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ABSTRACT
Ivermectin (IVM), used alongside mass treatment strategies, has been sug-
gested as a potential tool for reducing malaria transmission. The effective-
ness of IVM in shortening vector lifespan depends on the time elapsed
between the administration of IVM to the host and the blood meal taken
by the vector. This effectiveness is measured by the median effective dose
(ED50), the IVM concentration required to kill 50% of mosquitoes after a
specific host exposure period. We use a mathematical model structured by
human and vector exposure times to IVM and the model’s well-posedness
is established through semigroups theory.We calculate the basic reproduc-
tionnumber, linking it to epidemiological dynamics, and showsteady states
bifurcate at R0 = 1, governed by a constant Cbif . We identify the optimal
human exposure to IVM and intervention interval to reduce prevalence by
10% to 20%. This depends on the IVM formulation (ED50) and the target
number of campaigns in the host population.
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1. Introduction

Vector-borne diseases, such as those transmitted bymosquitoes, account for approximately 17%of the
global burden of infectious diseases, posing significant public health challenges worldwide [1, 2]. Esti-
mated to affect 247 million people and cause 619,000 deaths in 2022 [2], malaria is undoubtedly the
most serious example of a vector-borne disease, affectingmainly children under 5 years and pregnant
women. The disease occurs mainly in sub-Saharan Africa, where 95% of cases are often recorded [2].
The disease is caused by a parasite of the genus Plasmodium through the bites of mosquitoes of
the genus Anopheles. Although two vaccines, RTS,S and R21, have been licensed for malaria, their
deployment is still limited, and additional trials are ongoing, particularly for young children under
age 5 [3, 4]. Therefore, preventative measures targeting the vector population remain crucial. Tra-
ditional methods, such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS),
are commonly used to reduce mosquito density. However, these approaches offer only short-term
solutions due to growing insecticide resistance among mosquitoes, and their environmental impact
raises concerns about large-scale implementation [5–7]. It is therefore important to implement other
control tools, and ivermectin (IVM) is emerging as a new malaria control tool in that the mosquito’s
lifespan and refeeding frequency is reduced when it bites a human exposed to IVM [2, 8]. Ivermectin
is an endectocide that was first approved in 1981 as a veterinarymedicine. This drug is one of themain
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drugs used to control the filarial nematodes Onchocerca volvulus and Wuchereria bancrofti through
mass drug administration to humans in endemic areas. Due to its broad spectrum of activity against
nematodes and ectoparasites, its high potency, its long pharmacokinetic persistence in blood and
lymph and its safety in vertebrates, it has become one of the best anti-parasitic drugs and can help
reduce the burden of malaria [9–11].

The application of mathematical models to disease surveillance data can be used to address sci-
entific hypotheses and policy questions relating to disease control. The first mathematical model of
malaria was devised by Ross in 1911 [12] and later performed by Macdonald [13]. Several mathe-
matical modeling studies have explored malaria transmission dynamics, incorporating ivermectin as
a control measure. For example, Slater et al. [14, 15] indicate that mass drug administration with
IVM can reduce prevalence andmorbidity, particularly in regions with shorter transmission seasons,
particularly in combination with other tools such as antimalarials and seasonal malaria chemopre-
vention. Additionally, Zhao et al. [16] support IVM as an efficient tools by analyzing the long-term
disease transmission dynamics inKenya. They use an ordinary differential equationmodel with delay,
considering seasonality and the effect of IVM on controlling the vector population. The existence
of a backward bifurcation, as demonstrated in [17], suggests the importance of early intervention
when using ivermectin. It also indicates that stopping the spread of the disease requires minimal drug
dosage in low initial conditions but higher levels once the disease has taken hold in a population. In
addition, Wang and Zhao [18] performed a reaction diffusion model taking into account spatial het-
erogeneity and the implementation of ivermectin as a therapeutic option and compared it to LLNS
and IRS inWest Africa. The study shows that treatment plans with or without IVM contribute equally
to the number of basic reproductions but have different effects on malaria epidemic levels.

Yet, very few models have specifically addressed the time since exposure to IVM, despite the
fact that the impact of IVM on reducing the lifespan and feeding frequency of mosquitoes is highly
dependent on the duration since the host’s bloodmeal was exposed to IVM. Here we propose a dual-
structuredmathematicalmodel that takes into account the time since exposure to IVM inboth human
and mosquito populations. The model proposed enables the capture of variable IVM formulations,
typically characterized by themedian effective dose ED50. Furthermore, we conduct a detailedmathe-
matical analysis of the proposedmodel and derive the basic reproduction numberR0. The expression
emphasizes the influence of the aforementioned structural variables on crucial epidemiological traits
of the human–vector association, such as vectorial capacity.

In this paper, we first show the well-posedness of the PDE model formulated using the theory
of integrated semigroups introduced in [19–22], for which we use a classical fixed point argument
combined with some population estimates. Furthermore, we explore the existence of steady states,
which signify solutions independent of time. A disease-free equilibrium is consistently present, while
the existence of endemic equilibria is explored. To provide information on the endemic equilibrium,
we first show its existence using the Krasnoselskii fixed point argument [23, 24].We demonstrate that,
depending on the sign of a constant Cbif determined by the model parameters, a bifurcation occurs
when the bifurcation parameter, denoted by r̄0, attains the value of 1, resulting in either a Forward
or Backward bifurcation [25–27]. In this context, it means that there is a unique (resp. multiple)
endemic equilibrium if and only if r̄0 > 1 (resp. r̄0 < 1, but close enough to 1). Utilizing spectral
theory, we can ascertain the local stability of the disease-free equilibrium under the condition that
R0 < 1. However, it becomes unstable whenR0 > 1 [28–30].

Numerical simulations enabled us to quantify the impact of IVM administration in the human
host population on malaria transmission dynamics across various levels of endemicity. In this work,
an IVM intervention campaign is defined by four parameters: the number of campaigns implemented
within 1 year, the time between two successive campaigns within a year, the target proportion of
humans to be exposed to IVM during a campaign, and the median effective dose of the IVM formu-
lation. A global sensitivity analysis enables us to evaluate the relative significance of these parameters
in reducing malaria incidence. Finally, utilizing a specified IVM formulation and the targeted num-
ber of campaigns per year, we determine the optimal proportion of humans to be exposed to IVM
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during an intervention as well as the necessary time intervals between subsequent interventions to
achieve a reduction in human prevalence ranging from 10% to 20%. This is of practical importance
for identifying the minimum proportion of individuals to be exposed to IVM during a campaign.

This paper is organized as follows. Section 2 introduces themodel and the parameters description.
In Section 3, we present the main results of the mathematical analysis and the simulations conducted
to achieve the objectives of this work. Section 4 discusses the results obtained from our numerical
simulations. Finally, details on the proof of the main analytical results are provided in Appendix to
complete the document.

2. Description of themodel

2.1. Model overview

The model investigates the dynamics of human and mosquito populations interacting with the pres-
ence of IVM pressure. Subsequently, both of these populations are subjected to either exposure IVM
or no exposure at all. The subscripts h and m are respectively used for human and mosquito popu-
lations that remain unexposed to IVM, whereas subscripts h, IVM and m, IVM are employed when
these populations are exposed to IVM. At any given time t, the human population exists in four states:
susceptible to infection denoted as Sh(t) or Sh,IVM(t, τ), asymptomatic infection indicated by Ah(t)
or Ah,IVM(t, τ), symptomatic infection denoted as Ih(t) or Ih,IVM(t, τ), and recovered represented by
Rh(t) or Rh,IVM(t, τ). The variable τ corresponds to the time elapsed since the exposure of human
population to IVM. Similarly, the mosquito population exists in two states: susceptible to infection
indicated by Sm(t) or Sm,IVM(t, η), and infected denoted as Im(t) or Im,IVM(t, η). The variable η rep-
resents the time elapsed since the exposure of mosquito populations to IVM. The total number of
humans Nh and mosquitoes Nm is then given by

Nh(t) = Sh(t)+ Ah(t)+ Ih(t)+ Rh(t)+
∫ ∞

0
Sh,IVM(t, τ) dτ +

∫ ∞

0
Ah,IVM(t, τ) dτ

+
∫ ∞

0
Ih,IVM(t, τ) dτ +

∫ ∞

0
Rh,IVM(t, τ) dτ ,

Nm(t) = Sm(t)+ Im(t)+
∫ ∞

0
Sm,IVM(t, η) dη +

∫ ∞

0
Im,IVM(t, η) dη.

The total number of new infection within human population at time t is given by Sh(t)λm(t), where
λm(t) is the force of infection from mosquitoes to humans. This force of infection is defined in such
a way that

λm(t) = θβm

Nh(t)

(
Im(t)+

∫ ∞

0
Im,IVM(t, η) dη

)
,

where θ is the number of humans bitten by mosquitoes per unit of time and βm is the probability of
parasite transmission from an infected mosquito to a human.

By the same way, the total number of new infection within mosquitoes population at time t is
given by Sm(t)λh(t), where λh(t) is the force of infection from humans to mosquitoes. This force of
infection is defined by

λh(t) = θβh

Nh(t)
(Ah(t)+ Ih(t)) ,

where βh is the probability of parasite transmission from an infected human to anymosquito for each
bite.

Adequate contacts between uninfected humans exposed to IVM and susceptible mosquitoes lead
to susceptible mosquitoes newly exposed to IVM. The total number of susceptible mosquitoes that
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Figure 1. Flowdiagramof the nestedmodel.Humanpopulation: Ivermectin is applied as a preventivemeasure, i.e. to susceptible,
asymptomatic and recovered humans, who are therefore exposed at rate φ. Humans exposed to IVM lose their immune system at
a rate

∫∞
0 ρ(τ)Wh,IVM(t, τ) dτ W ∈ {S, A, I, R}, where τ represents the time since the exposure of human sub-populations to IVM

andρ(τ) captures the loss of IVMefficiency.Vectorpopulation: The vector population exposed to IVMariseswhen the initial vector
population (consisting of susceptible and infectious) bites a human population exposed to IVM. This transition is given by the forces
of infection λSh,IVM(t) and λ

I
h,IVM(t). Thus vector population exposed to IVM has a mortality rate μm,IVM(η) which depends on the

parameter η representing the time since mosquitoes are exposed to IVM.

have been newly exposed to IVM is determined by λSh,IVM(t)Sm(t), where λ
S
h,IVM(t) represents the

force that describes the exposure of mosquito to IVM without resulting in infections. This quantity
is such that

λSh,IVM(t) = θ

Nh(t)

∫ ∞

0

(
Sh,IVM(t, τ)+ Rh,IVM(t, τ)

)
dτ .

Similarly, the force, indicated as λIh,IVM, which defines the exposure of mosquitoes to IVM leading to
infections, is expressed as

λIh,IVM(t) = θ

Nh(t)

∫ ∞

0

(
Ah,IVM(t, τ)+ Ih,IVM(t, τ)

)
dτ .

Note that asymptomatic malaria infections are highly prevalent in endemic areas and only a small
percentage of asymptomatic infections will exhibit clinical symptoms [31]. This has significant
implications for malaria control programs [32].

Finally, the human–mosquito life cycle is shown in Figure 1, and the notations of all variables and
parameters are summarized in Table 1.
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Table 1. Main notations, state variables and parameters of the model.

Category Biological meanings Unit

Notations
t Time Tu
τ Time since the exposure of human populations to IVM Tu
η Time since the exposure of mosquito populations to IVM Tu
State variables
Sh Susceptible humans unexposed to IVM No unit
Ah Asymptomatic humans unexposed to IVM No unit
Ih Symptomatic humans unexposed to IVM No unit
Rh Recovered humans unexposed to IVM No unit
Sm Susceptible mosquitoes unexposed to IVM No unit
Im Infectious mosquitoes unexposed to IVM No unit
Sh,IVM Susceptible humans exposed to IVM No unit
Ah,IVM Asymptomatic humans exposed to IVM No unit
Ih,IVM Symptomatic humans and exposed to IVM No unit
Rh,IVM Recovered humans and exposed to IVM No unit
Sm,IVM Susceptible mosquitoes and exposed to IVM No unit
Im,IVM Infectious mosquitoes and exposed to IVM No unit
Nh Total humans population No unit
Nm Total mosquitoes population No unit

Parameters Value	 ;Unit
∧h Recruitment rate for humans 5;Tu−1

μh Natural mortality rate for humans 0.00224;Tu−1;
νh Progression rate of asymptomatic humans 1/30;Tu−1;
γh Recovery rate for humans 3.704 e−2;Tu−1;
kh Rate of immunity loss for recovered humans 1.469 e−2;Tu−1;
δh Disease induced death rate for humans 0.0005;Tu−1;
∧m Recruitment rate for susceptible vector 100;Tu−1;
μm Natural mortality rate for vector unexposed to IVM 0.14;Tu−1;
φ IVM injection rate Variable
μm,IVM Mortality rate for vector exposed to IVM Equation (17)
ρ Rate of IVM efficiency loss within the human population exposed to IVM Equation (18)
θ The number of human bitten by mosquitoes by unit of time 0.5;Tu−1

βh Parasite transmission probability from human to mosquitoes 0.8333;Tu−1

βm Parasite transmission probability frommosquitoes to human 0.5;Tu−1

ED50 The median effective dose Variable
nc The number of IVM intervention (Campaign) implemented within one year Variable
dc The duration of an intervention 7;Tu
tc The duration between two successive interventions Variable

Tu, Time unit; h, humans; m, mosquitoes; IVM, ivermectin. 	 Values of fixed parameters are chosen to fall within a plausible range
found in the literature.

2.2. Themathematical model

The interaction dynamics between populations of humans andmosquitoes without exposure to IVM
is described as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡh(t) = 
h + khRh(t)− (μh + φ(t)) Sh(t)− λm(t)Sh(t)+
∫ ∞

0
ρ(τ)Sh,IVM(t, τ) dτ ,

Ȧh(t) = λm(t)Sh(t)− (μh + νh + φ(t))Ah(t)+
∫ ∞

0
ρ(τ)Ah,IVM(t, τ) dτ ,

İh(t) = νhAh(t)− (μh + γh + δh) Ih(t)+
∫ ∞

0
ρ(τ)Ih,IVM(t, τ) dτ ,

Ṙh(t) = γhIh(t)− (μh + kh + φ(t))Rh(t)+
∫ ∞

0
ρ(τ)Rh,IVM(t, τ) dτ ,

(1)
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and ⎧⎨⎩Ṡm(t) = 
m − μmSm(t)−
(
λh(t)+ λSh,IVM(t)+ λIh,IVM(t)

)
Sm(t),

İm(t) = λh(t)Sm(t)− μmIm(t)−
(
λSh,IVM(t)+ λIh,IVM(t)

)
Im(t).

(2)

System (1)–(2) basically captures the classical human–mosquito interaction dynamics. Moreover,
humans may either recover at a rate of γh or succumb to the infection with a rate δh. Recovered
individuals wane their immunity at rate kh. The human population is assumed to be consistently
replenished at a steady rate
h, which can be attributed to either births or migrations, while individ-
uals also naturally pass away at a rate of μh. Asymptomatic infected humans become symptomatic
infected at rate νh. The human population that has been exposed to IVM since time τ reverts to an
unexposed state at a rate ρ(τ). The parameter ρ reflects the loss of IVM efficiency within the human
population exposed to IVM. The mosquitoes are recruited at a rate of 
m and naturally perish at a
rate of μm.

Assume that a fixed proportionφ of a humanpopulation is exposed to IVM.Therefore, the number
of humans newly exposed to IVM (i.e. at τ = 0) is given by{

Sh,IVM(t, 0) = φSh(t), Ah,IVM(t, 0) = φAh(t),
Ih,IVM(t, 0) = 0, Rh,IVM(t, 0) = φRh(t).

(3)

In System (3), it is assumed that symptomatic infections are not subjected to exposure to IVM. The
boundary conditions (3) are then coupled with the dynamics of human population exposed to IVM
such that:⎧⎪⎪⎪⎨⎪⎪⎪⎩

(∂t + ∂τ ) Sh,IVM(t, τ) = khRh,IVM(t, τ)− (μh + λm(t)) Sh,IVM(t, τ)− ρ(τ)Sh,IVM(t, τ),
(∂t + ∂τ )Ah,IVM(t, τ) = λm(t)Sh,IVM(t, τ)− (μh + νh)Ah,IVM(t, τ)− ρ(τ)Ah,IVM(t, τ),
(∂t + ∂τ ) Ih,IVM(t, τ) = νhAh,IVM(t, τ)− (μh + γh + δh) Ih,IVM(t, τ)− ρ(τ)Ih,IVM(t, τ),
(∂t + ∂τ )Rh,IVM(t, τ) = γhIh,IVM(t, τ)− (μh + kh)Rh,IVM(t, τ)− ρ(τ)Rh,IVM(t, τ).

Based on the above notations, the dynamics of mosquito newly exposed to IVM (i.e. η = 0) is given
by {

Sm,IVM(t, 0) = λSh,IVM(t)Sm(t),
Im,IVM(t, 0) = λIh,IVM(t)Sm(t)+

(
λSh,IVM(t)+ λIh,IVM(t)

)
Im(t),

combined with the dynamics of the mosquito population exposed to IVM, as defined by⎧⎨⎩
(
∂t + ∂η

)
Sm,IVM(t, η) = −μm,IVM(η)Sm,IVM(t, η)−

(
λh(t)+ λIh,IVM(t)

)
Sm,IVM(t, η),(

∂t + ∂η
)
Im,IVM(t, η) =

(
λh(t)+ λIh,IVM(t)

)
Sm,IVM(t, η)− μm,IVM(η)Im,IVM(t, η).

(4)

Within System (4), the parameter μm,IVM(η) accounts for the mortality of the mosquito population
that has been exposed to IVM since time η.

Lastly, the initial condition (at t = 0) for the mathematical model above is given by⎧⎪⎨⎪⎩
Sh(0) = Sh0, Ah(0) = Ah0, Ih(0) = Ih0, Rh(0) = Rh0, Sm(0) = Sm0, Im(0) = Im0,
Sh,IVM(0, τ) = Sh0,IVM(τ ), Ah,IVM(0, τ) = Ah0,IVM(τ ), Ih,IVM(0, τ) = Ih0,IVM(τ ),
Rh,IVM(0, τ) = Rh0,IVM(τ ), Sm,IVM(0, η) = Sm0,IVM(η), Im,IVM(0, η) = Im0,IVM(η).
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3. Main results

To deal with Models (1)–(4), we introduce vector state variables as follows: vh(t) = (Sh(t),Rh(t))T ;
uh(t) = (Ah(t), Ih(t))T ; vh,IVM(t, · ) = (Sh,IVM(t, · ),Rh,IVM(t, · ))T ; uh,IVM(t, · ) = (Ah,IVM(t, · ),
Ih,IVM(t, · ))T , where xT is the set for the transpose of x. Furthermore, let e = (1, 1); e1 = (1, 0)T ,
Id the identity matrix, and as well as the matrices

Dh =
(
μh + νh 0

−νh μh + γh + δh

)
; Kh =

(
0 kh
0 −kh

)
; E1 =

(
1 0
0 0

)
; E2 =

(
0 0
0 1

)
.

Consequently, we have

λm(t) = θβm

Nh(t)

(
Im(t)+

∫ ∞

0
Im,IVM(t, η) dη

)
, λh(t) = θβh

Nh(t)
euh(t),

λIh,IVM(t) = θβh

Nh(t)

∫ ∞

0
euh,IVM(t, τ) dτ , λSh,IVM(t) = θ

Nh(t)

∫ ∞

0
evh,IVM(t, τ) dτ ,

and systems (1)–(4) rewrite as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̇h(t) = 
he1 − λm(t)E1vh(t)− (μh + φ) vh(t)+ Khvh(t)+ γhE2uh(t)
+ ∫∞

0 ρ(τ)vh,IVM(t, τ) dτ ,

u̇h(t) = λm(t)E1vh(t)− φE1uh(t)− Dhuh(t)+
∫ ∞

0
ρ(τ)uh,IVM(t, τ) dτ ,

Ṡm(t) = 
m − μmSm(t)−
(
λh(t)+ λSh,IVM(t)+ λIh,IVM(t)

)
Sm(t),

İm(t) = λh(t)Sm(t)− μmIm(t)−
(
λSh,IVM(t)+ λIh,IVM(t)

)
Im(t),

(5)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vh,IVM(t, 0) = φvh(t),
uh,IVM(t, 0) = φE1uh(t),
Sm,IVM(t, 0) = λSh,IVM(t)Sm(t),
Im,IVM(t, 0) = λIh,IVM(t)Sm(t)+

(
λSh,IVM(t)+ λIh,IVM(t)

)
Im(t),

(∂t + ∂τ )vh,IVM(t, τ) = −λm(t)E1vh,IVM(t, τ)− (μh + ρ(τ)− Kh) vh,IVM(t, τ)
+γhE2uh,IVM(t, τ),

(∂t + ∂τ )uh,IVM(t, τ) = λm(t)E1vh,IVM(t, τ)− Dhuh,IVM(t, τ)− ρ(τ)uh,IVM(t, τ),(
∂t + ∂η

)
Sm,IVM(t, η) = −μm,IVM(η)Sm,IVM(t, η)−

(
λh(t)+ λIh,IVM(t)

)
Sm,IVM(t, η),(

∂t + ∂η
)
Im,IVM(t, η) =

(
λh(t)+ λIh,IVM(t)

)
Sm,IVM(t, η)− μm,IVM(η)Im,IVM(t, η),

(6)

supplemented together with the initial data{
vh(0) = vh0, uh(0) = uh0, Sm(0) = Sm0, Im(0) = Im0, vh,IVM(0, τ) = vh0,IVM(τ ),
uh,IVM(0, τ) = uh0,IVM(τ ), Sm,IVM(0, η) = Sm0,IVM(η), Im,IVM(0, η) = Im0,IVM(η).

(7)

In the following sections, we examine systems (5)–(7) while operating under the following general
assumption.

Assumption 3.1: (1) The parameters 
j,μj,βj, νh, γh, δh, kh, θ are positive constants for j ∈
{h,m}.
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(2) The functional parameters μm,IVM and ρ fulfill the conditions: μm,IVM ∈ L∞+ (R+); ρ ∈
L∞+ (R+), and there exist positive constantsμm0 and ρ̄ such thatμm,IVM(z) > μm0 and ρ(z) >
ρ̄ for all z ∈ R+.

(3) The initial data is such that vh0, uh0, Sm0, Im0 ≥ 0 and vh0,IVM ∈ L∞+ (R2+), uh0,IVM ∈ L∞+ (R2+),
Sm0,IVM ∈ L∞+ (R+), Im0,IVM ∈ L∞+ (R+).

3.1. Existence of semiflow and basic properties

We shall deal with the integrated semigroup approach for non-densely defined operators (e.g. see [21,
22]).

Let us set the spaces

Xh := R
2 × L1(0,∞,R2)× R

2 × L1(0,∞,R2), Xm := R × L1(0,∞,R)× R × L1(0,∞,R),

as well as positive cones

Xh,+ := R
2+ × L1(0,∞,R2+)× R

2+ × L1(0,∞,R2+),

Xm,+ := R+ × L1(0,∞,R+)× R+ × L1(0,∞,R+).

Let the linear operators Âh : D(Âh) ⊂ Xh −→ Xh, and Âm : D(Âm) ⊂ Xm −→ Xm defined as
follows:

Âh

⎛⎜⎜⎝
0R2

ψ1
0R2

ψ2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−ψ1(0)

−ψ ′
1 − (μh + ρ(τ)) ψ1

−ψ2(0)
−ψ ′

2 − (Dh + ρ(τ)Id) ψ2

⎞⎟⎟⎠ , Âm

⎛⎜⎜⎝
0R

ψ1
0R

ψ2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−ψ1(0)

−ψ ′
1 − μm,IVM(η)ψ1

−ψ2(0)
−ψ ′

2 − μm,IVM(η)ψ2

⎞⎟⎟⎠ ,

with their domain defined by

D(Âh) := {0R2} × W1,1(0,∞,R2)× {0R2} × W1,1(0,∞,R2),

D(Âm) := {0R} × W1,1(0,∞,R)× {0R} × W1,1(0,∞,R).

Subsequently, consider the Banach space X = R
6 × Xh × Xm and X+ = R

6+ × Xh,+ × Xm,+ asso-
ciated with the usual product norm ‖· ‖. Let A : D(A) ⊂ X −→ X be the linear operator defined
by

A = diag
(−(μh + φ)Id,−(φE1 + Dh),−μmId, Âh, Âm

)
,

with D(A) = R
6 × D(Âh)× D(Âm).

Hence, we have

D(A) = R
6 × {0R2} × L1(0,∞,R2)× {0R2} × L1(0,∞,R2)

× {0R} × L1(0,∞,R)× {0R} × L1(0,∞,R)

:= X0 ⊂ X .

Hence, the domain of operatorA is not dense in X , and its positive cone is defined by X0,+ = X0 ∩
X+. By setting

u(t) = (
vh(t), uh(t), Sm(t), Im(t), 0R2 , vh,IVM(t, · ),
0R2 , uh,IVM(t, · ), 0R, Sm,IVM(t, · ), 0R, Im,IVM(t, · )

)T , (8)
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the operator A is the linear part of systems (5)–(6) while the non-linear part is defined by the map
F : X −→ X such that

F(u(t)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


he1 − λm(t)E1vh(t)+ Khvh(t)+ γhE2uh(t)+ ∫∞
0 ρ(τ)Uh,IVM(t, τ) dτ

λm(t)E1vh(t)+ ∫∞
0 ρ(τ)uh,IVM(t, τ) dτ


m −
(
λh(t)+ λSh,IVM(t)+ λIh,IVM(t)

)
Sm(t)

λh(t)Sm(t)−
(
λSh,IVM(t)+ λIh,IVM(t)

)
Im(t)

φvh(t)
−λm(t)E1vh,IVM(t, ·)+ γhE2uh,IVM(t, ·)+ Khvh,IVM(t, ·)

φE1uh(t)
λm(t)E1vh,IVM(t, ·)
λSh,IVM(t)Sm(t)

−
(
λh(t)+ λIh,IVM(t)

)
Sm,IVM(t, ·)

λIh,IVM(t)Sm(t)+
(
λSh,IVM(t)+ λIh,IVM(t)

)
Im(t)(

λh(t)+ λIh,IVM(t)
)
Sm,IVM(t, ·)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

Observe that the non-linear mapF is not well defined (in the strict mathematical sense) on the space
X0, this is due to the quantity Nh in the denominator on forces of infection. To sort this out, we use
the same approach as in [27]. More precisely, for any ε > 0, we introduce the space

Xε =
{{

u(t) ∈ X0 : T (u(t)) ≥ ε
}

⊂ X0, (10)

where T : X −→ X is the operator defined by

T (u(t)) = ‖vh(t)‖R2 + ‖uh(t)‖R2 + ∥∥vh,IVM(t, · )∥∥L1(R+,R2)
+ ∥∥uh,IVM(t, · )∥∥L1(R+,R2)

.

It should be noted that for ε = 0, the spaceXε corresponds toX0 = D(A). Hence, defineFε : Xε −→
X by Fε ≡ F . Therefore, the abstract Cauchy problem associated with systems (5)–(7) writes

du
dt
(t) = Au(t)+ Fε(u(t)), t > 0, u(0) = u0 ∈ X0,+ for each ε > 0. (11)

Theorem 3.2: Suppose that Assumption 3.1 holds. Then there exists a unique globally defined strongly
continuous semiflow {U(t)}t≥0 on X+ ∩ Xε̄ for Problem (11). Where ε̄ is a positive constant such that

ε̄ ∈
(
0,


h

μh + νh + φ + γh + δh + kh + ‖ρ‖L∞

)
.

Furthermore {U(t)}t≥0 satisfies the following properties:

(i) Let

μ∗
m = min

{
μm,

∥∥μm,IVM
∥∥
L∞

}
,

for each u0 = (vh0, um0, Sm0, Im0, vh0,IVM, uh0,IVM, Sm0,IVM, Im0,IVM)
T ∈ X+ ∩ Xε̄ , one has for

all t ≥ 0:

Nh(t) ≤ Nh(0) e−μht + 
h

μh

(
1 − e−μht

)
, Nm(t) ≤ Nm(0) e−μ

∗
mt + 
h

μ∗
m

(
1 − e−μ∗

mt
)
,

Nh(t) ≥ Nh(0) e−(μh+δh)t + 
h

μh + δh

(
1 − e−(μh+δh)t

)
,
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Nm(t) ≥ Nm(0) e−(μm+‖μm,IVM‖L∞)t + 
h

μm + ∥∥μm,IVM
∥∥
L∞

(
1 − e−(μm+‖μm,IVM‖L∞)t

)
.

In addition, each sub-population is bounded such that

lim sup
t→∞

∥∥yh(t)∥∥ ≤ 
h

μh
, for yh ∈ {vh, uh, vh,IVM, uh,IVM},

lim sup
t→∞

∥∥ym(t)∥∥ ≤ 
m

μ∗
m
, for ym ∈ {Sm, Im, Sm,IVM, Im,IVM}.

(ii) Let U(t)u0 = (vh(t), uh(t), Sm(t), Im(t), 0R2 , vh,IVM(t, · ), 0R2 , uh,IVM(t, · ), 0R, Sm,IVM(t, · ),
0R, Im,IVM(t, · ))T, for each t> 0, then the following Volterra formulation holds true:

vh,IVM(t, τ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φvh(t − τ) exp
(

−
∫ τ

0
(λm(σ + t − τ)E1 + (μh + ρ(σ))Id − Kh) dσ

)
+
∫ τ

0
γhE2uh,IVM(s + t − τ , s) exp

(
−
∫ τ

s
(λm(σ + t − τ)E1

+(μh + ρ(σ))Id − Kh) dσ) ds ∀ τ < t,

vh0,IVM(τ − t) exp
(

−
∫ t

0
(λm(σ )E1 + (μh + ρ(σ + τ − t))Id − Kh) dσ

)
+
∫ t

0
γhE2uh,IVM(s, s + τ − t) exp

(
−
∫ t

s
(λm(σ )E1

+(μh + ρ(σ + τ − t))Id − Kh) dσ) ds ∀ t < τ .
(12)

uh,IVM(t, τ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φE1uh(t − τ) exp
(

−
∫ τ

0
(Dh + ρ(σ)Id) dσ

)
+
∫ τ

0
λm(s + t − τ)E1vh,IVM(s + t − τ , s)

exp
(− ∫ τ

s (Dh + ρ(σ)Id) dσ
)
ds ∀ τ < t,

uh0,IVM(τ − t) exp
(

−
∫ t

0
(Dh + ρ(σ + τ − t)Id) dσ

)
+
∫ t

0
λm(s)E1uh,IVM(s, s + τ − t)

exp
(
− ∫ t

s (Dh + ρ(σ + τ − t)Id) dσ
)
ds ∀ t < τ .

Sm,IVM(t, η)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λSh,IVM(t − η)Sm(t − η)

exp
(
− ∫ η

0

(
λh(σ + t − η)+ λIh,IVM(σ + t − η)+ μm,IVM(σ )

)
dσ

)
∀ η < t,

Sm0,IVM(η − t)
exp

(
− ∫ t

0

(
λh(σ )+ λIh,IVM(σ )+ μm,IVM(σ − η − t)

)
dσ

)
∀ t < η.

Im,IVM(t, η)
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
λIh,IVM(t − η)Sm(t − η)+

(
λSh,IVM(t − η)+ λIh,IVM(t − η)

)
Im(t − η)

)
exp

(− ∫ η
0 μm,IVM(σ ) dσ

)
+
∫ η

0

(
λh(s + t − η)+ λIh,IVM(s + t − η)

)
Sm,IVM(s + t − η, s)

exp
(− ∫ η

s μm,IVM(σ ) dσ
)
ds ∀ η < t,

Im0,IVM(η − t) exp
(

−
∫ t

0
μm,IVM(σ + η − t) dσ

)
+
∫ t

0

(
λh(s)+ λIh,IVM(s)

)
Sm,IVM(s, s + η − t)

exp
(
− ∫ t

s μm,IVM(σ + η − t) dσ
)
ds ∀ t < η.

(13)

(iii) For a mild solution u ∈ C([0, τ0],Xε ∩ X+) to (11), and for a sequence of initial data {uk0}k≥0 ∈
D(A)N such that limk→∞ ‖uk0 − u0‖X = 0, with k ≥ 0, there exists a unique solution uk ∈
C1(R+,Xε̄ ∩ X+) to the system (11), with initial data uk0 such that limk→∞ ‖uk − u‖X = 0 so
that u ∈ C(R+,Xε̄ ∩ X+).

The Volterra integral formulation within the framework of age-structured equations is a well-
established concept, e.g. see [33] and the associated references. The proof of Theorem 3.2 is given in
Section A.1.

3.2. The disease-free steady state and reproduction number

In an infection free population, the disease-free steady of systems (5)–(7), denoted here as E0, is
given by

E0 =
(
v0h, 0R2 , S0m, 0, v

0
h,IVM(·), 0L1(R+,R2+), S

0
m,IVM(·), 0L1(R+,R+)

)T
, (14)

with

N0
h = 
h

μh + φ(1 − χh)

(
1 + φ

∫ ∞

0
�h(τ ) dτ

)
,

v0h =
(


h

μh + φ(1 − χh)
, 0
)T

, v0h,IVM(τ ) =
(

φ
h�h(τ )

μh + φ(1 − χh)
, 0
)T

,

S0m = 
m

μm + λ0h[φ]
, S0m,IVM(η) = S0mλ

0
h[φ]�m(η),

and where

�m(η) = e−
∫ η
0 μm,IVM(s) ds, �h(τ ) = e−

∫ τ
0 (μh+ρ(s)) ds,

χh =
∫ ∞

0
ρ(τ)�h(τ ) dτ , λ0h[φ] = θ

φ
∫∞
0 �h(τ ) dτ

1 + φ
∫∞
0 �h(τ ) dτ

.

Furthermore, �m(η) represents the survival probability that of a mosquito η time after exposure to
IVM. Similarly, �h(τ ) quantifies the probability that a human remains in the IVM class τ -time post
exposure. Therefore, the quantity χh represents the average rate of loss of IVM efficiency within the
human population, and λ0h[φ] the rate at which mosquitoes come into contact with IVM (by biting
a human) without leading to infections. It is important to emphasize that those parameters are well-
defined constants because Assumption 3.1 holds, and particularly we haveχh ≤ 1.We refer to Section
A.2 for the computation of the disease-free steady state.
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To calculate the basic reproduction numberR0, we employ the next-generation operator method-
ology, e.g. see [34, 35]. During the initial phase of the epidemic, the population dynamics can be
approximated using the linearized equations around the disease-free steady state E0. As the linearized
equation for the infective population does not involve other sub-populations, we establish that the
next-generation operator G is defined from (R2 × L1((0,∞),R2))× (R × L1((0,∞),R)) to itself by

G

⎛⎜⎜⎝
(
ψh
ψ̄h

)
(
ϕm
ϕ̄m

)
⎞⎟⎟⎠ =

(
A B
C 0R×L1(R+,R)

)⎛⎜⎜⎝
(
ψh
ψ̄h

)
(
ϕm
ϕ̄m

)
⎞⎟⎟⎠ , (15)

where the operators A : R
2 × L1((0,∞),R2) → R

2 × L1((0,∞),R2), B : R × L1((0,∞),R) →
R
2 × L1((0,∞),R2), and C : R

2 × L1((0,∞),R2) → R × L1((0,∞),R) are as follows:

A
(
ψh
ψ̄h

)
=
(∫∞

0 ρ(τ)�h(τ )ψ̄h(τ ) dτ
0L1(R+,R2)

)
,

B
(
ϕm
ϕ̄m

)
= θβm

N0
h

(
ϕm

μm + λ0h[φ]
+
∫ ∞

0
�m(η)ϕ̄m(η) dη

)(
E1v0h

E1v0h,IVM

)
,

C
(
ψh
ψ̄h

)
= θβh

N0
h

(
e(φE1 + Dh)

−1ψhS0m(
e(φE1 + Dh)

−1ψh + ∫∞
0 e�h(τ )ψ̄h(τ ) dτ

)
S0m,IVM

)
,

with

�h(τ ) = e−
∫ τ
0 (ρ(a)Id+Dh) da.

Note that �h(τ ) represents the survival probability that of a human τ time after infection. It is worth
noting that the operators B and C are referred to as the net reproduction operators [34, 35]. The
operator B enables the calculation of the total count of new human infections caused by an infective
mosquito population. In contrast, the operator C calculates the count of new infected mosquitoes
resulting froman infective humanpopulation. Finally, the operatorA allows in quantifying the overall
decrease in IVM efficiency within the human population that has been exposed to IVM.

Consequently, based on the above estimates,R0 is characterized as the spectral radius of the next-
generation operator G, that is

R0 = r(G).

For a comprehensive understanding of the computation of G, please refer to Section A.3.
An explicit expression ofR0 is quite difficult to obtain within the context of the model developed

here. However, without the effect of IVM, the next-generation operator G rewrites as a 3 × 3 matrix
as follows:

G =
⎛⎝ 02×2

θβm
μm

(
1
0

)
θβh


m/μm

h/μh

eD−1
h 0

⎞⎠ .

From which, we find that

R2
0 = r(G2) = θ2

βmβh

μm


m/μm


h/μh

μh + νh + γh + δh

(μh + νh)(μh + γh + δh)
. (16)

The above expression aligns with the R0 value commonly associated with the classical
human–mosquito transmission model, without accounting for ivermectin.
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3.3. Threshold dynamics

Here we state the threshold dynamics of systems (5)–(7) in relation toR0 as follows:

Theorem 3.3: Let Assumption 3.1 be satisfied.

(i) IfR0 < 1, the disease-free steady state E0 is the unique equilibrium of systems (5)–(7).
(ii) IfR0 > 1, alongside the disease-free steady state E0, systems (5)–(7) possess at least one positive

(or endemic) equilibrium.
(iii) The disease-free steady state E0 is locally asymptotically stable when R0 < 1 and it becomes

unstable whenR0 > 1.

Details on the proof of Theorem 3.3 are given in Sections A.4 and A.5.
According to Theorem 3.3, it is established that when R0 > 1, systems (5)–(7) possess at least

one positive equilibrium. Nonetheless, it is important to note that the bifurcation of an endemic
equilibrium atR0 = 1 is typically observed in the context of vector-borne diseases [27, 36].

Let us introduce the parameter,

r̄0 = θ2βhβm

mS0heM1e1(

μmS0h + θ
∫∞
0 S0h,IVM(τ ) dτ

)2 ,
withM1 a matrix such that

M1 =
(
φE1 + Dh −

∫ ∞

0
φρ(τ)�h(τ )E1 dτ

)−1 (
E1 +

∫ ∞

0

∫ ∞

0
φρ(τ)

�h(τ )

�h(σ )
E1l(0, τ) dσ dτ

)
,

where �(λ, τ) = e−
∫ τ
0 (λE1+μh+ρ(σ)−Kh) dσ .

Therefore, we can determine the existence of a positive equilibrium for systems (5)–(7) by proving
that there exists a positive value of λ such that

Ḡ(r̄0, λ) = 1,

with Ḡ defined by

Ḡ(r̄0, λ) = θ2βhβm
meM1g1(λ)[
μm (λeM1 + e) g1(λ)+ λeM1g1(λ)+ g2(λ)

] [
μm (λeM1 + e) g1(λ)+ g2(λ)

] ,
wherein

g1(λ) =
(
λE1 + (μh + φ) I d − Kh − λγhE2M1 −

∫ ∞

0
φρ(τ)l(0, τ) dτ

− λ

∫ ∞

0

∫ τ

0
φγhρ(τ)

l(0, τ)
l(0, σ)

E2�h(τ )E1M1 dσ dτ

−λ
∫ ∞

0

∫ τ

0

∫ σ

0
φγhρ(τ)

l(0, τ)
l(0, σ)

E2
�h(σ )

�h(ς)
E2l(0, ς) dς dσ dτ

)−1

he1

and

g2(λ) = θβhλ

∫ ∞

0
e
[
φ�h(τ )E1M1 +

∫ τ

0
φ
�h(τ )

�h(σ )
E1l(0, τ)

]
g1(λ) dτ

+ θ

∫ ∞

0
e
[
�(0, τ)φg1(λ)+ γhλ

∫ τ

0
φ
�(0, τ)
�(0, σ)

E2 (�(σ )E1M1
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+
∫ σ

0

�h(σ )

�h(ς)
E1l(0, ς) dς

)
g1(λ) dσ

]
dτ .

Next, let us also introduce the following bifurcation parameter:

Cbif = S0h [2μmeM1 + eM1 + 2μmeM2 + 2M3] e1
μmS0h + ∫∞

0 θS0h,IVM(τ ) dτ
− eM1M2e1

eM1e1
,

withM2 andM3 being matrices such that

M2 =
(
γhE2M1 +

∫ ∞

0

∫ τ

0
φγhρ(τ)

l(0, τ)
l(0, σ)

E2�h(τ )E1M1 dσ dτ

+
∫ ∞

0

∫ τ

0

∫ σ

0
φγhρ(τ)

l(0, τ)
l(0, σ)

E2
�h(σ )

�h(ς)
E2l(0, ς) dς dσ dτ − E1

)
×
(
(μh + φ) I d − Kh −

∫ ∞

0
φρ(τ)l(0, τ) dτ

)−1

and

M3 = θβh

∫ ∞

0
e
[
φ�h(τ )E1M1 +

∫ τ

0
φ
�h(τ )

�h(σ )
E1l(0, τ)

]
dτ + θ

∫ ∞

0
e�(0, τ)φ dτ

+ θ

∫ ∞

0
e
[
γh

∫ τ

0
φ
�(0, τ)
�(0, σ)

E2
(
�(σ)E1M1 +

∫ σ

0

�h(σ )

�h(ς)
E1l(0, ς) dς

)
dσ .

Afterward, the subsequent outcome pertaining to the existence and bifurcation of the positive
equilibrium is derived.

Theorem 3.4: Let Assumption 3.1 be satisfied. Then

(1) If Cbif > 0, there is a backward bifurcation at rate r̄0 = 1, i.e. systems (5)–(7) admit two positive
equilibria for r̄0 < 1 close enough to 1.

(2) If Cbif < 0, there is a forward bifurcation at rate r̄0 = 1, systems (5)–(7) admit a unique positive
equilibrium for r̄0 < 1 close enough to 1.

Details on the proof of Theorem 3.4 are given in Section A.6.
In the absence of the effect of IVM, i.e. when φ = 0, the parameter r̄0 becomes

r̄0 = θ2βhβm

meM1e1
μ2
mS

0
h

.

In such a configuration, it is important to observe that the bifurcation parameter r̄0 corresponds to
the expression of R2

0 without considering the impact of IVM, as given in (16). Furthermore, in this
scenario, the bifurcation parameter rewrites

Cbif = −
m

μ2
m

μh + νh + γh + δh


h

(
1 − μ3

h(1 + 2μm)ā + 2μhμm
h(1 − ā)
μm


2
h(μh + νh)(μh + γh + δh)

)
,

wherein ā = γhνh
(μh+νh)(μh+γh+δh) .
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Figure 2. (Left) An ivermectin implementation strategies: nc the number of interventions implemented within 1 year, dc the dura-
tion of one intervention and tc the duration between two successive interventions. (Right) The mortality rate μm,IVM(η) of vector
η-time post exposure to IVM for different values of the median effective dose ED50.

3.4. Model parameters, numerical illustrations and global sensitivity analysis

For numerical illustrations, we consider the majority of parameters in Models (1)–(4) as fixed con-
stants, as outlined in Table 1. However, we treat the natural mortality rateμm,IVM for vectors exposed
to IVM, and the rate ρ of IVM efficiency loss within the human population exposed to IVM as vari-
able parameters. Additionally, while assuming the rate φ of humans exposure to IVM as a constant
helps for the mathematical analysis of the proposed model, it is worth noting that for our numerical
illustrations, we consider φ as a time-dependent parameter. Taking φ as a time-dependent parameter
in our numerical illustrations reflects a practical approach, allowing us to capture realistic scenarios
and better simulate the dynamic nature of interventions in practical situations.

Model parameters.More precisely, we set the duration of an intervention, denoted as dc, to a fixed
value of 7 days. Based on the number of interventions implemented within 1 year, denoted as nc,
and the duration between two successive interventions, denoted as tc, we define the rate φ(t) of
human exposure to IVM at time t. The profile of this parameter is illustrated in Figure 2, capturing
the dynamic nature of an intervention strategy.

Define pm,IVM(σ ) as the proportion of mosquitoes that perish after biting a human exposed to
IVM since time σ . We assume that

pm,IVM(σ ) = 0.9

1 +
(

σ
ED50

)−10 ,

where ED50 is the median effective dose. Therefore, the mortality rate μm,IVM(η) of vector η-time
post exposure to IVM is such that Figure 2

μm,IVM(η) = μm − log
(
1 − pm,IVM(η)

)
, (17)

where μm is the base line vector mortality rate. Finally, we assume that the rate ρ(τ) at which the
effect of IVM vanishes within a human τ -time post exposure is such that

ρ(τ) =
{
α, τ > ED50,
0 elsewhere.

(18)

Note that in the above formulation, the overall average duration of time a human is under IVM after
exposure is ED50. Specifically, let J(τ ) = exp (− ∫ τ

0 ρ(σ) dσ) the probability that a human exposed
to IVM remains in such a state τ -time post exposure (excluding other mechanisms like human nat-
ural mortality). The average duration of time under the effect of IVM is given by

∫∞
0 J(τ ) dτ =



16 F. J. DONGMO ET AL.

Figure 3. Effect of the IVM strategy on the epidemic outbreak. (A) The IVM campaign consists of 1 cycle, with 45 days between
successive cycles, and the IVM formulation is with ED50 = 60. The campaign begins on day 120 and by the end of each cycle, 95%
of the target population is covered by IVM. (B) The impact of the IVM campaign on the human dynamics. (C) The impact of the IVM
campaign on themosquitoes dynamics. (D–F) Similar to panels A–C, but with an IVM campaign of two cycles. (G–I) Similar to panels
A–C, but with an IVM campaign of three cycles.

ED50 + 1/α. We choose, for example, α = 10 such that
∫∞
0 J(τ ) dτ = ED50 + 1/α ≈ ED50. The

specific value of α becomes less significant as long as the last approximation holds.
Baseline simulated dynamics. We first use models (1)–(4) to describe the outbreak of the epi-

demics for a given IVM intervention strategy within the human population. We assume ED50 = 60
days and other parameters defined previously and summarized in Table 1. In each simulated scenario,
the IVM intervention starts at t = 120 days, and the population dynamics reach a state of epidemio-
logical equilibrium (Figure 3). Each intervention campaign lasts fordc = 7 days, and the time between
two successive campaigns is tc = 45 days.

With a single IVM intervention campaign (Figures 3a–c), the prevalence of symptomatic cases is
reduced by more than 20%, relative to the prevalence before the intervention. However, this reduc-
tion in prevalence is observed for a relatively short duration. The configuration remains essentially
unchanged when increasing the number of IVM intervention campaigns to 2 (Figures 3d–f) or 3
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Figure 4. Sensitivity indices of the symptomatic cases� = ∫ T
0 [Ih(t)+ Ih,IVM(t, τ) dτ ] dt, over T = 300 days. The shaded parts of

bars correspond to the main indices (effect of the factor alone). The complete bars, including both the shaded and unshaded parts,
correspond to the effect of the factor in interaction with all other factors.

(Figures 3g–i). Nevertheless, the duration over which the intervention sustains a significant reduc-
tion in the prevalence of symptomatic cases substantially increases with the number of intervention
campaigns.

Global sensitivity analysis. Global sensitivity analysis aims to assess the relative significance of
model parameters by dividing the variance of output variables into components attributed to the
primary effects of individual parameters and their interactions of higher orders. In this study, we
explore the sensitivity of the symptomatic cases, given by � = ∫ T

0 [Ih(t)+ Ih,IVM(t, τ) dτ ] dt, over
a time horizon T = 300 days. Initially, the model is assumed at the equilibrium without the effect
of IVM. The focus is on evaluating the impact of four parameters: tc, ED50, φ and nc. The range of
variation is detailed in Table 1. To estimate the sensitivity indices, an analysis of variance (ANOVA),
inclusive of third-order interactions, is fitted to simulation-generated data. It is essential to high-
light that this ANOVA exhibits a high level of fitness, explaining more than 99% of the variance.
The implementation of the model and the ANOVA analysis are both conducted with R software
(http://www.r-project.org/). The sensitivity analyses reveal that the most influential factor affecting
the symptomatic cases� is the median effective dose of the IVM formulation (ED50), contributing to
45% of the variance (Figure 4). Followed closely are the target proportion of humans to be exposed to
IVM during a campaign (φ) and the number of successive IVM campaigns (nc), accounting for 19%
and 16% of the variance respectively.

Optimal IVM campaign. In the context of a specified number nc of IVM intervention campaigns,
practical interest lies in identifying the minimum proportion of individuals to be exposed to IVM
during a campaign as well as the corresponding time between two successive cycles tc. One may aim
to achieve, for example, a 10% reduction in prevalence. The effectiveness of such an optimal campaign
is closely tied to the formulation of IVM, as captured by the ED50. To attain a 10% reduction in
prevalence with ED50 = 15 days, a minimum of nc = 3 cycles is required (Figure 5 a). The optimal
campaign involves exposing a minimal proportion of around 80% of the population to IVM, with the
time between cycles tc falling within the range of 20–30 days (Figure 5 a). However, even with nc = 3
cycles, identifying an optimal strategy to achieve a reduction of at least 20% in prevalence remains
unfeasible with an IVM formulation such that ED50 = 15 days (Figure 5 d).When the ED50 is set at 30
days, a minimum of nc = 2 cycles is required to discern an optimal IVM strategy for a 10% reduction
in prevalence (Figure 5 b). In contrast, achieving a reduction of at least 20% in prevalence demands at
least nc = 3 cycles for the identification of an optimal IVM strategy (Figure 5 e). Nevertheless, with
a more prolonged effect of IVM featuring ED50 = 100 days, achieving an optimal IVM strategy for
a 10% or 20% reduction in prevalence is always feasible, even with just nc = 1 cycle (Figure 5 c,f).
Moreover, given the prolonged impact of IVM, the minimum percentage of individuals requiring
exposure to IVM during a campaign remains relatively small and quite similar for both two and three

http://www.r-project.org/
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Figure 5. Line 1: Optimizing the IVM campaign to ensure a minimal reduction of 10% in prevalence relative to the prevalence
before the intervention. For a fixed number of cycles nc targeted for the IVM campaign, each figure panel determines whether we
can find (i) the minimum proportion of humans to enroll during each IVM campaign to achieve the target prevalence reduction
and (ii) the corresponding time between two successive cycles, denoted as tc . Various IVM formulations are considered, with ED50 ∈
{15, 30, 100}. Line 2: The same as in Line 1 but with the target reduction in prevalence set at 20%.

cycles (Figures 5c,f). This proportion is higher when implementing the optimal IVM campaign with
only one cycle (Figures 5c,f).

4. Discussion

IVM can be implemented as public health interventions to mitigate the malaria burden. Here, we
explicitly factor in the time since human and vectors are exposed to IVM in the identification of the
optimal deployment campaign, i.e. the optimal proportion of humans to be exposed to IVM during
an intervention, as well as the time interval between subsequent interventions required to achieve a
reduction in human prevalence.

The model formulation enables us to easily capture the variation in the IVM effect based on the
duration since exposure. Additionally, diverse IVM formulations, as represented by themedian effec-
tive dose ED50, can be explored. The presented model enables the characterization of the optimal
pairing based on the specific IVM formulation (Figure 5). For a relatively short-lasting effect of the
IVM formulation, up to three interventions are necessary to ensure subsequent prevalence reduc-
tion. In contrast, a long-lasting effect of the formulation allows for a reduction in the number of
interventions needed (Figure 5).

In this paper, we established the mathematical well-posedness of the model using classical inte-
grated semigroups theory. Our analysis highlights the basic reproduction numberR0 of the proposed
model as the spectral radius of a next-generation operator given by (A16). This operator comprises
components that facilitate (i) the computation of the total count of new human infections caused by
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Figure 6. The basic reproduction numberR0 varies with the proportion of humans exposed to IVM. The exposure rate is assumed
to be constant within the human host population.

an infective mosquito population, (ii) the count of new infected mosquitoes resulting from an infec-
tive human population and (iii) the quantification of the overall decrease in IVM efficiency within
the human population exposed to IVM. Due to the structure of the next-generation operator, espe-
cially considering the lost efficiency of IVMwithin the exposed human population, obtaining a more
explicit expression for theR0 within the context of the developedmodel becomes challenging. More-
over, in our analysis, we uncover two distinct behaviors surrounding R0 = 1. In the first scenario,
characterized by a forward bifurcation, an epidemic is only possible whenR0 > 1. In the second sce-
nario, marked by a backward bifurcation, an epidemic can emerge if R0 < 1, particularly when R0
is in close proximity to 1.

While deriving an explicit expression for the R0 within the framework of the proposed model
is challenging, numerical simulations can aid in evaluating the impact of IVM on the R0. Indeed,
assuming intervention campaigns occur at a constant rate φ, Figure 6 illustrates that even with a rel-
atively small proportion of humans exposed to IVM, such a campaign could have a positive effect
in reducing the malaria burden within a short time period. However, it is important to note that
this effect may not necessarily persist for an extended duration, as in practice, IVM campaigns are
not consistently maintained at a constant rate within the human host population. Therefore, opti-
mizing IVM campaigns is crucial for ensuring a sustainable deployment and control of the malaria
burden. Indeed, as depicted in Figure 5(f), with an IVM formulation where the median effective dose
ED50 = 100 days, an optimal intervention campaign may involve designing nc = 2 cycles, tc = 30
days between two successive cycles, and exposing at least 30% of the target population to IVM. This
strategy aims to ensure a minimum of 20% reduction in prevalence. Such an optimal campaign can
maintain the reduction in prevalence for a relatively extended time period, especially when increasing
the proportion of the targeted human host population to be exposed to IVM (Figure 7).

The size of endemicity plays a crucial role in the implementation of an IVM campaign. For exam-
ple, consider an IVM strategy consisting of three cycles, with 45 days between each cycle (Figure 8 a).
In a moderate endemic setting, this approach can sustainably reduce the prevalence of symptomatic
cases bymore than 20% compared to the pre-intervention levels (Figure 8 b). However, as endemicity
increases, the effectiveness of this strategy diminishes significantly (Figures 8c,d). The model pre-
sented here does not consider the chronological age heterogeneity of the human population which is
a limitation given that the majority of clinical cases are observed in the younger population [2]. The
primary human infectious reservoir is believed to predominantly comprise children aged 5–15 [37,
38]. Furthermore, the production of gametocytes within a human host is closely linked to the time
post-infection [39], and mosquito senescence is a crucial factor for a comprehensive understanding
of the overall dynamics [27, 40]. Therefore, incorporating additional structuring variables such as the
chronological and infection ages of both human andmosquito populations, along with the time since
recovery to depict potential waning immunity in humans, would be appropriate for a more realis-
tic quantification of the impact of IVM on malaria transmission. Another potential limitation is the
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Figure 7. Effect of an optimal campaign to ensure aminimal reduction of 20% in prevalence. Here, the IVM formulation is such that
ED50 = 100 days. An optimal intervention campaign involves two cycles and 30 days between two successive cycles. Line 1: 30%
of human exposed to IVM. Line 2: 80% of human exposed to IVM.

Figure 8. Effect of an IVM strategy on the epidemic outbreak for different endemicities. (A) The IVM campaign consists of 3 cycles,
with 45 days between successive cycles, and the IVM formulation is with ED50 = 60. The campaign begins on day 120 and by the
end of each cycle, 95% of the target population is covered by IVM. (B) The impact of the IVM campaign on the outbreak is shown for
a mosquito biting rate of θ = 0.4. (C-D) Similar to panel B, but with mosquito biting rates of θ = 0.4 and 0.8 respectively.

absence of gender structure in themodel formulation. It can be anticipated that pregnant womenmay
not be exposed to IVM during an intervention campaign.

The primary objective of this study was to quantify ivermectin’s impact on malaria transmission
and identify key variables for developing amathematicalmodel in this context. Amathematicalmodel
incorporating these key structural variables, along with the use of IVM in combination with other
malaria control tools such as mass drug administration, seasonal malaria chemoprevention, and bed
nets, will be thoroughly discussed in our ongoing work. To assist national malaria control programs,
and building on recent studies [41, 42], we will also design and quantify the impact of real-world
scenarios using the developed model.
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A.1 Proof of Theorem 3.2: existence and uniqueness of bounded solutions
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we find that for λ ∈ C such that �(λ) ≥ −ς , we have λ ∈ ρ(A) and using the explicit formula for the resolvent, we
have ∥∥(λ− A)−n∥∥ ≤ 1

(λ+ ς)n
, for all n ∈ N.

Since the resolvent ρ(A) of A is non-empty, then A is closed. Hence, the operator A is a Hille–Yosida and gener-
ates a locally Lipschitz continuous integrated semigroup given by {SA(t)}t≥0 ⊂ L(X ). A is resolvent positive, then
SA(t)X+ ⊂ X+, which ensures the positivity of the semigroup {SA(t)}t≥0. Set

α = mmax
{
φ, max θε {βh,βm, 1}

}
, (A1)

τ0 = min
{

1
2(km+α) ,

ln(2)
μh+νh+φ+γh+δh+kh+‖ρ‖L∞ +α

}
> 0, (A2)

and let

u0 = (
vh0, um0, Sm0, Im0, vh0,IVM, uh0,IVM, Sm0,IVM, Im0,IVM

)T ∈ X+ ∩ Xε̄ , (A3)
where

m = 2 sup
t∈[0,τ0]

‖u(t)‖X and ε̄ = 2ε.

The non-linear part of the models (5)–(6) given by (9) is not necessarily positive and will not be able to ensure the
positivity of the semiflow, to adjust this, rewrite problems (5)–(6) as follows:

du
dt
(t) = Aαu(t)+ Fα(u(t)), (A4)

withAα = A − αId andFα = Fε + αId, so thatFα is positive.
We prove also that the operator Aα is resolvent positive. Then the linear operator Aα is a Hille–Yosida operator

and yields a positive locally Lipschitz continuous integrated semigroup, given by {SAα (t)}t≥0⊂ L(X ).
Let us introduce

Ωm = {
u ∈ X : ‖u(t)‖ ≤ m

}
. (A5)

Due to (10), it is straightforward to show thatFα is continuous and for allm> 0, there exists km > 0, such that∥∥Fα(u1)− Fα(u2)
∥∥ ≤ (km + α) ‖u1 − u2‖ , ∀ u1, u2 ∈ Ωm ∩ Xε ∩ X+, ∀ t ≥ 0, (A6)

Define {T(Aα)0 (t)}t≥0 the C0-Semigroup generated by the linear operatorA0 : D(A0) ⊂ X −→ X , that is the part of
A − αId inX0. It follows that∥∥T(Aα)0 (t)u

∥∥
X ≤ ‖u‖X e−(ς+α)t for each t ≥ 0 and u ∈ X .

Let the space

Y := C0 ([0, τ0],Xε ∩ X+ ∩Ωm) ,
be endowed with the metric

d(u1, u2) = max
t∈[0,τ0]

‖u1(t)− u2(t)‖X , ∀ u1, u2 ∈ Y .

Define the operatorW : Y −→ C0([0, τ0],X ) by

W(u)(t) = T(Aα)0 (t)u0 + d
dt
(SAα ∗ Fα(u))(t),

withAα := A − αId andFα(u) := Fε(u)+ αu ∈ X+.With u0 ∈ Xε andwhere ∗ stands for the convolution product.
According to [43], the map t �−→ (SAα ∗ Fα(u))(t) is continuously differentiable as Fα(u) ∈ L((0, τ0),X ) (see

also [44, 45]). One has∥∥∥∥ d
dt
(SAα ∗ Fα(u))(t)

∥∥∥∥
X

≤
∫ t

0
e−(ς+α)(t−s) ∥∥Fα(u)(s)

∥∥
X ds

≤ (km + α) sup
s∈[0,t]

‖u(s)‖X
∫ t

0
e−(ς+α)(t−s) ds

≤ τ0(km + α) sup
s∈[0,t]

‖u(s)‖X ∀ t < τ0.

Next, before establishing the contraction of the operatorW , we need to show thatW(Y) ⊂ Y .
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We have first W(Y) ⊂ C([0, τ0],X ) since {T(Aα)0 (t)}t≥0 is a C0-Semigroup. In addition, using definition of m
and τ0 given by (A2)–(A1) we ensure that W(Y) ⊂ C([0, τ0],Ωm). Next, according to the following approximation
formula (see [43]):

d
dt
(SAα ∗ Fα(u))(t) = lim

λ→∞

∫ t

0
T(Aα)0 (t − s)λ(λ− A)−1Fα(u)(s) ds,

and positivity properties of Fα and {SAα (t)}t≥0, we deduce that d
dt (SAα ∗ Fα(u))(t) is positive, then W(Y) ⊂

C([0, τ0],X+ ∩Ωm). It only remains to show that W(u(t)) ∈ Xε for each u ∈ Y and t ∈ [0, τ0]. To do so, we must
first observe that t �−→ T(Aα)0 (t)u0 is a solution of the Cauchy problem

du
dt
(t) = Aαu(t), ∀ t ∈ [0, τ0], with u(0) = u0 ∈ X0,+ for each ε > 0, (A7)

and u0 is given by (A3).
This means that ∫ t

0
T(Aα)0 (s)u0 ds ∈ D(A), ∀ t ∈ [0, τ0],

and

T(Aα)0 (t)u0 = u0 + Aα

∫ t

0
T(Aα)0 (s)u0 ds ∈ D(A), ∀ t ∈ [0, τ0].

Using the Volterra formulation associated with the Cauchy problem (A7), we can give an explicit form to our C0-
Semigroup as follows:

T(Aα)0 (t)u0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vh0 e−(μh+φ+α)Idt
uh0 e−(φE1+Dh+αId)t

Sm0 e−(μm+α)t
Im0 e−(μm+α)t

0R2

1{t≤τ }vh0,IVM(τ − t) exp
(− ∫ τ

τ−t (μh + ρ(σ)+ α) Id dσ
)

0R2

1{t≤τ }uh0,IVM(τ − t) exp
(− ∫ τ

τ−t (Dh + ρ(σ)Id + αId) dσ
)

0
1{t≤η}Sm0,IVM(η − t) exp

(
− ∫ η

η−t
(
μm,IVM(σ )+ α

)
dσ

)
0

1{t≤η}Im0,IVM(η − t) exp
(
− ∫ η

η−t
(
μm,IVM(σ )+ α

)
dσ

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By setting

Qh = μh + νh + φ + γh + δh + kh + ‖ρ‖L∞ + α,

we observe that

T(Aα)0 (t)u0 ≥

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

vh0 e−Qht

uh0 e−Qht

0R4

1{t≤τ }vh0,IVM(τ − t) e−Qht

0R2

1{t≤τ }uh0,IVM(τ − t) e−Qht

0R4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since we know that d
dt (SAα ∗ Fα(u))(t) for each t ∈ [0, τ0] is positive then we can compute T (u(t)) as follows:

T (u(t)) ≥ ‖vh0‖R2 e−Qht + ‖uh0‖R2 e−Qht +
∫ ∞

t
vh0,IVM(τ − t) e−Qht dτ +

∫ ∞

t
uh0,IVM(τ − t) e−Qht dτ

≥ ‖vh0‖R2 e−Qht + ‖uh0‖R2 e−Qht + ∥∥vh0,IVM∥∥L1(R+) e
−Qht + ∥∥uh0,IVM∥∥L1(R+) e

−Qht

≥
(
‖vh0‖R4 + ‖uh0‖R4 + ∥∥vh0,IVM∥∥L1(R+) + ∥∥uh0,IVM∥∥L1(R+)

)
e−Qhτ0

≥ ε̄ e−Qhτ0 ∀ t ∈ [0, τ0],
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Using the definition of τ0, it’s just so happens that for each t ∈ [0, τ0] and u ∈ Y we obtain

T (u(t)) ≥ ε.

Hence,W(Y) ⊂ Y . Then, for each (u1, u2) ∈ Y , we have the following estimation:

‖W(u1)− W(u2)‖Y = max
t∈[0,τ0]

‖G(u1(t))− G(u2(t))‖X

= max
t∈[0,τ0]

∥∥∥∥ d
dt
(SAα ∗ (Fα(u1)− Fα(u2)

)
(t)
∥∥∥∥
X

≤ τ0(km + α) max
t∈[0,τ0]

‖u1(t)− u2(t)‖X

≤ τ0(km + α)‖u1 − u2‖Y
≤ 1

2
‖u1 − u2‖Y .

It comes thatW is a 1
2 -Shrinking operator. By using the Banach–Picard theorem, there exists a unique mild solution

u ∈ C([0, τ0],Xε ∩ X+) for the system problem (11) such as∫ t

0
u(s) ds ∈ D(A), and u(t) = u0 + A

∫ t

0
u(s) ds +

∫ t

0
Fε (u(s)) ds, ∀ t ∈ [0, τ0],

and the Volterra formulation given by (12) – (13) holds true. Furthermore, this solution is defined in a continuously
differentiable sense and becomes classical: i.e. u ∈ C1([0, τ0],Xε ∩ X+). Whenever u0 ∈ D(A).

For the estimations in (i), let the total number of humans at time t is given by

Nh(t) = ‖vh(t)‖R2 + ‖uh(t)‖R2 + ∥∥vh,IVM(t, · )∥∥L1(R+ ,R2)
+ ∥∥uh,IVM(t, · )∥∥L1(R+ ,R2)

.

The dynamic of the total human population is given by

Ṅh(t) = 
h − μhNh(t)− δhE2
(
uh(t)+

∫ ∞

0
uh,IVM(t, τ) dτ

)
.

Since the solution of the systems (5)–(7) is positive, we have

Ṅh(t) ≤ 
h − μhNh(t), Ṅh(t) ≥ 
h − (μh + δh)Nh(t).

Then, by using Gronwall’s inequality, we obtain

Nh(t) ≤ Nh(0) e−μht + 
h

μh

(
1 − e−μht

)
, (A8)

supplemented with

T (u(t)) = Nh(t) ≥ T (u0) e−(μh+δh)t + 
h

μh + δh

(
1 − e−(μh+δh)t

)
. (A9)

By the definition of ε̄, we have taken ε̄ ∈ (0, 
h
μh+νh+φ+γh+δh+kh+‖ρ‖L∞ ), we see hat

ε̄ ≤ 
h

μh + νh + φ + γh + δh + kh + ‖ρ‖L∞
≤ 
h

μh + δh
.

So that, we are able to find a constant � ≥ 0 such as


h

μh + δh
= � + ε̄,

It follows that

T (u(t)) ≥ 
h

μh + δh
+
(
T (u0)− 
h

μh + δh

)
e−(μh+δh)t ,

≥ ε̄ + �
(
1 − e−(μh+δh)t

)
+ (T (u0)− ε̄) e−(μh+δh)t
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Since T (u0) ≥ ε̄ by assumption, we then deduce that u ∈ C1([0, τ0],Xε̄ ∩ X+). From here, we define the operator
W̃ : Ỹ −→ C0([0, τ0],X ) by

W̃(u)(t) = T(Aα)0 (t)u0 + d
dt
(SAα ∗ Fα(u))(t),

for each u ∈ Ỹ := C0([0, τ0],Xε̄ ∩ X+ ∩Ωm). In the similar way, we prove that W̃ is a 1
2 -shrinking operator with

W̃(Ỹ) ∩ Ỹ , and we prove by using the Banach–Picard theorem that the Cauchy problem (11) admits a unique mild
solution u ∈ C([0, τ0],Xε̄ ⊂ X+) since u0 ∈ Xε̄ , and this mild solution becomes classical whenever u0 ∈ D(A). We
can easily use some classical time extending properties (see, e.g. [46]) to extend the solution over a maximal interval
[0, tmax] with tmax > 0.

Moreover, the total number of mosquitoes at time t is given by

Nm(t) = Sm(t)+ Im(t)+
∫ ∞

0
Sm,IVM(t, η) dη +

∫ ∞

0
Im,IVM(t, η) dη,

The dynamic of the mosquito population is given by

Ṅm(t) = 
m − μm (Sm(t)+ Im(t))−
∫ ∞

0
μm,IVM(η)

(
Sm,IVM(t, η)+ Im,IVM(t, η)

)
dη,

Since the solution of the systems (5)–(7) is positive, we have

Ṅm(t) ≤ 
m − μ∗
mNm(t), Ṅm(t) ≥ 
m − (μm + ∥∥μm,IVM

∥∥
L∞ )Nm(t),

with
μ∗
m = min

{
μm,

∥∥μm,IVM
∥∥
L∞

}
Similarly, using Gronwall’s inequality, we have

Nm(t) ≤ Nm(0) e−μ
∗
mt + 
h

μ∗
m

(
1 − e−μ∗

mt
)
, (A10)

supplemented with

Nm(t) ≥ Nm(0) e−(μm+‖μm,IVM‖L∞ )t + 
h

μm + ∥∥μm,IVM
∥∥
L∞

(
1 − e−(μm+‖μm,IVM‖L∞ )t

)
. (A11)

Then, we have

lim sup
t→∞

Nh(t) ≤ 
h

μh
, lim sup

t→∞
Nm(t) ≤ 
m

μ∗
m
.

To prove (iii), we assume that u0 ∈ X0 so that u ∈ C([0, τ0],Xε ∩ X+) is a mild solution to (11). Since D(A) = X0,
it comes that there exists a sequence of initial data {uk0}k≥0 ∈ D(A)N so that limk→∞ ‖uk0 − u0‖X = 0. There exists a
unique solution uk ∈ C1(R+,Xε̄ ∩ X+) ∀ k ≥ 0 to our Cauchy problem (11) according to the initial data uk0. Hence
t ∈ [0, τ0]. It follows that∥∥∥u(t)− uk(t)

∥∥∥
X

=
∥∥∥∥T(Aα)0 (t)u0 − T(Aα)0 (t)u

k
0 + d

dt
(SAα ∗ Fα(u))(t)− d

dt
(SAα ∗ Fα(uk))(t)

∥∥∥∥
X

≤
∥∥∥u0 − uk0

∥∥∥
X

+ 1
2
max
s∈[0,τ0]

‖u(s)− uk(s)‖X , ∀ t ∈ [0, τ0]

Then, we have ∥∥∥u − uk
∥∥∥
Y

= max
t∈[0,τ0]

‖u(t)− uk(t)‖X ≤ 2
∥∥∥u0 − uk0

∥∥∥
X

→ 0, when k → ∞.

We rewrites u(t) as follows:
u(t) = uk(t)+ u(t)− uk(t).

It comes that
T (u(t)) ≥ T (uk(t))−

∥∥∥u(t)− uk(t)
∥∥∥
X
. (A12)

In the former case, we have

T (u(t)) ≥ ε̄ −
∥∥∥u(t)− uk(t)

∥∥∥
X
,

and in the latter case, we obtain

T (u(t)) ≥ T (uk0) e−(μh+δh)t + 
h

μh + δh

(
1 − e−(μh+δh)t

)
−
∥∥∥u(t)− uk(t)

∥∥∥
X
,
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when k tends for infinity, it comes thatT (u(t)) ≥ ε̄, whenceu ∈ C([0, τ0],Xε̄ ∩ X+), and (A9) holds for each t ∈ [0, τ0]
respectively.

Likewise (A12), we have

T (u(t)) ≤ T (uk(t))+
∥∥∥u(t)− uk(t)

∥∥∥
X

≤ T (uk0(t)) e−μht + 
h

μh

(
1 − e−μht

) +
∥∥∥u(t)− uk(t)

∥∥∥
X
,

and when k tends for infinity, we observe that the estimation (A3) holds true for each t ∈ [0, τ0]. Letting the operator
T : X −→ X defined by

T (u(t)) = Sm(t)+ Im(t)+
∫ ∞

0
Sm,IVM(t, η) dη +

∫ ∞

0
Im,IVM(t, η) dη.

We prove the estimations (A10)–(A11) for each u defined by (8). Using what was done earlier we show that this solution
u is global, this means that u ∈ C(R+,Xε̄ ∩ X+) and each above estimates holds for each t ≥ 0.

A.2 The computation of the disease-free steady state
Here we derive the disease-free steady state. In equilibrium, the time derivatives are zero and in an infection-free pop-
ulation, the compartments of the symptomatic, the asymptomatic and the recovered are empty. Taking into account
that A0

h = I0h = R0h = A0
h,IVM = I0h,IVM = R0h,IVM = 0 and I0m = I0m,IVM = 0. All that remains is to solve the following

system : ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = 
h − (μh + φ) S0h +
∫ ∞

0
ρ(τ)S0h,IVM(τ ) dτ ,

dS0h,IVM
dτ

(τ ) = − (μh + ρ(τ)) S0h,IVM(τ ), S0h,IVM(0) = φS0h,

0 = 
m − μmS0m −
∫ ∞

0
θ
S0h,IVM(τ )

N0
h

dτS0m,

dS0m,IVM
dη

(η) = −μm,IVM(η)Sm,IVM(η), S0m,IVM(0) = S0m

∫ ∞

0
θ
S0h,IVM(τ )

N0
h

dτ .

This leads to

S0h,IVM(τ ) = φS0h e
− ∫ τ

0 (μh+ρ(s)) ds, S0h = 
h

μh + φ − ∫∞
0 φρ(τ) e−

∫ τ
0 (μh+ρ(s)) ds dτ

,

S0m,IVM(η) = S0m

∫ ∞

0
θ
S0h,IVM(τ )

N0
h

dτ e−
∫ η
0 μm,IVM(s) ds, S0m = 
m

μm + ∫∞
0 θ

S0h,IVM(η)
N0
h

dτ
.

We rewrite the last relationships as

S0h = 
h

μh + φ(1 − χh)
, S0h,IVM(τ ) = φ
h�h(τ )

μh + φ(1 − χh)
,

S0m = 
m

μm + λ0h[φ]
, S0m,IVM(η) = S0mλ

0
h[φ]�m(η),

with

�m(η) = e−
∫ η
0 μm,IVM(s) ds, �h(τ ) = e−

∫ τ
0 (μh+ρ(s)) ds,

χh =
∫ ∞

0
ρ(τ)�h(τ ) dτ , λ0h[φ] = θ

φ
∫∞
0 �h(τ ) dτ

1 + φ
∫∞
0 �h(τ ) dτ

.

Thus the disease-free steady state is E0 = (v0h, 0R2 , S0m, 0, v
0
h,IVM(·), 0L1(R+ ,R2+), S

0
m,IVM(·), 0L1(R+ ,R+))

T , with v0h =
(S0h, 0)

T , v0h,IVM = (S0h,IVM, 0)T .
Obviously,

χh =
∫ ∞

0
ρ(τ)�h(τ ) dτ

=
∫ ∞

0
ρ(τ) e−μhτ e−

∫ τ
0 ρ(s) ds dτ
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≤
∫ ∞

0
ρ(τ) e−

∫ τ
0 ρ(s) ds dτ

≤
(
1 − e−

∫∞
0 ρ(s) ds

)
≤ 1.

This ensures the positivity of E0.
Note that the total number of humans in an infection free population N0

h is given by

N0
h = 
h

μh + φ(1 − χh)

(
1 + φ

∫ ∞

0
�h(τ ) dτ

)
.

A.3 Basic reproduction number
Here we derive the basic reproduction numberR0 of the models (5)–(6). We recall that (uh, Im, uh,IVM, Im,IVM) satisfy
the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇h(t) = λm(t)E1vh(t)− φE1uh(t)− Dhuh(t)+
∫ ∞

0
ρ(τ)uh,IVM(t, τ) dτ ,

İm(t) = λh(t)Sm(t)− μmIm(t)−
(
λSh,IVM(t)+ λIh,IVM(t)

)
Im(t),

(∂t + ∂τ )uh,IVM(t, τ) = λm(t)E1vh,IVM(t, τ)− Dhuh,IVM(t, τ)− ρ(τ)uh,IVM(t, τ),(
∂t + ∂η

)
Im,IVM(t, η) =

(
λh(t)+ λIh,IVM(t)

)
Sm,IVM(t, η)− μm,IVM(η)Im,IVM(t, η),

uh,IVM(t, 0) = φE1uh(t), Im,IVM(t, 0) = λIh,IVM(t)Sm(t)+
(
λSh,IVM(t)+ λIh,IVM(t)

)
Im(t).

(A13)

Let

xh(t) =
(
uh(t),

(
0R2

uh,IVM(t, ·)
))

, xm(t) =
(
Im(t),

(
0R

Im,IVM(t, ·)
))

.

Then we have

ẋh(t) =
⎛⎝ −φE1uh(t)− Dhuh(t)( −uh,IVM(t, 0)

−∂τuh,IVM(t, ·)− Dhuh,IVM(t, ·)− ρuh,IVM(t, ·)
)⎞⎠

+
⎛⎝λm(xm(t))E1vh(t)+ ∫∞

0 ρ(τ)uh,IVM(t, τ) dτ(
φE1uh(t)

λm(xm(t))E1vh,IVM(t, ·)
) ⎞⎠

ẋm(t) =
⎛⎜⎝−μmIm(t)−

(
λSh,IVM(vh,IVM(t, ·))+ λIh,IVM(xh(t))

)
Im(t)( −Im,IVM(t, 0)

−∂ηIm,IVM(t, ·)− μm,IVM(·)Im,IVM(t, ·)
) ⎞⎟⎠

+

⎛⎜⎜⎝
λh(xh(t))Sm(t)⎛⎝λIh,IVM(xh(t))Sm(t)+

(
λSh,IVM(vh,IVM(t, ·))+ λIh,IVM(xh(t))

)
Im(t)(

λh(xh(t))+ λIh,IVM(xh(t))
)
Sm,IVM(t, ·)

⎞⎠
⎞⎟⎟⎠ ,

with

λm(xm) = θβm

Nh

(
Im +

∫ ∞

0
Im,IVM(η) dη

)
, λh(xh) = θβh

Nh
euh,

λIh,IVM(xh) = θβh

Nh

∫ ∞

0
euh,IVM(τ ) dτ , λSh,IVM(vh,IVM) = θ

Nh(t)

∫ ∞

0
evh,IVM(τ ) dτ .

Therefore, (xh, xm) satisfy the following equations:{
ẋh = Ahxh + Fh(xh, xm, vh, vh,IVM),
ẋm = Am[xh, vh,IVM]xm + Fm(xh, xm, vh,IVM, Sm, Sm,IVM),

(A14)

with

Ahxh =
⎛⎝ −φE1uh − Dhuh( −uh,IVM(0)

−∂τuh,IVM(·)− Dhuh,IVM(·)− ρuh,IVM(·)
)⎞⎠ ,
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Am[xh, vh,IVM]xm =
⎛⎜⎝−μmIm −

(
λSh,IVM(vh,IVM(·))+ λIh,IVM(xh)

)
Im( −Im,IVM(0)

−∂ηIm,IVM(·)− μm,IVM(·)Im,IVM(·)
) ⎞⎟⎠ ,

Fh(xh, xm, vh, vh,IVM) =
⎛⎝λm(xm)E1vh + ∫∞

0 ρ(τ)uh,IVM(τ ) dτ(
φE1uh

λm(xm)E1vh,IVM(·)
) ⎞⎠ ,

Fm(xh, xm, vh,IVM, Sm, Sm,IVM) =

⎛⎜⎜⎝
λh(xh)Sm⎛⎝λIh,IVM(xh)Sm +

(
λSh,IVM(vh,IVM(·))+ λIh,IVM(xh)

)
Im(

λh(xh)+ λIh,IVM(xh)
)
Sm,IVM(·)

⎞⎠
⎞⎟⎟⎠ .

We want to compute the next-generation operator, for this by linearizing system (A14) at the disease-free steady state
E0 given by (14), we have

d
dt
(xh, xm) = A0(xh, xm)+ F0(xh, xm), (A15)

withA0 = diag(Ah,A0
m),F0 = (F0

h ,F0
m),

A0
mxm =

⎛⎝ −μmIm − λSh,IVM(v
0
h,IVM(·))Im( −Im,IVM(0)

−∂ηIm,IVM(·)− μm,IVM(·)Im,IVM(·)
)⎞⎠ ,

F0
h (xh, xm) =

⎛⎝λm(xm)E1v0h + ∫∞
0 ρ(τ)uh,IVM(τ ) dτ(
φE1uh

λm(xm)E1v0h,IVM(·)
) ⎞⎠ ,

F0
m(xh, xm) =

⎛⎜⎝ λh(xh)S0m(
λIh,IVM(xh)S

0
m + λSh,IVM(v

0
h,IVM(·))Im(

λh(xh)+ λIh,IVM(xh)
)
S0m,IVM(·)

)⎞⎟⎠ ,

and

λm(xm) = θβm

N0
h

(
Im +

∫ ∞

0
Im,IVM(η) dη

)
, λh(xh) = θβh

N0
h
euh,

λIh,IVM(xh) = θβh

N0
h

∫ ∞

0
euh,IVM(τ ) dτ , λSh,IVM(vh,IVM) = θ

N0
h

∫ ∞

0
evh,IVM(τ ) dτ .

Thus the next-generation operator G is given by

G = F0(−A0)−1.

For the computation of G, we have first

(−Ah)
−1

⎛⎝ ψh(
ψ0

ψh,IVM

)⎞⎠ =
⎛⎝ (φE1 + Dh)

−1ψh(
ψ0

�h(τ )ψ0 + ∫ τ
0 �h(τ )�h(−σ)ψh,IVM(σ ) dσ

)⎞⎠ ,

(−A0
m)

−1

⎛⎝ ϕm(
ϕ0

ϕm,IVM

)⎞⎠ =
⎛⎜⎝

ϕm
μm+λSh,IVM(v0h,IVM(·))(

ϕ0
�m(η)ϕ0 + ∫ η

0 �m(η)�m(−σ)ϕm,IVM(σ ) dσ

)⎞⎟⎠ ,

and where

�h(τ ) = e−
∫ τ
0 (ρ(a)I d+Dh) da,

�m(η) = e−
∫ η
0 μm,IVM(a) da.

Set

ϕ̄m(η) = ϕ0 +
∫ η

0
�m(−σ)ϕm,IVM(σ ) dσ ,

ψ̄h(τ ) = ψ0 +
∫ τ

0
�h(−σ)ψh,IVM(σ ) dσ .
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We computeF0
h (−Ah)

−1 andF0
m(−A0

m)
−1 respectively by

F0
h (−Ah)

−1

⎡⎣⎛⎝ ψh(
ψ0

ψh,IVM

)⎞⎠ ,

⎛⎝ ϕm(
ϕ0

ϕm,IVM

)⎞⎠⎤⎦ = F0
h

⎡⎢⎣
⎛⎝(φE1 + Dh)

−1ψh(
ψ0

�h(τ )ψ̄h(τ )

) ⎞⎠ ,

⎛⎜⎝
ϕm

μm+λSh,IVM(v0h,IVM(·))(
ϕ0

�m(η)ϕ̄m(η)

) ⎞⎟⎠
⎤⎥⎦

=

⎛⎜⎜⎜⎜⎝
θβm
N0
h

(
ϕm

μm+λSh,IVM(v0h,IVM(·))
+ ∫∞

0 �m(η)ϕ̄m(η) dη
)
E1v0h + ∫∞

0 ρ(τ)�h(τ )ψ̄h(τ ) dτ⎛⎝ φE1(φE1 + Dh)
−1ψh

θβm
N0
h

(
ϕm

μm+λSh,IVM(v0h,IVM(·))
+ ∫∞

0 �m(η)ϕ̄m(η) dη
)
E1v0h,IVM(·)

⎞⎠
⎞⎟⎟⎟⎟⎠

= (
F0

h,h,F0
h,m

)⎛⎜⎜⎝
(
ψh
ψ̄h

)
(
ϕm
ϕ̄m

)
⎞⎟⎟⎠ ,

with

F0
h,h

(
ψh
ψ̄h

)
=
⎛⎝∫∞

0 ρ(τ)�h(τ )ψ̄h(τ ) dτ
φE1(φE1 + Dh)

−1ψh
0L1

⎞⎠ ,

F0
h,m

(
ϕm
ϕ̄m

)
=

⎛⎜⎜⎜⎝
θβm
N0
h

(
ϕm

μm+λSh,IVM(v0h,IVM(·))
+ ∫∞

0 �m(η)ϕ̄m(η) dη
)
E1v0h

0R2

θβm
N0
h

(
ϕm

μm+λSh,IVM(v0h,IVM(·))
+ ∫∞

0 �m(η)ϕ̄m(η) dη
)
E1v0h,IVM(·)

⎞⎟⎟⎟⎠ ,

and

F0
m(−A0

m)
−1

⎡⎣⎛⎝ ψh(
ψ0

ψh,IVM

)⎞⎠ ,

⎛⎝ ϕm(
ϕ0

ϕm,IVM

)⎞⎠⎤⎦ = F0
m

⎡⎢⎣
⎛⎝(φE1 + Dh)

−1ψh(
ψ0

�h(τ )ψ̄h(τ )

) ⎞⎠ ,

⎛⎜⎝
ϕm

μm+λSh,IVM(v0h,IVM(·))(
ϕ0

�m(η)ϕ̄m(η)

) ⎞⎟⎠
⎤⎥⎦

=

⎛⎜⎜⎜⎝
θβh
N0
h
e(φE1 + Dh)

−1ψhS0m⎛⎜⎝
θβh
N0
h

∫∞
0 e�h(τ )ψ̄h(τ ) dτS0m + λSh,IVM(v

0
h,IVM(·)) ϕm

μm+λSh,IVM(v0h,IVM(·))(
θβh
N0
h
e(φE1 + Dh)

−1ψh + θβh
N0
h

∫∞
0 e�h(τ )ψ̄h(τ ) dτ

)
S0m,IVM(·)

⎞⎟⎠
⎞⎟⎟⎟⎠

= (
F0

m,h,F0
m,m

)⎛⎜⎜⎝
(
ψh
ψ̄h

)
(
ϕm
ϕ̄m

)
⎞⎟⎟⎠ ,

with

F0
m,h

(
ψh
ψ̄h

)
=

⎛⎜⎜⎜⎝
θβh
N0
h
e(φE1 + Dh)

−1ψhS0m
θβh
N0
h

∫∞
0 e�h(τ )ψ̄h(τ ) dτS0m(

θβh
N0
h
e(φE1 + Dh)

−1ψh + θβh
N0
h

∫∞
0 e�h(τ )ψ̄h(τ ) dτ

)
S0m,IVM(·)

⎞⎟⎟⎟⎠ ,

F0
m,m

(
ϕm
ϕ̄m

)
=
⎛⎜⎝ 0

θ
N0
h

∫∞
0 ev0h,IVM(τ ) dτ

ϕm
μm+λSh,IVM(v0h,IVM(·))

0L1(R+ ,R)

⎞⎟⎠ .

From where,

G

⎛⎜⎜⎝
(
ψh
ψ̄h

)
(
ϕm
ϕ̄m

)
⎞⎟⎟⎠ =

(F0
h,h F0

h,m
F0

m,h F0
m,m

)⎛⎜⎜⎝
(
ψh
ψ̄h

)
(
ϕm
ϕ̄m

)
⎞⎟⎟⎠
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝∫∞
0 ρ(τ)�h(τ )ψ̄h(τ ) dτ
φE1(φE1 + Dh)

−1ψh
0L1(R+ ,R2)

⎞⎠ +

⎛⎜⎜⎜⎝
θβm
N0
h

(
ϕm

μm+λSh,IVM(v0h,IVM(·))
+ ∫∞

0 �m(η)ϕ̄m(η) dη
)
E1v0h

0R2

θβm
N0
h

(
ϕm

μm+λSh,IVM(v0h,IVM(·))
+ ∫∞

0 �m(η)ϕ̄m(η) dη
)
E1v0h,IVM(·)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

θβh
N0
h
e(φE1 + Dh)

−1ψhS0m
θβh
N0
h

∫∞
0 e�h(τ )ψ̄h(τ ) dτS0m(

θβh
N0
h
e(φE1 + Dh)

−1ψh + θβh
N0
h

∫∞
0 e�h(τ )ψ̄h(τ ) dτ

)
S0m,IVM(·)

⎞⎟⎟⎟⎟⎠

+
⎛⎜⎝ 0R

θ
N0
h

∫∞
0 ev0h,IVM(τ ) dτ

ϕm
μm+λSh,IVM(v0h,IVM(·))

0L1(R+ ,R)

⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By deleting lines 2 and 5 of the previous relationship corresponding to the initial data, we have

G

⎛⎜⎜⎝
(
ψh
ψ̄h

)
(
ϕm
ϕ̄m

)
⎞⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(∫∞
0 ρ(τ)�h(τ )ψ̄h(τ ) dτ

0L1(R+ ,R2)

)
+

⎛⎜⎜⎝
θβm
N0
h

(
ϕm

μm+λSh,IVM(v0h,IVM(·))
+ ∫∞

0 �m(η)ϕ̄m(η) dη
)
E1v0h

θβm
N0
h

(
ϕm

μm+λSh,IVM(v0h,IVM(·))
+ ∫∞

0 �m(η)ϕ̄m(η) dη
)
E1v0h,IVM(·)

⎞⎟⎟⎠
⎛⎜⎝

θβh
N0
h
e(φE1 + Dh)

−1ψhS0m(
θβh
N0
h
e(φE1 + Dh)

−1ψh + θβh
N0
h

∫∞
0 e�h(τ )ψ̄h(τ ) dτ

)
S0m,IVM(·)

⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The next-generation operator G is then defined from (R2 × L1((0,∞),R2))× (R × L1((0,∞),R)) to itself by

G

⎛⎜⎜⎝
(
ψh
ψ̄h

)
(
ϕm
ϕ̄m

)
⎞⎟⎟⎠ =

(
A B
C 0R×L1(R+ ,R)

)⎛⎜⎜⎝
(
ψh
ψ̄h

)
(
ϕm
ϕ̄m

)
⎞⎟⎟⎠ , (A16)

where

A
(
ψh
ψ̄h

)
=
(∫∞

0 ρ(τ)�h(τ )ψ̄h(τ ) dτ
0L1(R+ ,R2)

)
,

B
(
ϕm
ϕ̄m

)
=

⎛⎜⎜⎝
θβm
N0
h

(
ϕm

μm+λSh,IVM(v0h,IVM(·))
+ ∫∞

0 �m(η)ϕ̄m(η) dη
)
E1v0h

θβm
N0
h

(
ϕm

μm+λSh,IVM(v0h,IVM(·))
+ ∫∞

0 �m(η)ϕ̄m(η) dη
)
E1v0h,IVM(·)

⎞⎟⎟⎠ ,

C
(
ψh
ψ̄h

)
=
⎛⎜⎝

θβh
N0
h
e(φE1 + Dh)

−1ψhS0m(
θβh
N0
h
e(φE1 + Dh)

−1ψh + θβh
N0
h

∫∞
0 e�h(τ )ψ̄h(τ ) dτ

)
S0m,IVM(·)

⎞⎟⎠ .

From the next-generator operator, we deduce that the basic reproduction numberR0 is defined by the spectral radius
of G denotes by

R0 = r(G).

A.4 Proof of Theorem 3.3 (i) and (ii): existence of an endemic equilibrium
We know that any endemic equilibrium

E∗ = (x∗
h , x

∗
m, v

∗
h , v

∗
h,IVM, s∗m, S∗

m,IVM)
T
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must satisfy the following equations:

x∗
h = (−Ah)

−1F∗
h (x

∗
h , x

∗
m), (A17)

x∗
m = (−Am[x∗

h , x
∗
m]
)−1F∗

m(x
∗
h , x

∗
m), (A18)

0 = 
he1 − λm(x∗
m)E1v

∗
h − (μh + φ) v∗

h + Khv∗
h + γhE2u∗

h +
∫ ∞

0
ρ(τ)v∗

h,IVM(τ ) dτ ,

v∗
h,IVM(τ ) = φv∗

h e
− ∫ τ

0 (λm(x
∗
m)E1+(μh+ρ(σ))Id)dσ (A19)

+
∫ τ

0
γhE2u∗

h,IVM(s) e
− ∫ τ

s (λm(x
∗
m)E1+(μh+ρ(σ))Id)dσ ds,

S∗
m = 
m

μm + λh(x∗
h)+ λSh,IVM(v

∗
h,IVM)+ λIh,IVM(x

∗
h)
, (A20)

S∗
m,IVM(η) = λSh,IVM(v

∗
h,IVM)S

∗
m e−

∫ η
0

(
μm,IVM(σ )+λh(x∗

h)+λIh,IVM(x∗
h)
)
dσ . (A21)

With

A∗
m[x

∗
h , x

∗
m]x

∗
m =

⎛⎜⎝−μmI∗m −
(
λSh,IVM(h2(x

∗
m, u∗

h,IVM, τ))+ λIh,IVM(x
∗
h)
)
I∗m( −I∗m,IVM(0)−∂ηI∗m,IVM(·)− μm,IVM(·)I∗m,IVM(·)

) ⎞⎟⎠ ,

F∗
h (x

∗
h , x

∗
m) =

⎛⎝λm(x∗
m)E1h1(u∗

h)+ ∫∞
0 ρ(τ)u∗

h,IVM(τ ) dτ(
φE1u∗

h
λm(x∗

m)E1h2(x∗
m, u∗

h,IVM, τ)

) ⎞⎠ ,

F∗
m(x

∗
h , x

∗
m) =

⎛⎜⎜⎝
λh(x∗

h)h3(x
∗
m, x∗

h)⎛⎝λIh,IVM(x∗
h)Sm +

(
λSh,IVM(h2(x

∗
m, u∗

h,IVM, τ))+ λIh,IVM(x
∗
h)
)
Im(

λh(xh)+ λIh,IVM(xh)
)
h4(x∗

m, x∗
h , η)

⎞⎠
⎞⎟⎟⎠ .

With h1(u∗
h) = v∗

h , and h2(x∗
m, u∗

h,IVM), h3(x
∗
m, x∗

h) and h4(x∗
m, x∗

h , η) are respectively the right-hand side of Equa-
tions (A19), (A20) and (A21). Using Equations (A17) and (A18), we have the following fixed point H(x∗

h , x
∗
m)

T =
(x∗

h , x
∗
m)

T , whereH(x∗
h , x

∗
m)

T = (Hh(x∗
h , x

∗
m),Hm(x∗

h , x
∗
m))

T andHh(x∗
h , x

∗
m);Hm(x∗

h , x
∗
m) are respectively the right-hand

side of Equations (A17) and (A18). Thus the endemic equilibrium point is fixed point of H given by

H(x∗
h , x

∗
m)

T = (x∗
h , x

∗
m)

T . (A22)

Equation (A22) implies that at the endemic steady state, the infected population simply reproductive itself. Therefore
we can call H the next-generation operator at the endemic steady state.

Lemma A.1: (i) H is positive, continue operator. There exists a closed, bounded and convex subsetZ ⊂ Y := (R4 ×
L1((0,∞),R2))× (R2 × L1((0,∞),R)) such that H(Z) ⊂ Z .

(ii) Operator H as Frechet derivative at the point (x∗
h , x

∗
m) ≡ (0, 0) and = H′(0, 0) is positive, compact and nonsup-

porting operator.

Proof of Lemma A.1.: (i) The operators Hh,Hm are defined by

Hh(x∗
h , x

∗
m) :=

⎛⎝Hh1(x∗
h , x

∗
m)

Hh2(x∗
h , x

∗
m)

Hh3(x∗
h , x

∗
m)

⎞⎠

=

⎛⎜⎜⎜⎜⎝
θβm
N∗
h

(
ϕ∗
m

μm+λS,Ih,IVM(x∗
m ,x∗

h ,·)
+ ∫∞

0 �m(η)ϕ̄
∗
m(η) dη

)
E1h1(u∗

h)+ ∫∞
0 ρ(τ)�h(τ )ψ̄

∗
h (τ ) dτ⎛⎝ φE1(φE1 + Dh)

−1ψ∗
h

θβm
N∗
h

(
ϕ∗
m

μm+λS,Ih,IVM(x∗
m ,x∗

h ,·)
+ ∫∞

0 �m(η)ϕ̄
∗
m(η) dη

)
E1h2(x∗

m, u∗
h,IVM, ·)

⎞⎠
⎞⎟⎟⎟⎟⎠ ,

Hm(x∗
h , x

∗
m) :=

⎛⎝Hm1(x∗
h , x

∗
m)

Hm2(x∗
h , x

∗
m)

Hm3(x∗
h , x

∗
m)

⎞⎠



APPLICABLE ANALYSIS 33

=

⎛⎜⎜⎜⎝
θβh
N∗
h
e(φE1 + Dh)

−1ψ∗
h h3(x

∗
m, x∗

h)⎛⎝ θβh
N∗
h

∫∞
0 e�h(τ )ψ̄∗

h (τ ) dτh3(x
∗
m, x∗

h)+ λS,Ih,IVM(x
∗
m, x∗

h , ·) ϕ∗
m

μm+λS,Ih,IVM(x∗
m ,x∗

h ,·)(
θβh
N∗
h
e(φE1 + Dh)

−1ψ∗
h + θβh

N∗
h

∫∞
0 e�h(τ )ψ̄∗

h (τ ) dτ
)
h4(x∗

m, x∗
h , ·)

⎞⎠
⎞⎟⎟⎟⎠ .

With

ϕ̄∗
m(η) = ϕ∗

0 +
∫ η

0
�m(−σ)ϕ∗

m,IVM(σ ) dσ ,

ψ̄∗
h (τ ) = ψ∗

0 +
∫ τ

0
�h(−σ)ψ∗

h,IVM(σ ) dσ ,

λS,Ih,IVM(x
∗
m, x

∗
h , ·) = λSh,IVM(h2(x

∗
m, u

∗
h,IVM, ·))+ λIh,IVM(x

∗
h)

It is straightforward to see that the operator H is continue and positive. Since the flow of systems (5)–(6) is
bounded (Theorem 3.2), we can find an constant M̄ > 0 such that ‖ϕ̄∗

m‖L1(R+ ,R) ≤ M̄, ‖ψ̄∗
h ‖L1(R+ ,R2) ≤ M̄,

and since we know that

lim sup
t→∞

∥∥yh(t)∥∥ ≤ N∗
h ≤ 
h

μh
, for yh ∈ {x∗

h , v
∗
h , v

∗
h,IVM},

lim sup
t→∞

∥∥ym(t)∥∥ ≤ 
m

μm
, for ym ∈ {x∗

m, S
∗
m, Im, S

∗
m,IVM}.

We have

‖Hh1(x∗
h , x

∗
m)‖L1(R+ ,R2) ≤ Cm + ‖ρ‖L∞


h

μh
, ‖Hh2(x∗

h , x
∗
m)‖L1(R+ ,R2) ≤ Ch1,

‖Hh3(x∗
h , x

∗
m)‖L1(R+ ,R2) ≤ Cm, ‖Hm1(x∗

h , x
∗
m)‖L1(R+ ,R) ≤ Ch2,

‖Hm2(x∗
h , x

∗
m)‖L1(R+ ,R) ≤ θβh
h

μh
+ (θ + θβh)


m

μ2
m
, ‖Hm3(x∗

h , x
∗
m)‖L1(R+ ,R) ≤ Ch2 + θβhM̄,

and where

Cm = θβm

(

m

μ2
m

+ M̄
)
, Ch1 = φ
h

μh

∥∥E1(φE1 + Dh)
−1∥∥∞ , Ch2 = θβh
h

μh

∥∥e1(φE1 + Dh)
−1∥∥

R2 .

Therefore ‖H(x∗
h , x

∗
m)‖Y ≤ M with

M = 2Cm + ‖ρ‖L∞

h

μh
+ Ch1 + (θ + θβh)


m

μ2
m

+ 2Ch2 + θβhM̄.

SettingZ = B+(0,M) with B+(0,M) := {(x∗
h , x

∗
m) ∈ Y : ‖(x∗

h , x
∗
m)‖Y ≤ M}, hence H(Z) ⊂ Z .

(ii) Since h1(0) = v0h, h2(0, 0, ·) = u0h,IVM(·), h3(0, 0) = S0m, h4(0, 0, ·) = S0m,IVM(·) (the disease-free steady state)
and H infinitely Frechet differentiable, the jacobian at the point (0, 0) (without initial values) is given by the
relation (A16), for instance

H′(0, 0) =
(
A B
C 0R×L1(R+ ,R)

)
= G.

It is straightforward to see that the operator H′(0, 0) is positive because the operators A,B,C are also posi-
tive and the proof of compactness of the operator H′(0, 0) is similar than the proof in Section A.5. We claim
that H′(0, 0) is irreducible because the associated graph of the matrix is strongly connected, which implies the
nonsupporting of the operator H′(0, 0). That end the proof of Lemma A.1.

�

Since the previous lemma is satisfied, therefore there exists a unique positive eigenvectorψ corresponding to eigen-
valueR0 = r(G) ofH′(0, 0). using the same argument as the Krasnoselskii fixed point theorem [23, 24], it come that if
R0 = r(G) > 1, then the operatorH has at least one positive fixed point λ∗ ∈ Y \ {0Y}, corresponding to the endemic
equilibrium of systems (A13)–(A14) and since H(0, 0) = (0, 0). This completes the proof of Theorem 3.3(ii).

A.5 Proof of Theorem 3.3(iii): stability of the disease-free steady state E0

Wemust first by prove that the operatorF0 given by (A15) is compact.
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For this, we first rewriteF0 as follows :

F0 = (F0
1 ,F0

2 ,F0
3 ,F0

4 ,F0
5 ,F0

6 )
T ,

whereF0
1 ,F0

2 ,F0
4 ,F0

5 : X0 −→ R
2+ andF0

3 ,F0
6 : X0 −→ L1(R+,R2).

Since the operatorsF0
1 ,F0

2 ,F0
4 andF0

5 have values in R
2+ and the solutions of our problem are bounded, the only

thing left to do is to prove that the operatorsF0
3 andF0

6 are compact. Let h belongs to the set of positive real numbers
(R+), and let Z be a bounded subset of X 0. Consequently, there exists a positive constant m0 such that for all t in
R+, the supremum of the norm of u(t) in Z is less than or equal to m0. Let Th represents the translation operator in
L1(R+,R2), defined as follows:

Th(ψ) = ψ(· + h).
In the former case, we have∥∥Th(F0

3 (u))− F0
3 (u)

∥∥
L1(R+ ,R2+)

=
∫ ∞

0
λm(xm) | E1v0h,IVM(τ + h)− E1v0h,IVM(τ ) | dτ

≤ m0θβm

N0
h

∫ ∞

0
| E1v0h,IVM(τ + h)− E1v0h,IVM(τ ) | dτ

≤ m0θβm

N0
h

∥∥E1 (Th(v0h,IVM)− v0h,IVM
)∥∥

L1(R+ ,R2+)
−→ 0 when h −→ 0.

Since v0h,IVM ∈ L1(R+,R2+), it comes that

sup
u∈Z

∥∥Th(F0
3 (u))− F0

3 (u)
∥∥
L1(R+ ,R2+)

−→ 0 when h −→ 0,

and in the latter case, according to the Lebesque theorem it comes that

sup
u∈Z

∫ ∞

c
F0

3 (u)(τ ) dτ ≤ m0θβm

N0
h

∫ ∞

c
v0h,IVM(τ ) dτ → 0 when c −→ +∞.

Therefore, by using the Rietz–Frechet–Kolgomorov criterion (see, e.g. [47]) we deduce the compactness of F0
3 (Z) in

L1(R+,R2) which means that the operator F0
3 is compact. The proof of the compactness of the operators F0

6 is done
in a similar way. Thus the operatorF0 is compact.

Next, we prove Theorem 3.3(iii), we observe that A0 is resolvent positive with s(A0) < 0 and F0 is a positive
pertubation of A0, There we use the theory developed by Thieme [48] and then r(F0(−A0)−1)− 1 := R0 − 1
and s(A0 + F0) have the same sign. Moreover, A0 + F0 being a generator of uniformly continuous semigroup
{T(A0+F0)(t)}t≥0 so that there exists a constantM> 0 such that one has ‖T(A0+F0)(t)‖L(X ) ≤ M e−ς t for each t ≥ 0.
Then we have

s(A0 + F0) = ω0(A0 + F0),
(where ω0 denotes the growth bound with ω0(A0 + F0) = limt→+∞ 1

t ln(‖{T(A0+F0)(t)}t≥0‖L(X ))). Since the oper-
atorF0 is compact, then from [29] we deduce that{

λ ∈ σ(A0 + F0),�(λ) ≥ −ς }
,

is finite and composed (at most) of isolated eigenvalues with finite algebraic multiplicity, where σ(·) denotes the spec-
trum [28]. Consequently, it remains to study the punctual spectrumofA0 + F0. Since r(F0(−A0)−1)− 1 := R0 − 1
and s(A0 + F0) have the same sign, then ifR0 > 1 we have s(A0 + F0) < 0. Thus all the eigenvalues of the operator
A0 + F0 have strictly negative real parts, which prove that E0 is locally asymptotically stable.

Next, we recall that λ �−→ r(F0(λ− A0)−1) is convex and strictly decreasing in (s(A0),+∞). Since R0 =
r(F0(−A0)−1) > 1, by the intermediate value theorem, there exists λ0 > 0 such that r(F0(λ0 − A0)−1) = 1. There-
fore we have s(F0 + A0 − λ0) = 0 so that s(F0 + A0) = λ0. Thus we are sure that the spectrum of the operator
A0 + F0 admits at least one real positive eigenvalue whenR0 > 1 and in this case the equilibrium E0 is unstable.

A.6 Proof of Theorem 3.4: bifurcation of an endemic equilibrium⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

vh,IVM(τ ) = �(λm, τ)φvh + γh

∫ τ

0

�(λm, τ)
�(λm, σ)

E2uh,IVM(σ ) dσ ,

uh,IVM(τ ) = φ�h(τ )E1uh + λm

∫ τ

0

�h(τ )

�h(σ )
E1vh,IVM(σ ) dσ ,

Sm,IVM(η) = λSh,IVMSm�m(η) e−(λh+λ
I
h,IVM)η ,

Im,IVM(η) = (λSh,IVM + λIh,IVM)(Sm + Im)�m(η)− λSh,IVMSm�m(η) e−(λh+λ
I
h,IVM)η ,

(A23)
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where �(λm, τ) = e−
∫ τ
0 (λmE1+μh+ρ(σ)−Kh) dσ .

Introduce the linear operator

Lλm [w](τ ) = w(τ )− λmγh

∫ τ

0

�h(τ )

�h(σ )
E1

∫ σ

0

�(λm, σ)
�(λm, ζ )

E2w(ζ ) dζ dσ , ∀ w ∈ L1.

Then by (A23), it comes⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

uh,IVM(τ ) = L−1
λm

[
φ�h(τ )E1uh +

(
λm

∫ τ

0

�h(τ )

�h(σ )
E1�(λm, σ) dσ

)
φvh

]
:= ū(λm, vh, uh, τ),

vh,IVM(τ ) = �(λm, τ)φvh + γh

∫ τ

0

�(λm, τ)
�(λm, σ)

E2ū(λm, vh, uh, σ) dσ ,

Sm,IVM(η) = λSh,IVMSm�m(η) e−(λh+λ
I
h,IVM)η ,

Im,IVM(η) = (λSh,IVM + λIh,IVM)(Sm + Im)�m(η)− λSh,IVMSm�m(η) e−(λh+λ
I
h,IVM)η .

Therefore,

λm = θβm

Nh

(
Im + (λSh,IVM + λIh,IVM)(Sm + Im)�m − λSh,IVMSm

∫ ∞

0
�m(η) e−(λh+λ

I
h,IVM)η dη

)
,

λIh,IVM = θβh

Nh

∫ ∞

0
eL−1
λm

[
φ�h(τ )E1uh +

(
λm

∫ τ

0

�h(τ )

�h(σ )
E1�(λm, σ) dσ

)
φvh

]
dτ ,

λSh,IVM(t) = θ

Nh(t)

∫ ∞

0
e
[
�(λm, τ)φvh + γh

∫ τ

0

�(λm, τ)
�(λm, σ)

E2ū(λm, σ) dσ
]
dτ , (A24)

with �m = ∫∞
0 �m(η) dη.

We now deal with the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 = 
he1 − λmE1vh − (μh + φ) vh + Khvh + γhE2uh +
∫ ∞

0
ρ(τ)vh,IVM(τ ) dτ ,

0 = λmE1vh − φE1uh − Dhuh +
∫ ∞

0
ρ(τ)uh,IVM(τ ) dτ ,

0 = 
m − μmSm −
(
λh + λSh,IVM + λIh,IVM

)
Sm,

0 = λhSm − μmIm −
(
λSh,IVM + λIh,IVM

)
Im,

with the expression of λm, λSh,IVM and λIh,IVM given by (A24).

Remark A.2: Let’s assume λm is small enough. Then

Lλm [w] = w(τ )− λmγh

∫ τ

0

�h(τ )

�h(σ )
E1

∫ σ

0

�(0, σ)
�(0, ζ )

E2w(ζ ) dζ dσ + O(λ2m),

and therefore

L−1
λm

[w](τ ) = w(τ )− λmγh

∫ τ

0

�h(τ )

�h(σ )
E1

∫ σ

0

�(0, σ)
�(0, ζ )

E2w(ζ ) dζ dσ + O(λ2m).

With the above remark, it follows that

ū(λm, vh, uh, τ) ≈ φ�h(τ )E1uh +
(
λm

∫ τ

0

�h(τ )

�h(σ )
E1�(0, σ) dσ

)
φvh.

Let’s solve the following system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 = 
he1 − λmE1vh − (μh + φ) vh + Khvh + γhE2uh

+
∫ ∞

0
ρ(τ)

[
�(λm, τ)φvh + γh

∫ τ

0

�(λm, τ)
�(λm, σ)

E2ū(λm, vh, uh, σ) dσ
]
dτ ,

0 = λmE1vh − φE1uh − Dhuh +
∫ ∞

0
ρ(τ)ū(λm, vh, uh, τ) dτ ,

we have

uh = λm

(
φE1 + Dh −

∫ ∞

0
φρ(τ)�h(τ )E1 dτ

)−1 (
E1 +

∫ ∞

0

∫ ∞

0
φρ(τ)

�h(τ )

�h(σ )
E1l(0, τ) dσ dτ

)
vh := λmM1vh,
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with

M1 =
(
φE1 + Dh −

∫ ∞

0
φρ(τ)�h(τ )E1 dτ

)−1 (
E1 +

∫ ∞

0

∫ ∞

0
φρ(τ)

�h(τ )

�h(σ )
E1l(0, τ) dσ dτ

)
.

Therefore {
vh = g1(λm),
uh = λmM1g1(λm).

(A25)

with

g1(λm) =
(
λmE1 + (μh + φ) I d − Kh − λmγhE2M1 −

∫ ∞

0
φρ(τ)l(0, τ) dτ

− λm

∫ ∞

0

∫ τ

0
φγhρ(τ)

l(0, τ)
l(0, σ)

E2�h(τ )E1M1 dσ dτ

−λm
∫ ∞

0

∫ τ

0

∫ σ

0
φγhρ(τ)

l(0, τ)
l(0, σ)

E2
�h(σ )

�h(ς)
E2l(0, ς) dς dσ dτ

)−1

he1.

Moreover, by (A25) it comes
Nh = euh + evh = (eλmM1 + e) g1(λm). (A26)

Let

g2(λm) :=
(
λIh,IVM + λSh,IVM

)
Nh

= θβhλm

∫ ∞

0
e
[
φ�h(τ )E1M1 +

∫ τ

0
φ
�h(τ )

�h(σ )
E1l(0, τ)

]
g1(λm) dτ

+ θ

∫ ∞

0
e
[
�(0, τ)φg1(λm)+ γhλm

∫ τ

0
φ
�(0, τ)
�(0, σ)

E2 (�(σ )E1M1

+
∫ σ

0

�h(σ )

�h(ς)
E1l(0, ς) dς

)
g1(λm) dσ

]
dτ ,

By (A25) and (A26), we have

λh = θβh

Nh
euh = θβh

eλmM1g1(λm)
(eλmM1 + e) g1(λm)

.

We also have,

Sm = 
m

μm + λh + λSh,IVM + λIh,IVM
,

Im = λhSm
μm + λSh,IVM + λIh,IVM

= λh
m(
μm + λh + λSh,IVM + λIh,IVM

) (
μm + λSh,IVM + λIh,IVM

)
= θβh

λm
meM1g1(λm) (eλmM1 + e) g1(λm)[
μm (eλmM1 + e) g1(λm)+ λmeM1g1(λm)+ g2(λm)

] [
μm (eλmM1 + e) g1(λm)+ g2(λm)

] .
Therefore,

λm = θβm

Nh
Im

= θ2βhβmλm
meM1g1(λm)[
μm (eλmM1 + e) g1(λm)+ λmeM1g1(λm)+ g2(λm)

] [
μm (eλmM1 + e) g1(λm)+ g2(λm)

] .
Since we are interesting for λm > 0, the above equality becomes

ḡ(λm) = 1, (A27)

with ḡ a function defined from R to itself by

ḡ(λm) = θ2βhβm
meM1g1(λm)[
μm (eλmM1 + e) g1(λm)+ λmeM1g1(λm)+ g2(λm)

] [
μm (eλmM1 + e) g1(λm)+ g2(λm)

] .
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Since

g1(0) = S0he1,

g2(0) =
∫ ∞

0
θS0h,IVM(τ ) dτ ,

we have

ḡ(0) = θ2βhβm
meM1g1(0)(
μmeg1(0)+ g2(0)

)2
= θ2βhβm
meM1e1S0h(

μmS0h + θ
∫∞
0 S0h,IVM(τ ) dτ

)2 = θ2βhβmc̄0,

with c̄0 a positive constant such that c̄0 = 
meM1e1S0h
(μmS0h+θ

∫∞
0 S0h,IVM(τ ) dτ)

2

Set
r̄0 = θ2βhβmc̄0.

Then, (A27) rewrites as a r̄0-parametric equation

Ḡ(r̄0, λm) = 1,

with

Ḡ(r̄0, λ) = (r̄0/c̄0)
meM1g1(λ)[
μm (λeM1 + e) g1(λ)+ λeM1g1(λ)+ g2(λ)

] [
μm (λeM1 + e) g1(λ)+ g2(λ)

] .
Note that Ḡ(1, 0) = 1 and by the implicit function theorem, it comes(

dλ
dr0

)
|(r0=1,λ=0)

= − ∂r0 Ḡ(1, 0)
∂λḠ(1, 0)

.

We have

∂r0 Ḡ(1, 0) = (1/c̄0)
meM1g1(0)[
μmeg1(0)+ g2(0)

]2 = (1/c̄0)
mS0heM1e1[
μmS0h + ∫∞

0 θS0h,IVM(τ ) dτ
]2 = 1.

Furthermore, we rewrite Ḡ(r0, λ) as

Ḡ(r0, λ) = (r̄0/c̄0)
meM1g1(λ)
Ā(λ)B̄(λ)

,

with Ā(λ) = [μm(λeM1 + e)g1(λ)+ λeM1g1(λ)+ g2(λ)] and B̄(λ) = [μm(λeM1 + e)g1(λ)+ g2(λ)]. It follows that

∂λḠ(1, 0) = (1/c̄0)

meM1g′

1(0)
Ā(0)B̄(0)

− (1/c̄0)

meM1g1(0)

[
Ā′(0)B̄(0)+ Ā(0)B̄′(0)

]
Ā(0)2B̄(0)2

, (A28)

and

Ā′(λ) = [μmeM1 + eM1] g1(λ)+ [μm(λeM1 + e)+ λeM1] g′
1(λ)+ g′

2(λ),

B̄′(λ) = μmeM1g1(λ)+ μm(λeM1 + e)g′
1(λ)+ g′

2(λ).

We recall that

g1(λ) =
(
λE1 + (μh + φ) I d − Kh − λγhE2M1 −

∫ ∞

0
φρ(τ)l(0, τ) dτ

− λ

∫ ∞

0

∫ τ

0
φγhρ(τ)

l(0, τ)
l(0, σ)

E2�h(τ )E1M1 dσ dτ

−λ
∫ ∞

0

∫ τ

0

∫ σ

0
φγhρ(τ)

l(0, τ)
l(0, σ)

E2
�h(σ )

�h(ς)
E2l(0, ς) dς dσ dτ

)−1

he1.

g2(λ) = θβhλ

∫ ∞

0
e
[
φ�h(τ )E1M1 +

∫ τ

0
φ
�h(τ )

�h(σ )
E1l(0, τ)

]
g1(λ) dτ

+ θ

∫ ∞

0
e
[
�(0, τ)φg1(λ)+ γhλ

∫ τ

0
φ
�(0, τ)
�(0, σ)

E2
(
�(σ)E1M1 +

∫ σ

0

�h(σ )

�h(ς)
E1l(0, ς) dς

)
g1(λ) dσ

]
dτ ,
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and therefore

g′
1(λ) =

(
γhE2M1 +

∫ ∞

0

∫ τ

0
φγhρ(τ)

l(0, τ)
l(0, σ)

E2�h(τ )E1M1 dσ dτ

+
∫ ∞

0

∫ τ

0

∫ σ

0
φγhρ(τ)

l(0, τ)
l(0, σ)

E2
�h(σ )

�h(ς)
E2l(0, ς) dς dσ dτ − E1

)
×
(
λE1 + (μh + φ) I d − Kh − λγhE2M1 −

∫ ∞

0
φρ(τ)l(0, τ) dτ

−λ
∫ ∞

0

∫ τ

0
φγhρ(τ)

l(0, τ)
l(0, σ)

E2�h(τ )E1M1 dσ dτ

−λ
∫ ∞

0

∫ τ

0

∫ σ

0
φγhρ(τ)

l(0, τ)
l(0, σ)

E2
�h(σ )

�h(ς)
E2l(0, ς) dς dσ dτ

)−2

he1

=
(
γhE2M1 +

∫ ∞

0

∫ τ

0
φγhρ(τ)

l(0, τ)
l(0, σ)

E2�h(τ )E1M1 dσ dτ

+
∫ ∞

0

∫ τ

0

∫ σ

0
φγhρ(τ)

l(0, τ)
l(0, σ)

E2
�h(σ )

�h(ς)
E2l(0, ς) dς dσ dτ − E1

)
×
(
λE1 + (μh + φ) I d − Kh − λmγhE2M1 −

∫ ∞

0
φρ(τ)l(0, τ) dτ

−λ
∫ ∞

0

∫ τ

0
φγhρ(τ)

l(0, τ)
l(0, σ)

E2�h(τ )E1M1 dσ dτ

−λ
∫ ∞

0

∫ τ

0

∫ σ

0
φγhρ(τ)

l(0, τ)
l(0, σ)

E2
�h(σ )

�h(ς)
E2l(0, ς) dς dσ dτ

)−1
g1(λ),

and

g′
2(λ) = θβh

∫ ∞

0
e
[
φ�h(τ )E1M1 +

∫ τ

0
φ
�h(τ )

�h(σ )
E1l(0, τ)

]
g1(λ) dτ

+ θβhλ

∫ ∞

0
e
[
φ�h(τ )E1M1 +

∫ τ

0
φ
�h(τ )

�h(σ )
E1l(0, τ)

]
g′
1(λ) dτ + θ

∫ ∞

0
e�(0, τ)φg1(λ) dτ

+ θ

∫ ∞

0
e
[
γh

∫ τ

0
φ
�(0, τ)
�(0, σ)

E2
(
�(σ)E1M1 +

∫ σ

0

�h(σ )

�h(ς)
E1l(0, ς) dς

)
g1(λ) dσ

+γhλ
∫ τ

0
φ
�(0, τ)
�(0, σ)

E2
(
�(σ)E1M1 +

∫ σ

0

�h(σ )

�h(ς)
E1l(0, ς) dς

)
g′
1(λ) dσ

]
dτ .

Hence

g′
1(0) =

(
γhE2M1 +

∫ ∞

0

∫ τ

0
φγhρ(τ)

l(0, τ)
l(0, σ)

E2�h(τ )E1M1 dσ dτ

+
∫ ∞

0

∫ τ

0

∫ σ

0
φγhρ(τ)

l(0, τ)
l(0, σ)

E2
�h(σ )

�h(ς)
E2l(0, ς) dς dσ dτ − E1

)

×
(
(μh + φ) I d − Kh −

∫ ∞

0
φρ(τ)l(0, τ) dτ

)−1
g1(0)

= S0hM2e1,

and

g′
2(0) = θβh

∫ ∞

0
e
[
φ�h(τ )E1M1 +

∫ τ

0
φ
�h(τ )

�h(σ )
E1l(0, τ)

]
g1(0) dτ + θ

∫ ∞

0
e�(0, τ)φg1(0) dτ

+ θ

∫ ∞

0
e
[
γh

∫ τ

0
φ
�(0, τ)
�(0, σ)

E2
(
�(σ)E1M1 +

∫ σ

0

�h(σ )

�h(ς)
E1l(0, ς) dς

)
g1(0) dσ

= S0hM3e1,
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with

M2 =
(
γhE2M1 +

∫ ∞

0

∫ τ

0
φγhρ(τ)

l(0, τ)
l(0, σ)

E2�h(τ )E1M1 dσ dτ

+
∫ ∞

0

∫ τ

0

∫ σ

0
φγhρ(τ)

l(0, τ)
l(0, σ)

E2
�h(σ )

�h(ς)
E2l(0, ς) dς dσ dτ − E1

)

×
(
(μh + φ) I d − Kh −

∫ ∞

0
φρ(τ)l(0, τ) dτ

)−1
,

and

M3 = θβh

∫ ∞

0
e
[
φ�h(τ )E1M1 +

∫ τ

0
φ
�h(τ )

�h(σ )
E1l(0, τ)

]
dτ +

∫ ∞

0
θS0h,IVM(τ ) dτ

+ θ

∫ ∞

0
e
[
γh

∫ τ

0
φ
�(0, τ)
�(0, σ)

E2
(
�(σ)E1M1 +

∫ σ

0

�h(σ )

�h(ς)
E1l(0, ς) dς

)
dσ .

We then deduce that

Ā′(0) = S0h [μmeM1 + eM1 + μmeM2 + M3] e1,

B̄′(0) = S0h [μmeM1 + μmeM2 + M3] e1.

Consequently, (A28) gives

∂λḠ(1, 0) = (1/c̄0)
mS0heM1M2e1[
μmS0h + ∫∞

0 θS0h,IVM(τ ) dτ
]2 − (1/c̄0)
m

(
S0h
)2 eM1e1 [2μmeM1 + eM1 + 2μmeM2 + 2M3] e1[

μmS0h + ∫∞
0 θS0h,IVM(τ ) dτ

]3 .

Therefore, by introducing the following bifurcation parameter:

Cbif =
(

dλ
dr̄0

)−1

|(r̄0=1,λ=0)

= (1/c̄0)
m
(
S0h
)2 eM1e1 [2μmeM1 + eM1 + 2μmeM2 + 2M3] e1[

μmS0h + ∫∞
0 θS0h,IVM(τ ) dτ

]3 − (1/c̄0)
mS0heM1M2e1[
μmS0h + ∫∞

0 θS0h,IVM(τ ) dτ
]2 ,

it comes that a backward bifurcation occurs at r̄0 = 1 if and only if Cbif < 0, and a forward bifurcation occurs at r̄0 = 1
if and only if Cbif > 0.

However, without the effect of IVM, i.e. when φ = 0, it comes

r̄0 = θ2βhβm

meM1e1
μ2
mS

0
h

.

In such a configuration, it is important to observe that the bifurcation parameter r̄0 corresponds to the expression of
R0 without considering the impact of IVM, as given in (16).

Furthermore, without the effect of IVM, the bifurcation parameter Cbif rewrites

Cbif = (1/c̄0)
meM1e1[
μmS0h

]3 (
S0h [2μmeM1 + eM1 + 2μmeM2] e1 + μmS0h

) − (1/c̄0)
meM1M2e1[
μmS0h

]2
= −
m

μ2
m

μh + νh + γh + δh


h

(
1 − μ3

h(1 + 2μm)ā + 2μhμm
h(1 − ā)
μm


2
h(μh + νh)(μh + γh + δh)

)
,

wherein
ā = γhνh

(μh + νh)(μh + γh + δh)
.
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