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Abstract

Although malaria is endemic in coastal Côte d’Ivoire, updated data on the resistance profile

of the main vector, Anopheles gambiae sensu lato (s.l.), are still lacking, thus compromising

decision-making for an effective vector control intervention. This study investigated the com-

plex members and the insecticide resistance in the Anopheles gambiae s.l. populations in

coastal Côte d’Ivoire. Between 2018 and 2020, cross sectional survey bioassays were con-

ducted on female An. gambiae s.l. mosquitoes in three coastal health districts (Aboisso, Jac-

queville and San Pedro) of Côte d’Ivoire. Pyrethroids deltamethrin, permethrin and

alphacypermethrin (1X, 5X and 10X), clothianidin and synergist piperonyl butoxide (PBO)

combined with pyrethroid 1X were tested using WHO tube bioassays. Chlorfenapyr was

evaluated using CDC bottle bioassays. An. gambiae complex members and kdr 995F, kdr

995S and Ace-1 280S mutations were identified using polymerase chain reaction (PCR)

technique. Overall, An. gambiae s.l. populations were primarily composed of Anopheles

coluzzii (88.24%, n = 312), followed by Anopheles gambiae sensu stricto (7.56%) and

hybrids (4.17%). These populations displayed strong resistance to pyrethroids at standard

diagnostic doses, with mortality remaining below 98% even at 10X doses, except for alpha-

cypermethrin in Aboisso. Pre-exposure to PBO significantly increased mortality but did not

induce susceptibility, except for alphacypermethrin in Jacqueville. Clothianidin induced full

susceptibility in Jacqueville and San Pedro, while chlorfenapyr induced susceptibility in

Aboisso at 100 μg ai/bottle and all three districts at 200 μg ai/bottle. kdr 995F mutation domi-

nated, with frequencies varying from 71.2% to 79.3%. kdr 995S had low, rates with frequen-

cies ranging from 2.3% to 5.7%. Ace-1 280S prevalence varied between 4.2% and 42.9%.

Coastal Côte d’Ivoire’s An. gambiae s.l. populations were mainly composed of An. coluzzii

and showed high resistance to pyrethroids. Clothianidin, chlorfenapyr, and PBO with

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0297604 December 10, 2024 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS
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pyrethroids increased mortality, indicating their potential use as an alternative for malaria

vector control.

Introduction

The World Health Organization (WHO) has recently reported that there were 249 million

cases and 608,000 deaths from malaria in 2022 [1]. Malaria is most prevalent in sub-Saharan

Africa, where the majority of cases and deaths occur. Within sub-Saharan Africa, countries

such as Nigeria, the Democratic Republic of the Congo, and Mozambique have the highest

malaria burdens. Malaria is one of the deadliest public health diseases among children less

than 5 years old, particularly in sub-Saharan Africa. The WHO African region accounted for

95% of global malaria cases and 96% of deaths [2]. More than US$ 3.5 billion have been

invested in 2021 for malaria, with a third of this investment (around US$ 1.1 billion) spent by

the governments of malaria-endemic countries [2]. The WHO recommends malaria preven-

tion strategies, including effective vector control tools that have major impacts in reducing the

global burden of this disease. The WHO Global Technical Strategy (GTS) aims to reduce

malaria incidence and mortality by at least 75% by 2025 and 90% by 2030, which seems to be

challenging [2]. In 2021, 242 million Artemisinin-based Combination Therapies (ACTs) were

distributed to the public health sector by National Malaria Control Programs (NMCPs) and

about 590 million Insecticide Treated Nets (ITNs) were delivered to communities

between2019 and2021 [2]. To achieve these goals, GTS has called for the development of new

vector control tools that must incorporate new insecticide molecules (e.g., clothianidin and

chlorfenapyr), synergists (e.g., pyperonyl butoxide: PBO) and/or insecticide mixtures contain-

ing at least two active ingredients with different modes of action to mitigate malaria vector

resistance to insecticides [2–4]. Côte d’Ivoire’s population lives in high malaria risk areas [5].

In 2021, malaria in the country was estimated at 7,443,146 cases with 14,906 deaths [2]. The

main objectives of the National Control Malaria Program (NMCP) are to reduce malaria mor-

bidity by 40% and the malaria mortality in high-burden by 33% by 2026 compared to the 2015

baseline [6]. The vector control strategy implemented by the NMCP is mainly based on the

mass deployment of long-lasting insecticidal nets (LLINs) every three years and recently by

implementing indoor residual sprays (IRS) [7–9] in one district. In Côte d’Ivoire, the National

Malaria Strategic Plan 2016–2020 has prioritized indoor residual spraying (IRS) as an addi-

tional vector control method to reduce malaria morbidity and mortality [10]. The transmis-

sion of malaria in Côte d’Ivoire is via An. gambiae s.l., An. funestus s.l. and An. nili [7, 11]. An.

gambiae s.l., or the An. gambiae complex, comprises nine species, including An. gambiae sensu
stricto (s.s.), An. coluzzii, An. arabiensis, An. melas, An. merus, An. bwambae, An. quadriannu-
latus, An. amharicus, and An. fontenillei, which cannot be morphologically distinguished [12].

The species An. gambiae s.s., An. coluzzii, and the hybrids resulting from their interbreeding,

all part of the An. gambiae complex, have been identified throughout the country [7, 13–16].

However, Ivorian An. gambiae s.l., populations exhibit strong resistance to many traditional

classes of insecticides (i.e., DDT, pyrethroid, carbamate, and organophosphate) [7, 14–18].

Local An. gambiae s.l. resistance to insecticides is a severe challenge to the NMCP efforts

because all LLINs distributed in Côte d’Ivoire before 2021 were treated with pyrethroid only

[7, 10]. Therefore, it is urgent to develop effective alternative strategies for the sustainable con-

trol of insecticide-resistant malaria vectors. Since 2018, the National Malaria Strategic Plan

(NMSP) supported by the U.S. President’s Malaria Initiative (PMI) project has contributed to
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the generation of insecticide resistance data to conduct a stratification of vector control inter-

ventions across the country. From 2018 to 2022, the NMCP and PMI deployed IRS in the

health districts of Nassian and Sakassou using clothianidin-based insecticides that resulted in

effective malaria vector control [6, 7]. Insecticide sensitivity tests have also been conducted so

that these data can facilitate the development of mosquito nets incorporating pyrethroids and

other active ingredients (synergists, pyrroles, etc.), as well as combinations of active ingredi-

ents, for the upcoming LLIN distribution campaign, based on entomological stratification data

[6, 7]. Recently, pyrethroids in combination with either an insect growth regulator, a pyrrole,

or a synergist that inhibits the primary metabolic mechanism of pyrethroid resistance within

mosquitoes were used in LLINs [3, 4, 7]. In the current study, insecticide resistance status and

complex members of An. gambiae s.l. were assessed in three coastal health districts of Côte

d’Ivoire, namely Aboisso, Jacqueville and San Pedro. Although a low entomological inocula-

tion rate (10.9 ib/p/y in Bardo) is recorded in the coastal zone of Côte d’Ivoire [11], this area

has reported a high incidence of malaria. The health district of Jacqueville records one of the

highest malaria incidences, three hundred sixty-seven per thousand (367‰), while a lower

incidence is reported in the health district of San Pedro (127.1‰) [19, 20]. In Côte d’Ivoire,

the coastal areas are characterized by a massive concentration of people [21]. These areas are

the heart of the economic development of the country and have two main seaports, one in Abi-

djan and one in San-Pedro. This coastal region is home to the largest number of agro-indus-

trial units, traditional agriculture and smallholdings [11, 15, 22]. The industrial and traditional

crops (e.g., cocoa, rubber, oil palm, coffee, rice) [11, 13, 15, 16, 22] are intensively treated with

pesticides and insecticides to protect crops [15]. The local Anopheles malaria vectors are con-

stantly under strong pressure from insecticides and chemicals, which can lead to the develop-

ment of their resistance and increased their survival. Thus there is an urgent need is to develop

alternative insecticides and evaluate their effectiveness against malaria vectors in resistant

areas, mainly on the coastline. The current study is part of a program designed to explore the

landscape of malaria Anopheles vectors in coastal areas to inform disease control programs in

Côte d’Ivoire.

Methodology

Study sites

The study was conducted in three health districts, Aboisso (latitude 5˚ 28’ 04” N and longitude

3˚ 12’ 25” W), Jacqueville (latitude 5˚ 12’ 02” N and longitude 4˚ 24’ 44” W) and San Pedro

(latitude 4˚ 44’ 5” N and longitude 6˚ 38’ 10” W), located in the southern littoral area of Côte

d’Ivoire (Fig 1). The local climate is characterized by two major seasons: the long rainy season

from April to July, with the peak rainfall in June, and the long dry season from October to

March. The annual rainfall average is 1848 mm with an annual temperature average of 27˚C.

In the three health districts, economic activities are dominated by agriculture with large agri-

cultural areas for food crops and cash crops (rubber, oil palm, pineapple, cassava, yam,

banana) [21, 23, 24]. Farmers use several types of pesticides (herbicides, insecticides, and fun-

gicides) to protect crops and increase production [15, 22, 25].

Larval sampling and rearing to adults

Surveys for potential mosquito larvae habitats were conducted in different locations such as

water puddles, vegetable cultivation sites, rice fields, and other potential larval habitats within

our study sites. Anopheles mosquito larvae and pupae were collected using the dipping method

[26] and combined. All collection site within each health district were combined. The larvae

and pupae were collected from larval habitats between January 2018 and December 2020.
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Larvae were transferred to distilled water and reared into adults using the mosquito mass-rear-

ing method [27] under standard laboratory conditions (27 ± 2�C temperature; 70 ± 10% rela-

tive humidity; 12:12 hour light: dark photoperiod). Emerged adults were provided with a

cotton wool pad soaked in a 10% sugar solution. Species (An. gambiae s.l.) were morphologi-

cally identified using identification keys [28] before being utilized for various sensitivity tests

and moleculars analyses.

WHO tube bioassay

The diagnostic dose tests of pyrethroids (alphacypermethrin, deltamethrin, and permethrin)

were conducted in 2018, 2019, and 2020. The following tests, including intensity tests (1X, 5X,

and 10X), synergist tests (PBO), and clothianidin tests, were exclusively conducted in 2020.

Emerged adult females of An. gambiae s.l. were tested for insecticide susceptibility according

to the WHO standard procedures [29]. Females of F0 generations aged 2–5 days were used in

all tests. Four batches of 20–25 non-blood-fed females were introduced each in four tube tests

garnished with insecticide-treated filter papers, while two batches were exposed to control

tubes with untreated filter papers for one hour. Mosquitoes were exposed to the WHO dis-

criminating dosages of deltamethrin (0.05%), permethrin (0.75%) and alpha-cypermethrin

(0.05%) to determine their resistance status (WHO, 2018). Moreover, synergist effects were

assessed by pre-exposing mosquitoes to 4% PBO for one hour before being exposed to delta-

methrin 0.05%, permethrin 0.75% and alphacypermethrin 0.05% for an additional hour. To

determine the pyrethroid-resistance intensity, mosquitoes were exposed to 1X, 5X and 10X

diagnostic concentrations of alpha-cypermethrin (0.05%, 0.25% and 0.5%), permethrin

Fig 1. Map of Côte d’Ivoire showing the location of the littoral health districts. The map was generated using QGIS

software version 3.32.3-Lima (https://www.qgis.org/), with the basemap shapefile sourced from the Database of Global

Administrative Areas (GADM, https://gadm.org/; license: https://gadm.org/license.html).

https://doi.org/10.1371/journal.pone.0297604.g001
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(0.75%, 3.75% and 7.5%) and deltamethrin (0.05%, 0.25% and 0.5%). Mosquito mortality was

recorded at 24 hours after exposure.

For clothianidin, impregnated papers were prepared in situ following the standard operat-

ing procedure (SOP) developed by the Vector Link entomology team. The diagnostic dose was

set at 2% clothianidin. A solution of clothianidin was prepared by diluting 264 mg of the for-

mulated product (Sumishield WG50) in 20 ml of distilled water. Four Whatman No.1 filter

papers of 12 × 15 cm each were impregnated using a pipette to dispense 2 ml of solution on

each filter paper, resulting in a concentration of 13.2 mg/ai clothianidin per paper. The

untreated filter papers were treated using 2 ml of a solution of distilled water. Clothianidin was

tested using WHO susceptibility tests, with the standard guidelines [30]. Mosquitoes were

tested against clothianidin-treated papers as described above [31]. The mortality was recorded

daily for up to seven days in order to capture any delayed mortality effects.

CDC bottle test

The Centers of Disease Control and Prevention (CDC) bottle tests were exclusively conducted

in 2020. Chlorfenapyr susceptibility was determined using CDC bottle tests. The CDC bottle

tests utilized 250 ml glass bottles coated with 100 μg ai/bottle and 200 μg ai/bottle. A set of 15

to 20 non-blood-fed female An. gambiae s.l. aged 2–5 days were exposed to two discriminating

concentrations of chlorfenapyr following the CDC bottle test protocol [32]. Mortality was

recorded daily for up to three days.

Molecular analyses of An. gambiae s.l.complex members and resistance

genes

The An. gambiae complex members and kdr and Ace-1 mutations are stored individually in

Eppendorf tubes with silica gel, and maintained at −20˚C for subsequent identification.

DNA extraction

The genomic DNA of individual mosquito was extracted according to the method described

in Collins et al. [33]. Each mosquito was individually processed in a 1.5 ml Eppendorf tube,

where it was soaked and crushed in 200 μl of 2% Cetyl Trimethyl Ammonium Bromide

(CTAB), followed by incubation at 65˚C for 5 minutes. Afterwards, 200 μl of chloroform was

added, and the resultant mixture was centrifuged at 12,000 rounds per minute (rpm) for 5

minutes. The supernatant was carefully transferred to a new 1.5 ml tube. Subsequently, 200 μl

of isopropanol was added to the supernatant, thoroughly mixed by pipetting, and then centri-

fuged at 12,000 rpm for 15 minutes to precipitate the DNA. The DNA pellet formed at the bot-

tom of the tubes and the supernatant was discarded. The DNA of each sample was purified

with 200 μl of 70% Ethanol and centrifuged at 12,000 rpm for 5 minutes. After removing the

ethanol, the pellet was air-dried overnight on the bench. Finally, the extracted DNA was recon-

stituted in 30 μl of DNase-free water (Sigma-Aldrich, United Kingdom), incubated at 65˚C for

15 minutes, and stored in the fridge at -20˚C.

Complex member identification

The molecular identification of An. gambiae complex members was performed according to

the SINE-PCR method [34], with minor modifications of reaction mixture. The PCR assay was

performed using two primers, 6.1a (5’-TCGCCTTAGACCTTGCGTTA-3’) and 6.1b (5’-

CGCTTCAAGAATTCGAGATAC-3’). Each reaction mixture was done in a final volume of 25 μl

containing 12.5 μl One taq Quick-load 2X Master Mix, 5.5 μl free water, 0.5 μl Dimethyl
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sulphoxide (DMSO), 2 μl Bovine Serum Albumin (BSA), 1 μl of each primer, 0.5 μl Magne-

sium chloride (MgCl2) and 2 μl DNA template. The incubation took place in a thermocycler

of LongGene1 type (A200 Gradient Thermal cycler; LongGene Scientific Instruments Co.,

Ltd Hangzhou, P.R. China) according to the following program: 94 �C for 5 min, 94 �C for 25

sec, and 54 �C for 30 sec; 72 �C for 1 min repeated 35 times; and a final step at 72 �C for 10

min to terminate the reaction. After amplification, PCR products were run on either a 1.5%

agarose gel in Tris/borate/EDTA (TBE) and stained with ethidium bromide solution for UV

visualization. PCR products were loaded on the gel and allowed to migrate under a voltage of

140 V for an hour. The result was visualized with a UV illuminator (BioDoc- It Imaging Sys-

tem; Upland, CA, USA).

Identification of target site mutation

The presence of insecticide resistance genes including kdr-L995F (previously known as kdr-
L1014F (kdr-West)), kdr-L995S (previously known as kdr-L1014S (kdr-East)), and Ace-1-
G280S (previously known as Ace-1-G119S) [35] was investigated using real-time PCR. The

primers Kdr-Forward (5’-CATTTTTCTTGGCCACTGTAGTGAT-3’) and Kdr-Reverse (5’-

CGATCTTGGTCCATGTTAATTTGCA-3’) were standard oligonucleotides without any modifi-

cations. The probe WT (5’-CTTACGACTAAATTTC-3’), labeled with HEX at the 5’ end, was

used for detecting the wildtype allele. The probes kdr W (5’-ACGACAAAATTTC-3’) and kdr E

(5’-ACGACTGAATTTC-3’) were labeled with FAM for detecting the kdr-W and kdr-E alleles,

respectively. Similarly, the primers Ace-1-Forward (5’-GGCCGTCATGCTGTGGAT-3’) and Ace-
1-Reverse (5’-GCGGTGCCGGAGTAGA-3’) were also standard oligonucleotides. The probe WT

(5’-TTCGGCGGCGGCT-3’) was labeled with HEX, while the probe (5’-TTCGGCGGCAGCT-3’)

was labeled with FAM. The TaqMan assays as detailed by Bass [36] were used to screen for the

995F, 995S kdr and 280S mutations. The reaction was carried out in an Agilent Stratagene

MX3005 qPCR thermocycler (Agilent Technologies, Santa Clara, CA, USA). Each 1 μl of gene

DNA was combined with a total volume of 9 μl of master mix, comprising 3.875 μl of DNase-

free water, 5 μl of SensiMix, and 0.125 μl of specific primer/probe for either kdr 995F, 995S, or

Ace-1-280S. KdrAce-1 The specific probe contains FAM and HEX fluorochromes. FAM was

used to detect the mutant allele, while HEX detected the wild-type susceptible allele. PCR con-

ditions used were 10 min at 95 �C (1 cycle), followed by 40 cycles of 10 sec at 95 �C, and 45 sec

at 60 �C.

Data analysis

All data were entered in Excel. R software version 4.2.1 (2022-06-23 ucrt) was used for the vari-

ous statistical analyses. The resistance status of each mosquito population was determined

according to the WHO criteria with mortality after 24-hour, 72-hour and 7-day post-exposure

for pyrethroids, chlorfenapyr and clothianidin, respectively [37]. Mortality was corrected

using Abbott’s formula (Corrected mortality ¼ ðMortality treated� mortality controlÞ
ð100� mortality of untreated controlÞX100), when the mor-

tality of the control tubes was above 5% and less than 20% [38]. There was a confirmed resis-

tance if the mortality percentage was <90%, possible resistance if the mortality rate was

between 90 and 98%, and susceptibility if the mortality rate was�98%. The package ‘lsmeans’

version 2.30–0 was used for various analyses. The mortality recorded each year was compared

between each insecticide (pyrethroid diagnostic concentration) using the pairwise tests of the

generalized linear model (GLM). For the resistance intensity, if corrected mortality was 98–

100% at 5X the diagnostic dose indicated low resistance intensity. However, if mortality was

less than 98% at 5X diagnostic dose implied testing the 10X diagnostic dose.At 10 times the

diagnostic dose, a corrected mortality rate of 98–100% confirms a moderate resistance
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intensity.; A corrected mortality rate of less than 98% at 10 X the diagnostic dose indicates a

high level of resistance. For the synergist assays, the mortality of mosquitoes exposed to PBO

with pyrethroid was compared with that of the insecticides without PBO pre-exposure. Com-

parison was made between mortality rates with and without PBO pre-exposure using the prop.

test with software R version 4.2.1. The frequency of resistance mutations (kdr-995F, kdr-995S

and Ace-1 280S) was determined using the formula: F = [(2AA+ Aa)] / [2(AA+Aa+aa)] [39]

with aa, homozygous susceptible genotype; Aa, heterozygous genotype; AA, homozygous resis-

tant genotype.

Results

Species composition of the Anopheles gambiae complex

A total of 672 An. gambiae s.l. were selected from the three sites for species identification.

Overall, An. gambiae complex was mainly composed of An. coluzzii (88.2%, n = 593), followed

by An. gambiae s.s. (7.6%, n = 51) and hybrids (An. coluzzii/An. gambiae s.s.) (4.2%, n = 27).

In Jacqueville and San Pedro, all mosquitoes were identified as An. coluzzii. The two species

were found in sympatry in Aboisso. However, An. coluzzii dominated in Aboisso (66.7%,

n = 158), followed by An. gambiae s.s. (21.5%, n = 51) and hybrids (11.8%, n = 28) (Table 1).

Insecticide susceptibility in An. gambiae s.l.

Table 2 presents the mortality rates of An. gambiae s.l. populations from the surveyed sites

(Aboisso, Jacqueville, and San Pedro) when exposed to pyrethroids (alphacypermethrin 0.05%,

permethrin 0.75%, and deltamethrin 0.05%) over the years 2018, 2019, and 2020. Across all

sites, the mortality rates for all three pyrethroids remained below 30%, confirming significant

resistance of An. gambiae s.l. to these insecticides.

Table 3 summarizes the comparison of insecticide-induced mortality rates by site and year.

In 2020, a statistically significant difference was observed in Aboisso between mortality rates

due to deltamethrin and alpha-cypermethrin (estimate: 2.45; Z-ratio: 3.25; p-value = 0.0033).

Similarly, in 2020, permethrin also showed a statistically significant difference compared to

alpha-cypermethrin in Aboisso (estimate: 3.42; Z-ratio: 3.32; p-value = 0.0026). In Jacqueville,

the 2020 comparison between permethrin and alpha-cypermethrin revealed a statistically sig-

nificant difference (estimate: 2.08; Z ratio: 2.73; p-value = 0.0174).

Intensity of resistance

The results of the pyrethroid intensity test are summarized in Fig 2. These results confirmed

the strong resistance of An. gambiae s.l. against alpha-cypermethrin, permethrin and deltame-

thrin. In the resistance pyrethroid intensity tests, conducted on samples from Aboisso, Jacque-

ville, and San Pedro, mortalities remained below the 98% threshold when exposed to 1X and

Table 1. Distribution of Anopheles gambiae s.l. in the three studied site.

Population Species Detected (N tested) Percentage (%)

Aboisso An. coluzzii 158(237) 66,7

Aboisso Hybrid (An. coluzzii/An. gambiae s.s.) 28(237) 11,8

Aboisso An. gambiae s.s. 51(237) 21,5

Jacqueville An. coluzzii 221(221) 100

San Pedro An. coluzzii 214(214) 100

N: Number of mosquitoes; %: Percentage

https://doi.org/10.1371/journal.pone.0297604.t001
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5X concentrations of all insecticides(Fig 2). However, at a concentration of 10X, a high inten-

sity of resistance was still observed across all three mosquito populations for the insecticides,

except for a case of moderate intensity resistance recorded with alphacypermethrin 0.5% in the

Aboisso populations, resulting in 100% mortality.

Effect of piperonyl butoxide (PBO)

Table 4 shows the mortality rates in the Aboisso, Jacqueville and San Pedro An. gambiae s.l.

populations exposed to alpha-cypermethrin, permethrin and deltamethrin without and with

pre-exposure to PBO. The results showed that synergist effect of PBO was strongest in all mos-

quito populations. Mortality increased significantly when mosquitoes were pre-exposed to

PBO (df = 1, p<0.0001) (Table 1). Although a significant increase was observed in mortality

after pre-exposure to PBO, susceptibility was not fully restored. The mortality rates after PBO

pre-exposure were still under the 98% threshold in all three study sites, except for the Jacque-

ville populations in which alphacypermethrin mortality after pre-exposure to PBO was 98.5%

(Table 4).

Effect of clothianidin and chlorfenapyr

After seven days of observation, An. gambiae s.l. populations from Jacqueville and San Pedro

were found to be completely susceptible to clothianidin (Fig 3). The San Pedro population

achieved a 100% mortality rate by the sixth day (Fig 3). In Jacqueville, the sensitivity threshold

was reached on the seventh day, with a mortality rate of 98.8%. However, in Aboisso,

Table 2. Mortality observed after 24 h with pyrethroid insecticides in Anopheles gambiae s.l. from 2018 to 2020.

Populations years Insecticide N tested (Dead) Mortality percentage (95% CI)

Aboisso 2018 deltamethrin 190(10) 5,26 (2.70–9.74)

alphacypermethrin 93(0) 0(0–4,94)

permethrin 101(06) 5,94(2.43–12.99)

2019 deltamethrin 84(5) 5,95(2.21–13.96)

alphacypermethrin 81(0) 0(0–4.34)

permethrin 84(0) 0(0–5.64)

2020 deltamethrin 79(2) 2.53(0.44–9.69)

alphacypermethrin 82(24) 29.27(20–40.50)

permethrin 105(1) 0.95 (0.05–5,95)

Jacqueville 2018 deltamethrin 93(5) 5,37(1.20–12,67)

alphacypermethrin 90(0) 0(0–5,10)

permethrin 94(2) 2,12(0.37–8,21)

2020 deltamethrin 90(10) 11,11(5.75–19,92)

alphacypermethrin 89(18) 20,22(12.74–33.34)

permethrin 79(2) 2.53(0.44–9.69)

San Pedro 2018 deltamethrin 100(4) 4(1.29–10.51)

alphacypermethrin 99(0) 0(0–4.65)

permethrin 98(2) 2.04(0.35–7.89)

2019 deltamethrin 195(7) 3.59(1.58–7.55)

alphacypermethrin 94(0) 0(0–4.89)

permethrin 94(4) 4,25(1.37–11.15)

2020 deltamethrin 94(0) 0(0–4.89)

alphacypermethrin 101(0) 0(0–4.57)

permethrin 93(1) 1,08(0.06–6.69)

https://doi.org/10.1371/journal.pone.0297604.t002
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susceptibility was not fully restored after seven days of post-exposure observation, with the

mortality rate only reaching 55.7%.

For chlorfenapyr at 100 μg/bottle, the Aboisso population was fully susceptible, with a

72-hour mortality of 100%. However, chlorfenapyr did not fully induce susceptibility in Jac-

queville and San Pedro populations with 100 μg/bottle. With 100 μg/bottle, the 72-hour mor-

tality was 88.7% for Jacqueville and 97.1% for San Pedro populations (Fig 4). With 200 μg/

bottle, the mortality rate was 100% for the San Pedro population after 24-hours post-exposure.

Except for the Jacqueville population where 100% mortality was recorded after 48-hours post-

exposure (Fig 4). The population of Aboisso was not tested at 200 μg/bottle, because suscepti-

bility was achieved at 100 μg/bottle.

Resistance mutation

Table 5 shows the kdr (L995F and L995S) mutation allelic frequencies in the population from

Aboisso, Jacqueville and San Pedro (Table 2). The kdr L995F mutation allelic frequencies was

from 79.3% for An. coluzzii, 76.0% for hybrids, and 72.1% for An. gambiae s.s. in the Aboisso

population. In the population from Jacqueville and San Pedro, the kdr L995F (kdr west) fre-

quencies were respectively 38.1% and 71.2%. For the kdr L995S (kdr East), the mutation allelic

frequencies were low. The mutation allelic frequencies were 2.3% for An. gambiae s.s. in

Aboisso population and 5.7% in San Pedro population. For the population of Aboisso, and San

Pedro mutation was not detected. The mutation allelic frequencies of G280S were summarized

in Table 5. The mutation allelic frequencies of G280S were 27.4% for An. coluzzii, and 42.9%

Table 3. Generalized linear model showing the difference in insecticide mortality among Anopheles gambiae s.l. populations along the coastline from 2018 to 2020.

Populations Years Comparison between insecticide estimate Z-ratio p-value

Aboisso 2018 deltamethrin vs alphacypermethrin -18.94 -0.005 1

alphacypermethrin vs permethrin -19.07 -0.005 1

permethrin vs deltamethrin -0.121 -0.228 0,97

2019 deltamethrin vs alphacypermethrin -20.94 -0.002 1

alphacypermethrin vs permethrin 0.03 0 1

permethrin vs deltamethrin 20.97 0.002 1

2020 deltamethrin vs alphacypermethrin 2.45 3.252 0.0033

alphacypermethrin vs permethrin 3.42 3.322 0.0026

permethrin vs deltamethrin 0.98 0.792 0.7077

Jacqueville 2018 deltamethrin vs alphacypermethrin -19.93 -0.003 1

alphacypermethrin vs permethrin -19.012 -0.003 1

permethrin vs deltamethrin 0.92 1.091 0.5194

2020 deltamethrin vs alphacypermethrin 0.59 1.420 0.3305

alphacypermethrin vs permethrin 2.08 2.730 0.0174

permethrin vs deltamethrin 1.47 1.873 0.1466

San Pedro 2018 deltamethrin vs alphacypermethrin -19.73 -0.003 1

alphacypermethrin vs permethrin -19.05 -0.003 1

permethrin vs deltamethrin 0.67 0.767 0.7234

2019 deltamethrin vs alphacypermethrin -18.58 -0.005 1

alphacypermethrin vs permethrin -18.75 -0.005 1

permethrin vs deltamethrin -0.17 -0.266 0.9617

2020 deltamethrin vs alphacypermethrin -0.06 0.000 1

alphacypermethrin vs permethrin -20.4 -0.001 1

permethrin vs deltamethrin -20.36 -0.001 1

https://doi.org/10.1371/journal.pone.0297604.t003
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for An. gambiae s.s. in the population of Aboisso. The allelic frequencies were 31.1% and 4.2%

respectively for the population of Jacqueville and San Pedro.

Discussion

This study investigated the An. gambiae complex members resistance levels and mechanisms

to pyrethroids (i.e., alpha-cypermethrin permethrin and deltamethrin) with and without PBO,

clothianidin and chlorfenapyr in three coastal health districts, Aboisso, Jacqueville and San

Pedro in southern Côte d’Ivoire. To our knowledge, this is one of the rare studies investigating

both, the resistance status and complex members of malaria Anopheles mosquitoes in Costal

Côte d’Ivoire. The current study showed that An. gambiae s.l. was composed of two sibling

species, namely An. coluzzii, An. gambiae s.s, and the hybrids. Among the two sibling species

An. coluzzii was the predominant (88.24%) species. The samples from Jacqueville and San

Pedro were composed only of An. coluzzii. Both sibling species were represented in the

Aboisso An. gambiae s.l. population. Among the sibling species, An. coluzzii (66.95%) was

most abundant, followed by An. gambiae s.s. and hybrids. Moreover, An. gambiae s.l. showed

high phenotypic and genotypic resistance to pyrethroids, with increased mortality while pre-

exposed to PBO. Overall, An. gambiae s.l. susceptibility was fully reestablished by clothianidin

and chlorfenapyr throughout, except for the Aboisso population with clothianidin. Kdr 995F

allele frequency was very high (0.72–0.80%) in all An. gambiae s.l. populations. kdr 995S was

very low (0–0.06%) in all An. gambiae s.l. populations. For Ace-1 280S, the high frequency

(0.57%) was recorded in San Pedro and the low (0) from the Aboisso hybrid population.

Fig 2. Mortality rates of Anopheles gambiae s.l. population exposed to pyrethroid intensity tests from the three study populations. The

red dashed line represents the susceptibility threshold.

https://doi.org/10.1371/journal.pone.0297604.g002
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Table 4. Mortality of An. gambiae s.l. to pyrethroids without and with piperonyl butoxide of the study population.

Populations Insecticide N tested (Dead) Mortality percentage (95% CI) p-value

Aboisso Alphacypermethrin 82 (24) 29.1 (19.73–40.35) <0.0001

PBO+Alphacypermethrin 76 (72) 94.7 (87.07–98.55)

Deltamethrin 79 (2) 2.3 (0.31–8.85) <0.0001

PBO + Deltamethrin 84 (42) 50.0 (38.88–61.11)

Permethrin 105 (1) 0.9 (0.02–5.19) <0.0001

PBO + Permethrin 86 (28) 32.5 (22.84–43.52)

Jacqueville Alphacypermethrin 89 (18) 19.6 (12.45–30.07) <0.0001

PBO+Alphacypermethrin 82 (74) 90.1 (81.68–95.69)

Deltamethrin 90 (10) 0 (5.46–19.48) <0.0001

PBO + Deltamethrin 71 (70) 98.5 (92.40–99.96)

Permethrin 79 (2) 2.1 (0.31–8.85) <0.0001

PBO + Permethrin 68 (22) 31.7 (21.51–44.79)

San Pedro Alphacypermethrin 101 (0) 0 (0–3.59) <0.0001

PBO+Alphacypermethrin 106 (19) 17.9 (11.15–26.57)

Deltamethrin 94 (0) 0 (0–3.85) <0.0001

PBO + Deltamethrin 98 (28) 28.3 (19.90–38.58)

Permethrin 93 (1) 1.1 (0.03–05.85) <0.0001

PBO + Permethrin 103 (11) 10.6 (5.45–18.31)

N = represents the total number of mosquitos tested, CI = represents the confidence intervals, and p-value were calculated using the prop.test.

https://doi.org/10.1371/journal.pone.0297604.t004

Fig 3. Mortality of Anopheles gambiae s.l. exposed to 2% clothianidin in 2020 from the three study populations. The red dashed line

represents the susceptibility treshold.

https://doi.org/10.1371/journal.pone.0297604.g003

PLOS ONE Anopheles gambiae s.l. assessment in coastal health districts of Côte d’Ivoire
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Species identification of An. gambiae s.l. showed that An. coluzzii constituted the major spe-

cies among the An. gambiae complex. In San Pedro and Jacqueville, only the species An. coluz-
zii was identified. This selective distribution of vectors is of considerable importance for

understanding malaria transmission in these regions. Anopheles coluzzii’s preference for hosts

and specific breeding habitats, especially its attraction to the littoral region, may account for its

dominance in these zones [40]. Furthermore, the geographical distribution of various An. gam-
biae s.l. species may result from local ecological variations and adaptations to specific microcli-

mates at each site. In Aboisso, the dominance of An. coluzzii over An. gambiae s.s. and

Fig 4. Mortality of Anopheles gambiae s.l. exposed to chlorfenapyr in CDC bottle bioassays in 2020 from the three study populations. The red

dashed line represents the susceptibility treshold.

https://doi.org/10.1371/journal.pone.0297604.g004

Table 5. An. gambiae s.l. sibling species composition and kdr-995F, kdr-995S and Ace-1 280S frequency in three populations.

Populations An. gambiae s.l. molecular form kdr-West (L995F) kdr-East (L995S) Ace-1 (G280S)
Tested FF LF LL %Fr (F) Tested SS LS LL %Fr (S) Tested SS GS GG %Fr (S)

Aboisso An. coluzzii 127 83 26 12 79.3 127 0 0 127 0 31 5 7 19 27.4

Aboisso Hibryd 25 16 6 3 76.0 25 0 0 25 0 2 0 0 2 0

Aboisso An. gambiae s.s. 43 23 16 4 72.1 44 0 2 42 2.3 7 3 0 4 42.9

Jacqueville An. coluzzii 145 86 45 14 38.1 140 1 14 125 5.7 82 4 43 35 31.1

San Pedro An. coluzzii 99 57 27 15 71.2 100 0 0 100 0 108 0 9 99 4.2

LL, and GG homozygous susceptible genotype (aa); LF, LS, and GS heterozygous genotype (Aa); FF, and SS, homozygous resistant genotype (AA). The frequencies of

resistance mutations were calculated using the formula: F = [(2AA+ Aa)] / [2(AA+Aa+aa)].

https://doi.org/10.1371/journal.pone.0297604.t005
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crossbreeds carries profound implications for malaria transmission and vector control [41].

Anopheles coluzzii prevalence underscores its role as the primary vector, given its affinity for

human hosts and urban breeding sites, which enhances the efficiency of malaria transmission

[42]. The lower prevalence of An. gambiae s.s. may be attributed to ecological factors or com-

petition with An. coluzzii [13]. Hybrid mosquitoes, comprising 11.8% of the complex, intro-

duce variables such as insecticide resistance and altered behavior [43, 44]. Customizing vector

control strategies, including the use of insecticide-treated bed nets and indoor spraying, to the

dominant species, particularly An. coluzzii, is crucial [45]. The dominance of An. coluzzii spe-

cies among An. gambiae complex is commonly reported in southern Côte d’Ivoire [7, 11, 13,

15, 18, 22]. Human activities such as urban Agriculture (vegetable gardens, irrigated rice fields)

could have contributed to the development of the breeding sites of An. gambiae s.l. [25, 46].

The presence of sibling species, namely An. coluzzii, An. gambiae s.s. and hybrids, which is

consistent with previous studies in the same area [13, 18]. Along with the presence of both An.

coluzzii and An. gambiae s.s., and hybridsin the same area found here may imply that the mat-

ing appears to be occurring between the two species.

In the bioassays conducted in this study with pyrethroid, the highest mortalities were

obtained with deltamethrin. Indeed, deltamethrin and alphacypermethrin are type II pyre-

throids contrary to permethrin which is type I. Type II pyrethroids are distinguished from

type I pyrethroids by the presence of a cyano group at the carbon of the esterified alcohol [47].

The effect of the cyano group on insecticidal activity increases mortality [48]. In such settings,

use of deltamethrin or alphacypermethrin would probably be a good choice to treat nets. Sev-

eral studies have shown the performance of type II pyrethroids in comparison to Type I [49].

However, the mortality varied between both insecticides. Several reasons would explain

deferred mortalities induced by the same insecticide in different years. Pyrethroid resistance

was detected more than 30 years ago in malaria vectors (An. gambiae s.l.) in Côte d’Ivoire for

the first time in vectors from the Bouaké population [50]. In this study, An. gambiae s.l. from

Aboisso, Jacqueville and San Pedro showed very strong phenotypic resistance to pyrethroids

resulting in a very low mortality at standard diagnostic doses. The result is consistent with the

general trends of An. gambiae s.l. resistance reported by previous studies in Côte d’Ivoire [16,

18] and reinforces the view that Côte d’Ivoire is a hotspot of resistance in West Africa [14, 16,

18]. Phenotypic resistance to pyrethroids may indicate the presence of genetic resistance

resulting from modifications to the target sites of the insecticides. This could be linked to the

extensive use of the same insecticides in both agricultural and public health contexts. Addi-

tionally, other factors such as the inherent genetic variability of insect populations and agricul-

tural practices may also contribute to the emergence and spread of resistance [22–24]. The

coastal zones in southern Côte d’Ivoire are devoted to large agro-industrial units (cocoa, rub-

ber and oil palm plantations [21, 23, 51]) which are treated with chemicals, including insecti-

cides, to protect the crops [14, 33–35, 52]. Indeed, the massive and incorrect use of pesticides

by untrained farmers can contribute to the development of multiple resistance mutations in

An. gambiae s.l. against insecticides used in public health [53].

In this study, very high allelic frequencies of the L995F kdr gene (>38%) were found in An.

gambiae s.l. from the coastal health districts of Aboisso, Jacqueville, and San Pedro. These ele-

vated allele frequencies indicate the widespread presence of the L995F and kdr-West mutations

within the local An. gambiae s.l. population, as observed in several regions of Côte d’Ivoires.l.

[12, 14, 15]. The low allelic frequencies of the L995S kdr gene (<6%) were detected in local An.

gambiae s.l. The 995S allele was only found in An. gambiae s.s. from Aboisso and An. coluzzii
from Jacqueville. Nonetheless, the presence of this allele can deliver further evidence for a pan-

African propagation of the kdr resistance. This spread of the kdr 995F and 995S gene in An.

gambiae s.l. populations in littoral areas could compromise the effectiveness of the vector
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control tools that are currently in use. The kdr genes are known to confer resistance to pyre-

throid insecticides, which are commonly used in long-lasting insecticidal nets (LLINs) and

indoor residual spraying (IRS). If the kdr 995F and 995S mutations spread, the effectiveness of

these malaria vector control tools (LLINs and IRS) would be compromised [54]. The high fre-

quencies of the G119S mutation in Aboisso and Jacqueville suggest its widespread presence in

the coastal areas of Côte d’Ivoire. Ace-1 G119S allele confers resistance to organophosphates

and carbamates that are commonly used in Côte d’Ivoire for crop protection [14, 35].

The present study demonstrates that increased insecticide concentrations and PBO pre-

exposure significantly heightened mortality in all three coastal populations of An. gambiae s.l.

against all pyrethroids. However, this approach did not fully achieve susceptibility. Indeed, the

current study showed that high intensity resistance is present in all three An. gambiae s.l. pop-

ulations, with overall mortality being under 98% at 1X, 5X and 10X for all pyrethroid insecti-

cides as reported by Kouassi [18] who carried out similar tests in Southern and central districts

of Cote d’Ivoire. Reduced insecticidal activity can result in lower personal protection by allow-

ing more insects to survive [55]. This increases the likelihood of bites and the spread of insect-

borne diseases, thereby threatening the effectiveness of LLINs [32]. According to WHO, vector

control operational failure is likely to happen if resistance is confirmed at the 5X and especially

at the 10X concentrations [32]. The various anthropogenic or natural xenobiotics present in

local mosquito breeding sites and the biotic interaction could lead to the development of very

high levels of resistance observed in the study [56]. The high intensity resistance recorded

using only pyrethroid could be explained by high kdr mutation frequency, mixed function oxi-

dases (MFO) activities, and an increase in esterase activity. However, moderate resistance

intensity was recorded with a 10X concentration of alphacypermethrin in the Aboisso popula-

tions, and additional investigations are required for better understanding. Although insecti-

cide-induced mortality increased, full sensitivity with PBO was only observed in the

Jacqueville strain with deltamethrin. However, full susceptibility was not recovered using

PBO, except with the strain of Jacqueville with deltamethrin. Indeed, mortalities in PBO-pre-

exposed mosquitoes tested against pyrethroids were still lower than the WHO susceptibility

cut-off, as observed in other areas in Côte d’Ivoire [18, 57]. Significant increase in mortality

after exposure to PBO may indicate the presence of metabolic resistance (MFO, P450s, and

esterases) [57], and this can compromise the effectiveness of non-PBO LLINs (e.g., Panda.Net,

MagNet, PermaNet 2.0). In addition, non-restoration of full susceptibility with PBO might

reduce the efficacy of PBO-treated LLINs (e.g., PermaNet 3.0) [58].

In contrast to PBO, chlorfenapyr and clothianidin reestablished fully the susceptibility in all

populations of An. gambiae s.l. from Aboisso, Jacqueville and San Pedro, except for clothiani-

din in Aboisso population in the current study. The chlorfenapyr (pyrrole) and clothianidin

(neonicotinoid) have new modes of action and are good candidates for malaria vector control

in areas comprised of mutation and/or metabolic resistance to pyrethroids [59]. Indeed, after

exposure to chlorfenapyr, full susceptibility was recovered in one of three districts at 100μg ai/

bottle. However, when the samples were tested with higher dosages (200μg ai/bottle), the mor-

tality increased, and susceptibility was achieved in all districts. Chlorfenapyr requires activa-

tion, via cytochrome P450 monooxygenases [60]. Chlorfenapyr-treated LLINs (e.g.,

Interceptor G2 and PermaNet Dual) could be effective against An. gambiae s.l. in coastal Côte

d’Ivoire [3, 4, 59]. Moreover, An. gambiae s.l. susceptibility was achieved with clothianidin

(100% mortality) in Jacqueville and San Pedro. As the National Malaria Strategic Plan of the

National Malaria Control Programme of Côte d’Ivoire prioritizes indoor residual spraying

(IRS), using clothianidin-based IRS (e.g., Fludora1 Fusion) could be effective against the

coastal An. gambiae s.l. populations in coastal Côte d’Ivoire.

PLOS ONE Anopheles gambiae s.l. assessment in coastal health districts of Côte d’Ivoire
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Conclusion

The present study showed that An. gambiae s.l. was predominate by An. coluzzii, followed by

An. gambiae s.s and hybrids in the three studied sites of costal Côte d’Ivoire. Local An. gambiae
s.l. populations were highly resistant to pyrethroids and susceptible to clothianidin and chlor-

fenapyr. Pre-exposure to PBO increased the mortality, but susceptibility was not fully recov-

ered. The coastal An. gambiae s.l. populations had high frequencies of target site mutation

genes (kdr-West and kdr-East) and metabolic genes (Ace-1). An. gambiae s.l. proved fully sus-

ceptible to clothianidin and chlorfenapyr. This suggests that vector control tools, such as insec-

ticide-treated nets and sprays, treated with these new insecticides could be highly effective in

reducing malaria transmission in coastal Côte d’Ivoire. Their use could significantly improve

malaria control and reduce the disease burden in the region.
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Conceptualization: Jackson K. I. Kouamé, Constant V. A. Edi, Benjamin G. Koudou.

Data curation: Jackson K. I. Kouamé.
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2016. 2016; 61.

6. PRESIDENT’S MALARIA INITIATIVE. U.S. President’s Malaria Initiative Côte d’Ivoire Malaria Opera-
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ple, around the aby lagoon (eastern littoral of Côte d’Ivoire). J Ethnobiology Ethnomedicine. 2015; 11:

21. https://doi.org/10.1186/s13002-015-0004-8 PMID: 25888765

25. Chouaïbou MS, Fodjo BK, Fokou G, Allassane OF, Koudou BG, David J-P, et al. Influence of the agro-

chemicals used for rice and vegetable cultivation on insecticide resistance in malaria vectors in southern
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daire. 2016; 91: 622–624.

31. Dagg K, Irish S, Wiegand RE, Shililu J, Yewhalaw D, Messenger LA. Evaluation of toxicity of clothianidin

(neonicotinoid) and chlorfenapyr (pyrrole) insecticides and cross-resistance to other public health insec-

ticides in Anopheles arabiensis from Ethiopia. Malar J. 2019; 18: 49. https://doi.org/10.1186/s12936-

019-2685-2 PMID: 30795768

32. Brogdon WG, Chan A. Guideline for Evaluating Insecticide Resistance in Vectors Using the CDC Bottle

Bioassay. Centers for Disease Control and Prevention, Atlanta, GA. 2012; 28.

33. Collins FH, Besansky NJ, Mendez MA, Rasmussen MO, Finnerty V, Mehaffey PC. A Ribosomal RNA

Gene Probe Differentiates Member Species of the Anopheles gambiae Complex. The American Journal

of Tropical Medicine and Hygiene. 1987; 37: 37–41. https://doi.org/10.4269/ajtmh.1987.37.37 PMID:

2886070

34. Santolamazza F, Calzetta M, Etang J, Barrese E, Dia I, Caccone A, et al. Distribution of knock-down

resistance mutations in Anopheles gambiae molecular forms in west and west-central Africa. Malar J.

2008; 7: 74. https://doi.org/10.1186/1475-2875-7-74 PMID: 18445265

35. Lucas ER, Rockett KA, Lynd A, Essandoh J, Grisales N, Kemei B, et al. A high throughput multi-locus

insecticide resistance marker panel for tracking resistance emergence and spread in Anopheles gam-

biae. Sci Rep. 2019; 9: 13335. https://doi.org/10.1038/s41598-019-49892-6 PMID: 31527637

36. Bass C, Nikou D, Donnelly MJ, Williamson MS, Ranson H, Ball A, et al. Detection of knockdown resis-

tance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with

existing methods. Malar J. 2007; 6: 111. https://doi.org/10.1186/1475-2875-6-111 PMID: 17697325

37. WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. 2nd ed.

Geneva: World Health Organization; 2016. Available: https://iris.who.int/handle/10665/250677

38. Abbott WS. A Method of Computing the Effectiveness of an Insecticide. Journal of Economic Entomol-

ogy. 1925; 18: 265–267. https://doi.org/10.1093/jee/18.2.265a

39. Hardy GH. Mendelian Proportions in a Mixed Population. Science. 1908; 28: 49–50. https://doi.org/10.

1126/science.28.706.49 PMID: 17779291

40. Simard F, Ayala D, Kamdem G, Pombi M, Etouna J, Ose K, et al. Ecological niche partitioning between

Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation. BMC Ecol. 2009;

9: 17. https://doi.org/10.1186/1472-6785-9-17 PMID: 19460146

41. Smith DL, Battle KE, Hay SI, Barker CM, Scott TW, McKenzie FE. Ross, Macdonald, and a Theory for

the Dynamics and Control of Mosquito-Transmitted Pathogens. Chitnis CE, editor. PLoS Pathog. 2012;

8: e1002588. https://doi.org/10.1371/journal.ppat.1002588 PMID: 22496640

42. Gimonneau G, Pombi M, Choisy M, Morand S, Dabiré RK, Simard F. Larval habitat segregation
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