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Abstract 

Background Despite consecutive decades of success in reducing malaria transmission, Ethiopia went off track 
towards its goal of malaria elimination by 2030, as outlined in the NMCP malaria strategy. Recent malaria outbreaks 
in Ethiopia are attributed to the emergence and spread of diagnostic and drug-resistant Plasmodium falcipa-
rum, increased insecticide resistance in major vectors and the spread of invasive Anopheles stephensi. The effects 
of the COVID-19 pandemic, environmental anomalies and internal conflicts have also potentially played a role 
in increasing malaria transmission. This study aimed to evaluate the contribution of environmental factors and An. 
stephensi to the spatiotemporal trends of recent malaria cases in Ethiopia.

Methods Clinical malaria case data reported weekly between January 2013 and January 2023 were obtained from the Ethio-
pian Public Health Institute (EPHI), Addis Ababa. A negative binomial regression model was used to explain the variability 
and potential overdispersion in the weekly number of malaria cases reported across Ethiopian administrative zones. This 
model incorporated fixed effects for selected environmental factors and random effects to capture temporal trends, zone 
specific seasonal patterns, spatial trends at the zone level, and the presence of An. stephensi and its impact.

Results Our negative binomial regression model highlighted 56% variability in the data and slightly more than half 
(55%) was due to environmental factors, while the remainder was captured by random effects. A significant nation-
wide decline in malaria risk was observed between 2013 and 2018, followed by a sharp increase in early 2022. Malaria 
risk was higher in western and northwestern zones of Ethiopia compared to other zones. Zone-specific seasonal pat-
terns, not explained by environmental factors, were grouped into four clusters of seasonal behaviours. The presence 
of An. stephensi was not shown to have any significant impact on malaria risk.

Conclusions Understanding the spatial and temporal drivers of malaria transmission and therefore identifying more 
appropriate malaria control strategies are key to the success of any malaria elimination and eradication programmes 
in Ethiopia. Our study found that approximately 50% of malaria risk variability could be explained by environmental, 
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temporal, and spatial factors included in the analysis, while the remaining variation was unexplained and may stem 
from other factors not considered in this study. This highlights the need for a better understanding of underlying fac-
tors driving local malaria transmission and outbreaks, to better tailor regional programmatic responses.

Keywords Anopheles stephensi, Environmental factors, Malaria risk, Spatiotemporal, Ethiopia

Background
Global efforts towards malaria control and elimina-
tion were heightened following the launch of Roll Back 
Malaria programme in 1998 and the declaration of Abuja 
in 2000, with the target of reducing malaria-related 
deaths by 50% before the end of 2010 [1]. Since then, 
investments have been made to promote universal cov-
erage of insecticide-treated mosquito nets (ITNs), diag-
nostic testing, and updated malaria treatment guidelines 
[2]. These efforts saw a drop in malaria cases and deaths 
from 238 million and 736,000 in 2000 to 229 million to 
409,000 in 2019, respectively [3]. Between 2000 and 
2015, eight countries eliminated malaria and many oth-
ers reduced transmission to low levels [4]. Motivated by 
these achievements, in 2015 WHO developed a global 
technical strategy (GTS) for 2016–2030 [2] to reduce 
malaria related mortality and incidence by at least 90% by 
2030 from the 2015 baseline [4].

However, between 2015 and 2019, the global rate of 
decline was decidedly lower, at around 2% [5], highlight-
ing that the programme might fall short of the targets 
for 2030 [6]. Importantly, the 2023 WHO malaria report 
showed that the global case incidence was off course by 
55% [7]. Factors contributing to this discrepancy include 
the emergence of drug and diagnostic-resistant parasites 
[8, 9], mosquito resistance to insecticides [7, 10], the 
COVID-19 pandemic [10], the  global rise in tempera-
tures [7], expansion of Anopheles stephensi [8, 11], and 
weakening of control programmes due to conflict and 
internal population displacement [12].

In line with global momentum, in 2004, Ethiopia began 
scaling up interventions to prevent and control malaria, 
including the  distribution of insecticide treated nets 
(ITNs), indoor residual spraying (IRS), and the introduc-
tion of rapid diagnostic tests and artemisinin-based com-
bination therapies [13, 14]. Moreover, the ‘test-and-treat’ 
policy was implemented in 2010 [13]. This achieved a 
reduction in malaria-related deaths of 54% between 2000 
and 2016 [15], and Ethiopia was one of four countries 
that were on course to meet the GTS target by 2020 [16].

With these gains, Ethiopia set a goal to achieve zero 
indigenous malaria cases in 565 and 1046 districts by 
2025 and 2030, respectively [17]. To support these goals, 
the risk of malaria at the district level was stratified into 
five districts based on annual parasite incidence (API, 

cases/1000 people per year), altitude and expert opin-
ions: high risk (API ≥ 50), medium risk (API ≥ 10 & < 50), 
low risk (API > 5 & < 10), very low risk (API > 0 & ≤ 5), and 
malaria-free areas (API = 0) [14]. However, efforts to pri-
oritize elimination were complicated by a rapid growth 
in malaria in 2022 with an estimated 1,732,562 malaria 
cases [7], nearly a two-fold increase from the 2018 base-
line of 962,087 [16]. Factors attributed to the nationwide 
upsurge included climatic anomalies [18], biological 
threats including An. stephensi [11, 19] and emergence 
of drug and diagnostic-resistant Plasmodium falciparum 
(P. falciparum) [8, 9], service interruptions due to the 
COVID-19 pandemic [14], and widespread internal con-
flicts [7].

To evaluate risk factors associated with the spatial and 
temporal patterns of malaria risk in Ethiopia, we there-
fore utilised a geospatial modelling technique [20]. Our 
approach can support decision-makers in tailoring inter-
ventions at a local scale and to inform technologies, strat-
egies, and target populations [21].

Methods
Background to the study
Ethiopia is characterized by Kola or hot lowlands, 
Weyna Dega, and Dega or cool highlands with altitudes 
of ≤ 1500 meters above sea level (masl), 1500–2400 masl, 
and > 2400 masl, respectively. Rainfall is strongly cor-
related with altitude and therefore varies significantly 
across the country [22]. This has resulted in heteroge-
neous malaria transmission in a bimodal pattern [14]. 
The bimodal seasonal pattern of malaria transmission is 
mainly associated with rainfall. In most parts of Ethio-
pia the major transmission peaks occur from Septem-
ber to December following the main rainy season (June 
to August) and small peaks from April to June following 
the  minor rainy season (March to May) [22, 23]. This 
seasonal pattern includes a lag phase of approximately 1 
month following the end of the rainy season [24]. Alti-
tude is also a major driver of malaria transmission and 
areas that lie below 2000 masl, where approximately 60% 
of Ethiopians reside, are considered malarious [17], [25]. 
Overall, Plasmodium falciparum and Plasmodium vivax 
are the co-endemic species in different proportions with 
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a national average of 65% and 35% of all cases respec-
tively [14].

Malaria case data
The Ethiopia Public Health Institute (EPHI) [26] is 
responsible for collecting data related to public health 
emergency management (PHEM) [26]. The public health 
institute analyses weekly PHEM data on diseases that are 
classified as public health threats in Ethiopia, including 
malaria, to identify areas of concern and respond with 
appropriate measures. PHEM data collected at the health 
facility level is aggregated by catchment, district, zone, 
and region.

Clinical malaria cases PHEM data between January 
2013 to January 2023 were obtained from EPHI. Data 
was stratified to the finest spatial resolution available at 
woreda level, the third administrative division in Ethio-
pia. In the Ethiopian health system, a primary hospital is 
expected to serve a woreda with an average population 
size of 60,000 to 100,000. However, significant adminis-
trative border changes were implemented between 2013 
and 2022. Therefore, to reduce spatial uncertainties as 
a result of these changes, data were aggregated to zone 

level, the second administrative division which was less 
affected. Data completeness improved over time; the 
annual national rate of missing records ranged from 
17.6% in 2015 to 5% in 2021. Ten zones had no miss-
ing records and the average rate of missing records was 
approximately 5% in all other zones. West Gondar zones 
had the highest missing rates (40% to 79% of records) 
potentially due to internal conflict.

To facilitate georeferencing of weekly malaria surveil-
lance data we utilised the 2021 Ethiopia administrative 
division shapefile and its associated population size pro-
vided by the United Nations Office for the Coordination 
of Humanitarian Affairs [27, 28]. This shapefile includes 
13 regions and 92 zones. However, to align with the 
recording structure of the malaria surveillance data, East 
Bale zone and Bale zone, Dire Dawa rural zone and Dire 
Dawa urban zone were all merged within the retrieved 
shapefile. Therefore, all analyses in this study are con-
ducted exclusively on 90 zones in 13 regions of Ethiopia 
(Supplementary Table 1).

Table 1 Variables used for contributing factors to spatial and temporal variation in weekly malaria cases across Ethiopian zones

Variable Code Unit Source Resolution

Horizontal easterly wind speed, 
at a height of ten metres 
above the Earth’s surface

u10 Metres per second ERA5-Land hourly reanalysis 
data, Copernicus’s Climate 
Data Store, by European 
Centre for Medium-Range 
Weather Forecasts. These data 
are processed retrospectively 
using meteorological models 
and ground data assimilation 
methods

Temporal: hourly 1950–present
Spatial: 1100 m

Horizontal northernly wind 
speed, at a height of ten metres 
above the Earth’s surface

v10 Metres per second

Leaf area index, high vegetation 
(evergreen trees, deciduous 
trees, mixed forest/woodland, 
and interrupted forest)

lai_hv Square meter per square meter

Leaf area index, low vegeta-
tion (crops and mixed farming, 
irrigated crops, short grass, tall 
grass, tundra, semidesert, bogs 
and marshes, evergreen shrubs, 
deciduous shrubs, and water 
and land mixtures)

lai_lv Square meter per square meter

Skin (Earth surface) temperature skt Kelvin

Total precipitation tp Meter

Volume of water in soil layer 1 
(0–7 cm)

swvl1 cubic meter per cubic meter

Gridded population density pop_density Number of people per square 
kilometer

Socioeconomic Data and Appli-
cations Center, NASA, Version 4

Temporal: Year 2020
Spatial: 1000 m

Land cover land_cover – CCI Land Cover (LC) team, Euro-
pean Space Agency

Temporal: Year 2016
Spatial: 20 m

Elevation Elevation Meter U.S. Geological Survey Temporal: Year 2007
Spatial: 450 m

Presence of invasive species Invasive Binary (presence/absence) WHO Global Malaria Programme Temporal: yearly
Spatial: zone-level
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Risk factors
Remote sensing data for Ethiopia across the whole study 
period were retrieved from open repositories (Table  1). 
Spatial and temporal resolutions of environmental fac-
tors varied across some variables. This can introduce bias 
due to a mismatch between the scale of change in each 
variable and the scale of measurement. To address this, 
we aggregated the environmental factors to match the 
spatial and temporal scale of the case counts. Specifically, 
for original spatial and temporal scales, we applied spatial 
aggregation to all environmental factors at zone level and 
temporal aggregation at  weekly level. This aggregation 
process involved the computation of summary statistics, 
including mean, minimum, maximum and standard devi-
ation for each variable per zone and per week. The only 
exception was land cover, where we calculated percent-
age per zone for the ten categories of land cover.

To assess the impact of An. stephensi, we combined 
data on 114 mosquito sampling attempts across Ethio-
pia between 2016 and 2023 from the WHO malaria 
threats map dataset [29] and other recent fieldwork [11] 
(Table 1).

Modelling of spatiotemporal variations
Although the Poisson model is commonly used for spatial 
and spatiotemporal count data, it assumes that the mean 
and variance are equal, which can be restrictive. In con-
trast, the negative binomial model allows the variance to 
be greater than the mean, a condition called overdisper-
sion. When data shows more variability than expected 
under a Poisson model, the negative binomial model is 
a more suitable choice [30]. To address variability and 
potential overdispersion in the weekly number of malaria 
cases across Ethiopian zones, denoted by yi,t where i is 
the zone and t the week, a negative binomial regression 
model was chosen over a Poisson model to examine the 
spatiotemporal relationships of malaria with the risk fac-
tors, denoted by xi,t =

(

xi,t,1, . . . , xi,t,M
)

 , where M is the 

total number of risk factors. The mean of the distribution 
of yi,t is:

and variance is:

here Pi,t and θi,t denote the known exposed popula-
tion size and expected relative risk of malaria infection 
in the  zone i and week t , respectively, and ϕ > 0 is the 
dispersion parameter. As a common approach in disease 
mapping with aggregated areal count data, including 
the population size Pi,t as a multiplicative offset term to 
model the mean, allows adjustment for population varia-
tions. Thus, the risk θi,t represents the impact of all other 
factors besides population fluctuations [31] and is repre-
sented by a log-linear model:

where:

• Intercept: α

o expresses the unmodelled overall country-wide 
average of expected risk of malaria;

• Fixed effect of environmental factors: 
fi,t =

∑M
j=1βjxi,t,j

o each environmental factor xi,t,j has its own 
coefficient βj;

• Random effect of other sources of variations: 
ri,t = τt + si,t + ξi + νi,t

o Represents the additive combination of tempo-
ral trend, zone-specific seasonality, zone-level 
spatial trend and effect of invasive species, as 
summarised in Table 2.

µi,t = E[yi,t ] = Pi,t × θi,t

σ 2
i,t = Var

(

yi,t
)

= µi,t ×

(

1+
µi,t

ϕ

)

.

θi,t = exp
(

α + fi,t + ri,t
)

Table 2 Random effect terms included in the log-linear model for the weekly risk of malaria in Ethiopian zones

Term Notation Representing Probability distribution Parameters 
(variances)

Temporal trend τt Overall long-term and large-scale temporal variation 
in the entire Ethiopia (not by zone)

First-order random walk σ 2
τ

Zone-specific seasonality si,t Recurring seasonal variations in each zone 
not explained by environmental factors

Cyclic second-order random walk tem-
poral pattern and spatially exchange-
able

σ 2
s

Zone-level spatial trend ξi Spatial variations between zones arise from dependen-
cies or heterogeneity that are not explained by environ-
mental factors

Besag-York-Mollié (BYM) σ 2
ξ ,Besag

and
σ 2
ξ ,iid

Invasive species νi,t Presence of An. stephensi in a zone from time i Independent and identically distributed σ 2
ν
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As a common model in the context of disease mapping 
and epidemiology, a Besag-York-Mollié (BYM) model 
was considered for possible spatial heterogeneity and 
dependence between zones. This model includes two 
components, enabling it to capture both spatial autocor-
relation among zones and heterogeneity across different 
zones, even after accounting for environmental factors 
and existing spatial autocorrelation.

A Bayesian approach with integrated nested Laplace 
approximation method [32] was used for parameter esti-
mation and statistical inference of the proposed model. 
The missing weekly counts for some zones were consid-
ered to be missing completely at random. This means that 
the likelihood of missing data is the same for all observa-
tions, regardless of any specific characteristics or values. 
Based on this assumption, any analysis performed on the 
available data remains unbiased, as the missingness does 
not systematically influence the results. All the computa-
tions for this approach were implemented through the 
R package INLA [33, 34]. Full computational details are 
provided in Gómez-Rubio (2020) [35].

To evaluate spatial patterns in the residuals of the mod-
els (which can support investigation of additional fac-
tors driving malaria) a hierarchical cluster analysis was 
employed to group similar zones based on their esti-
mated random effects. Among various methods, we used 
the complete linkage method to calculate the distance 
between clusters [36]. In this approach, the distance 
between two clusters is defined as the maximum dis-
tance between any pair of spatial random effects from the 
zones within each cluster.

Results
Progress in malaria control and elimination efforts 
has stalled since 2021
There were temporal variations in the weekly count of 
clinical malaria cases in the country during the study 
period, January 2013 to January 2023 (Fig.  1). Most 
years exhibited intra-annual bimodal seasonal patterns 
and a long-term temporal trend that declined between 
2013 to 2018, and then increased from 2021 onwards. 
Seasonal peaks tended to occur in the second half of 
the year and notable variability among different regions 
as evident in the summary statistics of the weekly 
counts of clinical malaria cases by year and by region, 
respectively, provided in Supplementary Tables 1 and 2.

Binomial model estimates of the malaria risk across 
different weeks and zones (in 90 zones); mean (lines) 
and associated 95% credible intervals (grey shading) 
for the aggregated country-wide risk of malaria cases, 
θt =

∑90
i=1θi,t , per 10,000 population (i.e. 10,000× θt ), 

over the study period revealed declining risk from 2013 
to 2018 followed by a sharp increased risk from early 
2021 (Fig. 2).

The spatial pattern of total clinical malaria cases per 
10,000 population across zones of Ethiopia reveals a 
higher concentration of clinical malaria cases in west-
ern and northwestern zones (Fig. 3).

The estimated risk of malaria cases per 10,000 popu-
lation, 10,000× 1

525

∑525
t=1θi,t , showed higher risk in west 

and northwest zones, compared to other zones. at the 
zone level for the 525 weeks, accounted for the over-
all effect of environmental factors as well as spatial and 
temporal random effects (Fig. 4, right panel). The means 
of the spatial random effect (Fig. 4 left panel), represent 
spatial fluctuations not accounted for by other compo-
nents in the model. The sign and magnitude of these 
means indicate a general trend: negative spatial effects 

Fig. 1 Weekly clinical malaria cases in Ethiopia from January 2013 to January 2023, EPHI
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Fig. 2 Mean (solid line) and 95% credible interval (grey shading) of the aggregated country-wide risk of malaria per 10,000 population in Ethiopia 
between January 2013 and January 2023, EPHI

Fig. 3 Rates of clinical malaria cases per 10,000 population across zones of Ethiopia between 2013 and 2023. Grey zones indicate no recorded 
cases. Lakes are represented in white. For 2022 and 2023, records were missing for North Ethiopia (West Gondar) was due to internal conflict
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in the eastern zones and positive spatial effects in the 
western and northwestern zones. This suggests that 
predictions based solely on the fixed effects of environ-
mental factors may underestimate or overestimate the 
risk of malaria. Specifically, underprediction occurs in 
the West, while overprediction occurs in the East.

Approximately 50% of variability in malaria trends 
over the last decade, as captured by the model, can be 
attributed to environmental factors
A goodness-of-fit measure (Bayesian R-squared) 
indicated that approximately 56% of variation in the 
weekly number of clinical malaria cases in Ethiopia is 
explained by the model. Of this explained variation, 
55% is attributable to environmental factors.

In terms of the  importance of the different residual 
model components (therefore excluding fixed effects), 
the zone-specific seasonal random effect si,t and spa-
tially structured part of the spatial random effect ξi 
are components with larger variances and therefore 
contribute more to describing unexplained variations 
(Fig.  6A). Subsequent analyses (Bayesian R-squared) 
[38] highlighted that approximately 56% of variation in 
the weekly number of clinical malaria cases in Ethiopia 
is explained by the model with all components. Within 
the explained component, 55% is due to fixed effects.

From the fixed effects variables described in Table 1, 
seven were found significantly associated with weekly 
malaria variation over the zones (Fig. 6B). In particular 
the (1) horizontal eastly wind speed at a height of up to 
10 m (u10): Higher average wind speed within a zone 

is associated with a slight (5%) increase in malaria 
risk. Surface soil moisture (swvl1), (2) the maximum 
amount of water held in the top soil layer (0–7cm) 
across each zone significantly increases the risk of 
malaria by 7%. Conversely, both the standard devia-
tion and minimum of swvl1 within each zone showed 
a decrease of around 4% and 7% in malaria risk respec-
tively, with each unit increase, (3) Leaf area index for 
low vegetation: The mean leaf area index for low veg-
etation decreases malaria risk by 17% and (4) Eleva-
tion: higher minimum elevation is associated with 69% 
increase in malaria risk while mean elevation is associ-
ated with 75% decrease (Fig. 5).

Observed clustering and seasonality is unexplained 
by environmental factors
The estimated zone-specific seasonal random effects 
indicated that there is residual seasonal variation (the 
part of seasonality not explained by environmental fac-
tors) across both space and time (Supplementary Fig. 1). 
Some zones, like Kilbati, do not show a clear seasonal 
pattern beyond what environmental factors can explain, 
while others exhibit distinct cycles, with winter declines 
and summer increases. A hierarchical cluster analysis 
using a complete linkage method [36] identified four geo-
graphical clusters (Fig. 6, top panel) with local seasonality 
not explained by environmental variables (Supplemen-
tary Fig.  2). Zones in Cluster 4 demonstrate consistent 
seasonal patterns, with significant declines in March and 
April and significant peaks in October and November. In 
contrast, zones in Cluster 2 and, to some extent, those 
in Cluster 1 showed no consistent seasonality. Zones in 

Fig. 4 Means of the spatial random effect (left) and the estimated mean risk of malaria per 10,000 population [37] across zones of Ethiopia
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Cluster 3, however, consistently peak in June. In terms 
of malaria risk representation, zones in Cluster 3 have a 
significantly higher malaria risk [95% Confidence inter-
val (CI): 10.8–15.9] than Cluster 2 (95% CI: 4.96–7.37). 
Zones in clusters 1 and 4 tend to have an overall medium 
risk (Supplementary Table  3).  The “[(95% Confidence 
interval (CI): 10.8–15.9]" should change to: “95% confi-
dence interval (CI): 10.8–15.9]”.

Discussion
Progress in malaria control and elimination efforts 
in Ethiopia has stalled since 2021
This study revealed that malaria transmission in Ethiopia 
exhibited a cyclical seasonal pattern and a declining long-
term temporal trend between 2013 and 2018, followed 
by increases in transmission up to 2021 similar to those 
observed in the WHO African Region [7]. The mod-
els identified a higher concentration of clinical malaria 
cases in the western and northwestern zones bordering 
countries.

Approximately 50% of variability in malaria trends 
over the last decade in Ethiopia could be attributed 
to environmental factors
The observed lower variance in overall temporal effects 
implies that large-scale temporal variations play a lesser 
role. Fixed effects (represented by the selected seven 
environmental variables), account for approximately 
55% of explained variance, and  the larger variances in 
zone-specific seasonal and spatially structured random 
effects highlight the importance of local variations in 

understanding the remaining unexplained variations in 
malaria risk (approximately 45%). While environmen-
tal variables like easterly horizontal wind speed at a 
height of 10 m, surface soil moisture, and higher mini-
mum elevation were associated with increased malaria 
risk, lower mean leaf area index of low vegetation and 
mean elevation were associated with decreased risk. 
However, a substantial amount of unexplained seasonal 
variation across space and time remained, as captured 
by zone-specific seasonal random effects, and tended 
to cluster in regions that are not always geographically 
contiguous. The significantly higher risk observed in 
the northwest and lower risk in the southwestern part 
of Ethiopia (Figs. 3 and 4) is potentially due to a com-
plex interplay of factors. The model outputs are con-
sistent with Ethiopian malaria transmission patterns, 
which are seasonal, inter-annual and spatially hetero-
geneous, except in  the low-lying southwestern border 
areas experiencing perennial transmission [13, 14]. 
Factors influencing mosquito breeding, parasite sur-
vival, and consequently malaria transmission, including 
environmental factors such as temperature and rainfall 
[39], might play important roles in the observed vari-
ation. Variation in malaria seasonality across zones, as 
well as clustering following similar patterns (Figs. 4 and 
6), is consistent with previous studies that documented 
significant geographical heterogeneity in malaria trans-
mission. Regional and subregional spatial clustering 
and the  presence of hotspots were attributed to envi-
ronmental and socioeconomic factors. In the north-
west, from 2009 to 2010 focal upsurges in malaria cases 

Fig. 5 Estimated means and their corresponding 95% credible intervals of logarithms of variance for all random effect terms within the considered 
model: spatial random effect ξ_i, overall temporal random effect τ_t, zone-specific seasonal random effect s_(i,t) and the presence or absence 
of invasive species ν_(i,t) (A). Forest plot of the estimated means and their corresponding 95% credible intervals of statistically significant 
coefficients for environmental factors in the considered model for clinical malaria cases in Ethiopia (B)
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with spatiotemporal patterns were reported [40]. Low 
malaria risk in eastern zones compared to the north-
western zones might be due to variations in rainfall pat-
terns and seasonality as observed elsewhere [39]. The 
overall trend in our risk map (Fig.  4) aligns with the 
Ethiopian national malaria risk stratification map [14], 
showing a relatively higher burden in the western and 

northwestern parts of the country which is also consist-
ent with non-epidemic years [13]. Factors that could 
have a  bearing on the nationwide upsurge in addition 
to the environmental and socioeconomic variation 
might be the consequences of long and widespread 
internal conflict and population displacement [12] as 
well as the  COVID-19 pandemic [10] which disrupted 

Fig. 6 Hierarchical clustering of Ethiopia’s zones based on the similarity of their estimated zone-specific seasonal random effects in 4 clusters (top 
panel) with the posterior mean and 95% confidence intervals of seasonal effects displayed for each cluster (bottom panels)
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the health system. Therefore, the adverse effects of 
the interplay between climatic anomalies and conflict-
associated displacement in populations at high risk of 
neglected tropical diseases is highlighted as a strate-
gic research focus [12]. The other potential risk factor 
which could have contributed to the changes in clinical 
malaria trends is An. stephensi, reported mainly in east 
and southeastern Ethiopia [8, 41] but not in others [42]. 
We need to be cautious but our model identified low 
malaria in eastern Ethiopia where An. stephensi is well-
established [11, 19].

In our model, a horizontal easterly wind speed at a 
height of ten meters above the Earth’s surface was asso-
ciated with a 5% increase in malaria risk. This might be 
explained by the fact that wind can assist mosquitoes in 
host-seeking [43] and wind-borne migration of mosqui-
toes [44]. Importantly, the direction of the  wind from 
villages to the breeding habitats has been linked with 
an increased population size of mosquitoes compared to 
the opposite wind direction [45]. However, wind can also 
generate waves on the water surface, which can be fatal 
to the aquatic life stage of mosquitoes in large reservoirs 
compared to small rain-made breeding habitats [46].

Surface soil moisture (the volume of water in the first 
layer (0–7  cm) of surface soil) is a good predictor of 
malaria risk in this study, as indicated elsewhere [47]. 
Previous studies from Nigeria [48] and Uganda [49] have 
shown that the vegetation index was an important con-
tributor to malaria risk. Conversely, the mean leaf area 
index for low vegetation decreased malaria risk by 17% 
in our study. Importantly, a decrease in elevation (alti-
tude) was significantly associated with an increased rela-
tive risk of malaria in our study, while the average higher 
elevation was not. However, warmer years could promote 
malaria transmission at higher altitudes in Ethiopia and 
Colombia [50].

Observed local clustering and seasonality is unexplained 
by environmental factors
Our study also suggests the existence of local (small-
scale) spatial and temporal variations more important 
than large-scale variations that could shape Ethiopia’s 
malaria risk distribution (Fig. 6A and B). This is evident 
from the substantial variance in zone-specific seasonal 
effects, highlighting how seasonal fluctuations within 
zones influence overall risk. Potentially local human 
behaviours and mosquito ecology [51] as well as socio-
economic conditions [52] might vary across zones and 
seasons, impacting transmission dynamics. Importantly, 
significant variation in the spatially structured effect sug-
gests that local spatial patterns matter. Shared patterns 
between neighbouring zones could contribute to this 

spatial clustering [53]. Importantly, within each cluster, it 
is likely that zones share common factors that were not 
considered in the model such as mosquito vector popula-
tion, human behavioral factors, differences in healthcare 
structure, and malaria interventions. biological threats 
such as drug and diagnostic-resistant P. falciparum 
reported in different parts of Ethiopia [8, 9].

Our study revealed the spatial and temporal trends of 
malaria across Ethiopian zones. The local variation in 
transmission emphasizes the need for tailored interven-
tions across zones but also their potential as sources of 
epidemics [54]. We acknowledge that the findings should 
be cautiously interpreted. The inherent incompleteness of 
the PHEM data and the use of different time scales with 
environmental data might have resulted in an underesti-
mation of risks. Considering more risk factors, socioeco-
nomic and near-surface temperature, and considering a 
time lag with nonlinear modelling might have improved 
the outcome.

Conclusions
Our findings underline the importance of environmental 
factors, accounting for 55% of the variability explained 
by our model, as drivers of the spatiotemporal distribu-
tion of malaria risk in Ethiopia. The local clustering and 
seasonality unexplained by environmental factors call 
for further exploration into tailored focal responses. The 
presence of a sizable proportion (45%) of risk factors 
accounting for changes in the trends of clinical malaria 
remain unexplained by our model; information about 
biological threats (vector dynamics; change in insecticide 
resistance and/or biting and resting behavior, occurrence 
of drug and diagnostic resistance in Plasmodium popula-
tions) and years in the grip of internal conflict could have 
played important roles. This study showed that reduced 
effectiveness of malaria control efforts in a country after 
years of progress towards elimination highlights the need 
for multi-sectoral coordination, and a localised and coor-
dinated response beyond the health system.
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