/

Code availability

All R scripts for the scRNA-seq analysis and figure generation can
found at https://github.com/olympiahardy/COSMIC_Malawi_
Covid_Atlas. Python scripts to process the imaging mass cytometry
and figure generation can be found at https://github.com/joaolsf/
Spatial_Single_Cell_Lung_Atlas_Malawi_COVID.
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Extended Data Fig. 1| The histopathology of fatal Covid19 versus fatal non-
Covid19 LRTD and non-LRTD in Malawian cases. Histopathology in the left and
right lungs of the 16 cases was scored systematically using pre-defined criteria
by two pathologists who were blinded to clinical information. We used identical
scoring to a Brazil cohort that we have published on separately. A - Care violin
plots of the distribution of scores to highlight comparisons between different
group, central thick bars highlight the median and outer bars the interquartile
range. In all three graphs a two-sided unpaired t-test was used to compare lesion
frequencies with no correction for multiple comparisons * denotes p < 0.05
with specific p values given below. (a) Comparison of histological features
between COVID-19 (n =9) and non-COVID-19 fatal lower respiratory tract

disease (LRTD) cases (n = 5). p values for significant individual comparisons:
syncytiap = 0.008; type Il hyperplasia p = 0.016; vascular congestion

p=0.031; lymphocytes p =0.0032; granulation p = 0.034. (b) Comparison of
histological features between HIV + COVID-19 cases (n = 5) and HIV- COVID-19
cases (n=4).No comparisons had a p < 0.05 (¢) Comparison of COVID-19 cases
from Malawi cohort (n = 9) with cases from Brazil cohort (n = 20). p values for
significant individual comparisons; vascular congestion, alveolar oedema DAD
p=<0.00001; Alveolar thickening p = 0.0004; haemorrhage p = 0.0008; type Il
hyperplasia p = 0.0013; alveolar emphysema p = 0.0015; syncytia p = 0.0039.
(d) PCA of cases split by groups. (e) UMAP of same data, including HIV status.
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Extended Data Fig. 2| See next page for caption.
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Extended DataFig. 2| Cell atlas and phenotype of cell types identified in the
post-mortem lung tissue determined by Imaging Mass Cytometry (IMC).

a) Phenotype representation of each cell type identified in the lung samples.
The heatmap shows the mean expression of each protein marker in the IMC
panelin each cell type identified in the post-mortem lung tissue. (b) Frequency
oftheimmune cell types identified in the post-mortem lung samples by IMC
according to clinical groups and according to HIV status within the COVID-19
group. (c) Frequency of the stromal cell types identified in the post-mortem
lung samples by IMC according to clinical groups and according to HIV status
within the COVID-19 group. (d) Frequency and absolute numbers of SARS-CoV-2

Ag+ cellsin the myeloid and epithelial compartments, determined by IMC, in

the post-mortem lung samples according to HIV status within the COVID-19
group. (e) Cell type enrichment analysis of the cell populations identified in
Malawilung IMC data. The comparison shown is between COVID-19 versus LRTD
cases. To correct for multiple testing, the spatial false discovery rate (FDR) was
calculated and only dots with spatial FDR < 0.05 are shown. (f) Cellular landscape
of histopathological lesions based on matched H&E and IMC analysis of post-
mortem lung samples from the different clinical groups. The lesions were pooled,
and the graph shows the average proportion of each cell type in each lesion type.
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Extended Data Fig. 3| Effect of disease stage and viral variant on lung
immune composition. (a,b) Immune cell proportions from lung imaging mass
cytometry datain: (@) the Malawi cohort versus Brazil and USA early death (ED;
thatis cases who died within two weeks of illness onset) and late death (LD; that
is cases who died after 2 weeks of illness). When compared with Malawi cases,
USA early death (ED) have an even higher proportion of neutrophils and alower
proportion of macrophages than late death (LD). (b) Lung proportions in Brazil
and USA cohorts who had the ancestral variant compared with Malawi cases with
Beta and Malawi cases with Delta variant. The low proportion of neutrophils

and high proportion of CD206"#" macrophages in the Malawi cases are present

regardless of variant. (c, d) Principal component analysis of of IMC lung immune
cell composition data where cases are coloured by geographical location of the
cohort (Malawi, Brazil, USA) and either: (c) disease stage (early versus late death)
or (d) viral variant. Each dot is a separate lung sample from a different lung region
from tissue microarrays (Malawi and USA) or lung blocks (Brazil). Coloured oval
areas indicate where the majority of samples from each group cluster drawn by
visual estimation using the same colours as those for the dots as indicated in the
legend. For both graphs samples cluster principally by geographical location of
the cohort and not by disease stage or viral variant.

Nature Medicine


http://www.nature.com/naturemedicine

Resource

https://doi.org/10.1038/s41591-024-03354-3

Lung Immune Compartment

oo Alveolar macrophages Th1
Interstitial macrophages Treg
Monocyte-derived macrophages Plasma cells
Mature neutrophils B cells
Immature neutrophils Mast cells

CD8+ T cell Ribosomal high cells
NK Cycling cells

g gdT cell Erythrocytes

8 CD4+ T cells

—— 0.50

g ’ Lung Stromal Compartment

‘g AT Ciliated cells

8— 025 AT2 Basal cells

E Venous endothelium Mesothelium

Lymphatic endothelium
[T Adventitiat fibroblasts
. Alveolar fibroblasts

Smooth muscle cells
. Secretory cells

. Soup

Non-LRTD Covid19 LRTD Myofibroblasts DRlbosomal high cells
Lipofibroblasts
@
IFNG % .
°] o
£
" g
3 £,
=2 g
2 H Covid-19 §
8 24 LRTD El
4 3
X
i 2,
N 3
<
-
01
H
&
wa -

Proportion of cells

1.00

I
LRTD

Non-LRTD Covid19

m

Signature [ ]

Extended Data Fig. 4 | See next page for caption.

Gene Module

6 9

[ Group

Cluster
Alpha
Beta
Gamma
Lambda
TNF

' Signature.type
Alpha Response
1 Beta response [ |
| Gamma Response
Lambda response  Cluster

Group
COVID-19
LRTD

[7] TNF response I Alveolar macrophages
Interstitial macrophages
| Monocyte—derived macrophages
1 B CD16+ Neutrophils
CD16- Neutrophils
0 B CD8+ T cells
B Naive CD4+ T cells
NK cells
W gdT cells

I Treg
Plasma cells
[ Bcells
B Mast cells
AT
AT2

Score

Nature Medicine


http://www.nature.com/naturemedicine

Resource https://doi.org/10.1038/s41591-024-03354-3

Extended DataFig. 4 | Lung cell proportions and gene module scores. 1:1ratio, hence dots to the left of the line indicate genes with higher expression in
(a-b) Cell type proportion bar plots of lung cell types in (a) Inmune cells and COVID-19 cases and to the right of the line indicates genes with higher expression
(b) Stromal cells corresponding with Fig. 3b and ¢, grouped by disease group. inLRTD. Dots for genes for the IFN-y receptors IFNGR1 and IFNGR2 and for IFNG
(c) Violin plot to show acomparison between COVID-19 and LRTD cases of (theIFN-y gene) areindicated. (e) Heatmap showing the mean gene module score
expression of IFNG (the IFN-y gene) in a pseudo bulk analysis of lung scRNA-seq across cellsin gene sets associated with the alpha, beta, gamma, lambda and
includingall T-cells. (d) Plot shows expression levels of different IFNG module TNF response. Cell types have been grouped by COVID-19 and LRTD to show the
genes in lung alveolar macrophages between COVID-19 and LRTD cases. Line is at difference in response and module score values have been scaled between-1and 1.

Nature Medicine


http://www.nature.com/naturemedicine

Resource

A

https://doi.org/10.1038/s41591-024-03354-3

COVID-1 gHLCA vs NO_LRTDHLCA
EEENEEYSEEE =

COVID-19p1g/awj vs No-LRTDH 04 COVID-194; 4 vs COVID-19p 1010
HEEETEETEEEE = NN NN N cluster

?

Alveolar Macs T cb4  CD8
Mo-derived-Macs

Alveolar Macs T
Lung Cluster

I 4 W Alveolar macrophages
2 Interstitial macrophages
0 Monocyte derived marcophages
_o Il Neutrophils
B CD4 T cells

-4 [ Treg
NK cells
B CD8 T cells
[ AT1
AT2
] Endothelium
B Alveolar Fibroblasts
[ Adventitial Fibroblasts
M Fibroblasts

Alpha Beta Gamma

0.50
0.25 0.25

0.00

— 0.50

-0.25 0.25

o
C£4

Mo-derived-Macs

ACEB

Lambda

0.50

IFNL1
IFNL2
IFNL3
IL24
IFNLR1
IFNAR1
IFNAR2
ccL11
ccCL2
IL6
IL12B
TNF
CSF2
L2
IL1B
IL17A
CcXCL8
IL1RN
CcCL5
IL13
L7

. CcXCLA1
CcXCL12
ccCL4
IL15
IL1A
L4
IL10
IFNA1
IL21
IL27
IFNG
IL18
CCRL2
CSF1
CXCL10
CXCL11
HLA-C
IFI27
IFI30
IFI35
IF144
IF144L
IFIHA
IFIT2
IFIT3
IFITM1
IFITM2
IFITM3
IL4R
IRF1
IRF2
IRF7
IRF9
ISG15
1ISG20
LAMP3
LAP3
LGALS3BP
OASH1
OASL
OGFR

B IR

TNFRSF1A

IL6/JAK/STAT

Early
Late
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Extended DataFig. 5| Heatmap of interferon response genes in lung.

(a) Heatmaps showing the log fold change of up/down-regulated interferon
response genes taken from immunologic gene sets involved in the immune
response. Comparisons include the change in interferon response in cells
from the HLCA COVID-19 cohort compared to HLCA control cases (left), the
Malawi COVID-19 cohort compared to control cases from the HLCA (middle)
and interferon responses from our COVID-19 cohort compared to the HLCA

COVID-19 cohort (right). (b) Violin plots of IFN and IL6 response modulesin
lung tissue macrophages in USA cases (from Delorey et al) comparing early
death cases that died within 2 weeks of illness onset (early) and late death cases
that died after two weeks of illness (late). All p-values were calculated using
atwo-sample Wilcoxon test with Bonferroni multiple test correction (Alpha
p<2.2e-16 ****, Betap <2.2e-16 ***, Gamma p = 0.7141 ns, Lambda p = 0.09 **, L6
p=0.8939 ns).
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Extended Data Fig. 8 | Dual in situ staining for CD206 and IFNGR2 (inducible
IFN-y receptor) and CD3 and IFNG (IFN-y gene) for validation of IFN-y
response. 138 regions of interest were taken based on multiple sampled areas
from the left and right lung in: 9 COVID-19 cases in 3 LRTD cases and 2 non-LRTD
cases a) Shows adjacent sections of cores from a COVID-19 (Cos009) case to
demonstrate concordance of CD206 RNA and protein staining. The left has had
insitu staining (MRC1/CD206 in red and IFNGR2 in green) and the right image
shows immunohistochemistry using an anti-CD206 antibody (staining in brown),
bar300pm. b) In situ staining for CD206 and IFNGR2 in LRTD case (Cos004);

few cells are present with co-staining of IFNGR2 (green, arrow) and CD206 (red,
empty arrow), bar 30pm. ¢) In situ staining for CD206 and IFNGR2 for non-LRTD
case (Cos 016) only single positive cells are detected in general expressing
IFNGR2 (green, arrow) as well as CD206, bar 30pm. d) In situ staining for IFNG and
CD3inaLRTD case (Cos003), CD3 red signal arrows, no green signal for IFNG has
been detected, bar 60pm. e) LRTD case (Cos011), CD3, red signal, single positive
cells, no co-staining with IFNG, arrows, bar 30pm. f) Non-LRTD cases (Cos016),
CD3inred, black pigment is interpreted as anthracosis, bar 30pum.
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Extended DataFig. 9| Predicted receptor ligand interactionsin single celltype. ¢) Heatmap showing up/down-regulated interactions in COVID-19

cell data. a) Heatmap showing up/down-regulated interactions in COVID-19 compared to LRTD driven by lung endothelium to neutrophils. Coloured boxes
compared to LRTD driven by AT2 pneumonocytes to alveolar macrophages. indicate cell type with the ligand-expressing cell type followed by the receptor-
Coloured boxes indicate cell type with the ligand-expressing cell type followed expressing cell type. d) Heatmap showing up/down-regulated interactions

by the receptor-expressing cell type. b) Heatmap showing up/down-regulated in COVID-19 compared to LRTD driven by neutrophils to lung endothelium.
interactions in COVID-19 compared to LRTD driven by lung alveolar macrophages = Coloured boxes indicate cell type with the ligand-expressing cell type followed by
tolungepithelial cells and interstitial macrophages. Coloured boxes indicate cell thereceptor-expressing cell type.

type with the ligand-expressing cell type followed by the receptor-expressing
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Extended Data Table 1| Characteristics of the patients

Case Diagnosis HIV CD4 ART Sex  Age(yr) Ster'ds Sats  PMI (hr) \(I)V::::g mo'::ic-!ity :.esa:: ::/:i Nasalsc Blood sc :;l(g: NasalLx Blood Lx

3 C19 1 126 N M 55-60 1 87 9 ™ DM2, HT 7 ° ° ° [ )

5 C19 1 142 N M 55-61 1 82 5 M| DM2,HT 6 . .

6 C19 1 234 N M 50-55 1 40 4 ™~ DM2, HT 7 ° [ ° ] °

3 7 C19 1 290 Y F 50-55 1 92* 5 P Cancer 4 (] ° ) °

g 8 C19 1 301 Y F 45-50 1 77* 6 T HT,A 8 [ ] L]

9 Cc19 0 n/a n/a F 50-55 1 82 5.5 ™~ None 8 ° ° °

12 Sepsis + C19 0 n/a n/a F 60-65 0 98 9 NE None 29 (2)* ° ° ° ° °

13 C19 0 n/a n/a F 70-75 1 76 5.5 ™~ DM2, HT 20 ° ° [ )

15 C19 0 n/a n/a M 55-60 1 28 10.5 — None 5 ° ° ° °

2 E 2 Sepsis 1 missing Y F 45-50 0 88 9 N None 13 ° °
- 16 Stroke 0 n/a n/a F 60-65 0 98 2.5 — HT 9 ° °

TB 1 89 Y M 50-55 1 79 3 — None 17 [] [

4 Bac. Pneum. 0 n/a n/a F 60-65 0 92 3 N None 10 ° ° ° °

E 10 B 1 116 Y F 60-65 0 96 9.5 N HT 5 [ ] [ (] [ ] [ °
11 Lung Cancer 1 n/a Y F 50-55 0 99* 10.5 NN None 4 ° °

14 Bac. Pneum. 0 n/a n/a M 50-55 0 99 9 — None 2 ° ° ° ° ° °

Summary table of cases recruited into our study. PMI, postmortem interval in hours. Obese/Underweight indicates nutritional status, determined by a combination of abdominal
circumference measurements and mid-arm circumference measurements and based on reference data for men and women in African populations: 1, overweight; M1, obese; M4, morbidly
obese; ¥, underweight; V1, severely underweight. Pre-morbidity: DM2, type 2 diabetes mellitus; HT, hypertension. S.S. to death, symptom start to death, indicating the number of days
between the first symptoms consistent with COVID-19 (fever, cough, headache, etc.) and death. Lung IMC, imaging mass cytometry; Lung sc, lung cell single-cell RNA-seq; Nasal sc, nasal cell
single-cell RNA-seq; Blood sc, blood cell single-cell RNA-seq; Nasal Lx, nasal Luminex, for multiplexed cytokine array on nasal fluid. A dot for each of these parameters indicates that data are
available for that assay for that case.
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Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O OO0 000F%

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Data were collected using clinical reporting forms and entered into REDCap

Data analysis umap-learn Python package, v 0.5.3; ASsignmenT of sIngle-cell pRoteomics v 0.1.4; miloR R package (v 1.4.0); Spatial Quantification of
Molecular Data in Python v. 1.2.2;Seurat; multinichenetR; MaxFuse v0.0.2

All code and software used in the analysis are detailed in our GitHub repositories: https://github.com/olympiahardy/
COSMIC_Malawi_Covid_Atlas and https://github.com/joaolsf/Spatial_Single_Cell_Lung_Atlas_Malawi_COVID

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

scRNA-Seq: Raw data and processed count matrices are deposited at the EBI ArrayExpress (Accession number E-MTAB-13544 (private until publication). Fully
processed objects are deposited on Zenodo 10.5281/zeno0do.13898422 and here 10.5281/zenodo.13899297 for the scRNA-seq and IMC respectively.

Lung Atlas - https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_Lung_Atlas.h5ad/

Lung Immune Atlas - https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_Lung_lmmune_Atlas.h5ad/

Lung Stromal Atlas - https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_Lung_Stromal_Atlas.h5ad/

Nasal Atlas - https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_Nasal_Atlas.h5ad/

Blood Atlas - https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_Blood_Atlas.h5ad/

Histopathology slides on virtual microscope: https://covid-atlas.cvr.gla.ac.uk

Metadata for the cases (without identifying information) is provided in Extended Table 1.

IMC lung atlas - https://cellatlas-cxg.mvls.gla.ac.uk/COSMIC/view/COSMIC_IMC_Lung.h5ad/

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender A priori we aimed to recruit fatal cases with an even sex ratio. The sex of cases and proportions of cases in each group that
were male and female sex are indicated in the summary table and the sex of cases is indicated in metadata linked to single
cell and imaging mass cytometry data.

Reporting on race, ethnicity, or Al the cases in our study were of African ethnic background and residents in the Southern region of Malawi
other socially relevant
groupings

Population characteristics These are summarized in Extended data table 1 and supplementary table 1

Recruitment We recruited patients aged 45-75 admitted to Queen Elizabeth Central Hospital, Blantyre between October 2020 and July
2021 during which there were two epidemiological waves driven by different SARS-CoV2 variants: Beta (Dec 2020-Feb 2021)
and Delta (May-July 2021). Patients admitted with respiratory signs were routinely tested for SARS-CoV2 at QECH. We
recruited cases into three groups based on clinical criteria: 1) a Covid19 group (n=9) with clinical features suggesting acute
respiratory distress (ARDS, oxygen requirement and either respiratory signs on clinical examination or chest x-ray changes or
both) and who had at least one nasal swab positive for SARS-CoV2 on admission; 2) A non-Covid19 LRTD (lower respiratory
tract disease) group (n=5) who had clinical signs of ARDS but were negative for SARS-CoV-2 on admission and during
hospitalisation; 3) a no LRTD, COVID-19 negative group (n=2) who had no oxygen requirement and no clinical signs of LRTD
and for whom the admission and any subsequent nasal swabs were negative for SARS-CoV2 on PCR (Fig.1b, Extended Data
Table 1). The study only recruited cases who died between 12 midnight and 12 noon to minimize the postmortem interval
and to avoid doing any autopsies at night. We also aimed to balance sex and HIV status so had to decline some eligible male
and some HIV positive cases. Otherwise our cases broadly reflect the demographics of the severe cases on our ward during
this period. We do not think this selection introduced systematic bias, but cannot exclude this possibility in this small cohort.

Ethics oversight The study protocol was approved by the National Health Scientific Research Committee (NHSRC) in Malawi (Protocol number
07/09/1913) and and by the Medical Veterinary Life Sciences ethics committee in Glasgow (protocol number 200190041)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical method was used to predetermine sample size. 16 cases in total were recruited across the three clinical groups with this
number determined by logistical feasibility and by funding levels. These numbers were considered to be sufficient for these planned single
cells and high-dimensional analysis based on sample sizes in other published studies using similar methods.
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Data exclusions ~ We excluded 9 single cell sequencing runs that had few to no cells and that did not pass standard QC metrics. Within our lung atlas a
population of cells (n=1348) were excluded that we deemed to be low quality cells that almost exclusively derived from one multiplexed single
nuclei sequencing run that exhibited extremely low UMI counts. 2 non-Covid19 LRTD cases were excluded from IMC runs as they had
evidence of active TB lung disease because of theoretical safety concerns as IMC can generate aerosol.

Replication Not applicable as data were based on human samples, however key findings were validated using orthogonal methods.

Randomization  The experiments were not randomized.

Blinding Scoring by pathologists and validation experiments were done with investigators blinded to patient group.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Plants

Antibodies

Antibodies used Smooth muscle actin (Bio-Rad, Clone: 1A4, Catalogue#: MCA5781GA, Stock conc: 0.66 mg/ml, Dilution: 50) Metal channel: 89
Cd68 (Thermo, Clone: KP1, Catalogue#: MA5-13324, Stock conc: 0.48 mg/ml, Dilution: 50) Metal channel: 113
Cd235ab (BioLegend, Clone: HIR2, Catalogue#: 306615, Stock conc: 0.5 mg/ml, Dilution: 200) Metal channel: 115
Pan-cytokeratin (Biolegend, Clone: AE-1/AE-3, Catalogue#: 914204, Stock conc: 0.63 mg/ml, Dilution: 50) Metal channel: 139
Cd38 (Standard Biotools, Clone: EPR4106, Catalogue#: 3141018D, Stock conc: 0.5 mg/ml, Dilution: 50) Metal channel: 141
MHC-1 (Abcam, Clone: EMRS8-5, Cataloguet: ab70328, Stock conc: 0.27 mg/ml, Dilution: 50) Metal channel: 142
Vimentin (Standard Biotools, Clone: RV202, Catalogue#: 3143029D, Stock conc: 0.5 mg/ml, Dilution: 100) Metal channel: 143
Cd14 (Cell Signalling, Clone: D7A2T, Catalogue#: 56082BF, Stock conc: 0.65 mg/ml, Dilution: 50) Metal channel: 144
ICAM1 (Abcam, Clone: EP1442Y, Catalogue#: ab271852, Stock conc: 0.47 mg/ml, Dilution: 50) Metal channel: 145
Cd16 (Abcam, Clone: SP175, Catalogue#: ab243925-100ug, Stock conc: 0.5 mg/ml, Dilution: 50) Metal channel: 146
iNOS (Abcam, Clone: SP126, Catalogue#: ab239990, Stock conc: 0.4 mg/ml, Dilution: 50) Metal channel: 147
Cde6b (Novus, Clone: G10F5, Catalogue#: g10f5_nb100-77808, Stock conc: 0.41 mg/ml, Dilution: 50) Metal channel: 148
Cd11b (Abcam, Clone: EP1345Y, Catalogue#: ab52478, Stock conc: 0.5 mg/ml, Dilution: 50) Metal channel: 149
Cd44 (BioLegend, Clone: IM7, Catalogue#: 103001, Stock conc: 0.49 mg/ml, Dilution: 100) Metal channel: 150
Cd107a (Standard Biotools, Clone: H4A3, Cataloguet#: 3151021D, Stock conc: 0.5 mg/ml, Dilution: 100) Metal channel: 151
Cd45 (eBioscience, Clone: CD45-2B11, Catalogue#: 14-9457-82, Stock conc: 0.65 mg/ml, Dilution: 50) Metal channel: 152
Cd31 (Novus, Clone: JC/70A, Catalogue#: jc-70a_nb600-562, Stock conc: 0.53 mg/ml, Dilution: 50) Metal channel: 153
Cd11c (Standard Biotools, Clone: Polyclonal, Catalogue#: 3154025D, Stock conc: 0.5 mg/ml, Dilution: 100) Metal channel: 154
Foxp3 (Abcam, Clone: 236A/E7, Catalogue#: ab20034, Stock conc: 0.5 mg/ml, Dilution: 50) Metal channel: 155
Cd4 (Standard Biotools, Clone: EPR6855, Catalogue#: 3156033D, Stock conc: 0.5 mg/ml, Dilution: 50) Metal channel: 156
SARS-Cov2 (Novus, Clone: Polyclonal, Catalogue#: NB100-56576, Stock conc: 0.5 mg/ml, Dilution: 25) Metal channel: 158
Von Willebrand Factor (Dako, Clone: Polyclonal, Catalogue#: AO082, Stock conc: 1.27 mg/ml, Dilution: 100) Metal channel: 159
Vista (Standard Biotools, Clone: D1L2G, Catalogue#: 3160025D, Stock conc: 0.5 mg/ml, Dilution: 50) Metal channel: 160
Cd20 (Standard Biotools, Clone: H1, Catalogue#: 3161029D, Stock conc: 0.5 mg/ml, Dilution: 50) Metal channel: 161
Cd8 (eBioscience, Clone: CD8/144B, Cataloguet: 14-0085-82, Stock conc: 0.55 mg/ml, Dilution: 50) Metal channel: 162
ibal (WAKO, Clone: Polyclonal, Catalogue#: 019-19741, Stock conc: 0.42 mg/ml, Dilution: 100) Metal channel: 163
Arginase-1 (Standard Biotools, Clone: D4E3M, Catalogue#: 3164027D, Stock conc: 0.5 mg/ml, Dilution: 50) Metal channel: 164
Fibrinogen (Abcam, Clone: EPR18145-84, Catalogue#: ab227063, Stock conc: 2.93 mg/ml, Dilution: 100) Metal channel: 165
Cd74 (Standard Biotools, Clone: LN2, Catalogue#: 3166025D, Stock conc: 0.5 mg/ml, Dilution: 50) Metal channel: 166
Granzyme B (Standard Biotools, Clone: EPR20129-217, Cataloguet: 3167021D, Stock conc: 0.5 mg/ml, Dilution: 100) Metal channel:
167
Ki-67 (Abcam, Clone: B56, Catalogue#: ab279657, Stock conc: 0.56 mg/ml, Dilution: 100) Metal channel: 168
Collagen Type | (Standard Biotools, Clone: Polyclonal, Catalogue#: 3169023D, Stock conc: 0.5 mg/ml, Dilution: 100) Metal channel:
169
Cd3 (Cell Signalling, Clone: D7A6E, Cataloguet#: 85061BF, Stock conc: 0.53 mg/ml, Dilution: 50) Metal channel: 170
pERK1/2 [T202/Y204] (Standard Biotools, Clone: D13.14.4E, Catalogue#: 3171021D, Stock conc: 0.5 mg/ml, Dilution: 50) Metal
channel: 171
Cleaved Caspase 3 (Standard Biotools, Clone: 5A1E, Catalogue#: 3172023A, Stock conc: 0.5 mg/ml, Dilution: 50) Metal channel: 172
CD45RO (Standard Biotools, Clone: UCHL1, Catalogue#: 3173016D, Stock conc: 0.5 mg/ml, Dilution: 50) Metal channel: 173




Validation

MHC2 (Abcam, Clone: TAL1B5, Catalogue#: ab176408, Stock conc: 0.5 mg/ml, Dilution: 50) Metal channel: 174
Cd206 (Cell Signalling, Clone: E2L9N, Catalogue#: 91992, Stock conc: 0.43 mg/ml, Dilution: 50) Metal channel: 175
Cd163 (Bio-Rad, Clone: EDHu-1, Catalogue#: MCA1853, Stock conc: 0.9 mg/ml, Dilution: 50) Metal channel: 196

Antibodies for immune markers were optimized and validated on formalin-fixed paraffin embedded human lymph nodes. SARS-Cov2
staining was previously validated in COVID lungs from Brazilian cohort, using lungs from pneumonia patients and control lungs as
negative controls.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)

Authentication

State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for

mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines | Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance

Specimen deposition

Dating methods

Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,
export.

Indicate where the specimens have been deposited to permit free access by other researchers.
If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where

they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight

Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

Wild animals

Reporting on sex

Field-collected samples

Ethics oversight

For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Provide details on animals observed in or captured in the field, report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration
Study protocol
Data collection

Outcomes

Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.
Note where the full trial protocol can be accessed OR if not available, explain why.
Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

=
o

Yes

[] Public health

X X

|:| National security

|:| Ecosystems

X X X

|:| Crops and/or livestock

|:| Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:
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Plants

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

Seed stocks

Novel plant genotypes

Authentication

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe

the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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ChlP-seq

Data deposition

|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC)

enable peer review. Write "no longer applicable" for "Final submission" documents.

-
g
C
=
()

©
O
Et\
o
=
—
™

©
O
E,..
)

Q
wn
C
3
=
Q
>

<

Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and

lot number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell

population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state, event-related or block design.




Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures  State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.qg. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain || ROI-based [ ] Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study
|:| Functional and/or effective connectivity
|:| Graph analysis

|Z |:| Multivariate modeling or predictive analysis
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