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Abstract

Leishmania is a genus of the family Trypanosomatidae that unites obligatory parasitic flagel-

lates causing a variety of vector-borne diseases collectively called leishmaniasis. The symp-

toms range from relatively innocuous skin lesions to complete failures of visceral organs.

The disease is exacerbated if a parasite harbors Leishmania RNA viruses (LRVs) of the

family Pseudototiviridae. Screening a novel isolate of L. braziliensis, we revealed that it pos-

sesses not a toti-, but a bunyavirus of the family Leishbuviridae. To the best of our knowl-

edge, this is a very first discovery of a bunyavirus infecting a representative of the

Leishmania subgenus Viannia. We suggest that these viruses may serve as potential fac-

tors of virulence in American leishmaniasis and encourage researchers to test leishmanial

strains for the presence of not only LRVs, but also other RNA viruses.

Author summary

Parasites of the genus Leishmania cause a series of neglected tropical diseases collectively

known as leishmaniasis. Many isolates of these parasites possess Leishmania RNA viruses

(LRVs) of the family Pseudototiviridae that increase a chance of developing more severe

mucocutaneous leishmaniasis over the cutaneous form, facilitate the spread of leishama-

niae, and make these flagellates more resistant to treatments. In this work, we demonstrate

that pseudototiviruses are not the only infecting agents and some isolates of Leishmania
may harbor other viruses, exemplified by the leishbuvirus LbrLBV1 of L. braziliensis.
Because they may also be considered as potential factors of virulence, we advocate for
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routine testing of leishmanial strains for the presence of not only LRVs, but also other

RNA viruses.

Introduction

Trypanosomatids (Euglenozoa: Kinetoplastea: Trypanosomatidae) are a group of flagellates,

whose members represent obligate parasites of invertebrates, plants, and vertebrates [1,2].

They have either one (monoxenous species) or two (dixenous species) hosts in their life cycles

[3,4]. Many dixenous trypanosomatids are medically and/or economically important, yet they

all can be traced back to their inconspicuous and unharmful (from the anthropocentric point

of view) monoxenous kin, from which they have independently originated at least thrice in

evolution [5]. One of such transitions to dixeny happened within the subfamily Leishmaniinae,

facilitating emergence of the well-known genus Leishmania [6,7]. These flagellates, transmitted

mostly by phlebotomine sand flies, infect vertebrates and cause a variety of diseases collectively

named leishmaniases, which range from relatively innocuous skin lesions to complete failures

of visceral organs [8]. The genus Leishmania is subdivided into four subgenera–Leishmania,

Mundinia, Sauroleishmania, and Viannia, which can be defined phylogenetically and by

details of their respective life cycles [9]. Genomes of numerous Leishmania spp. have been

sequenced and scrutinized both bioinformatically and functionally [10–14].

Many trypanosomatids are known to harbor RNA viruses [15,16]. The very first virus-like

particles in these flagellates were described a half-century ago in Porcisia hertigi (at that time

classified as a member of the genus Leishmania) [17]. The pioneering molecular works were

performed on leishmaniaviruses (double-stranded RNA viruses of the family Pseudototiviri-
dae, order Ghabrivirales [18]) infecting L. (Viannia) and L. (Leishmania) spp. in the New and

Old worlds, respectively [19–21]. In the case of LRV-1 (Leishmaniavirus ichi), it has been con-

vincingly demonstrated that its presence in L. (V.) guyanensis and L. (V.) braziliensis is linked

to the augmented parasite burden and immune response in vitro [22–24], as well as the severity

of leishmaniasis and drug-treatment failures in patients [25–27]. LRV-2 appears to be

restricted to L. (Leishmania) and L. (Sauroleishmania) spp. [28–32] and its effects on parasite

biology might differ from those elicited by LRV-1 [33–35].

To the best of our knowledge, no viruses other than LRVs have been documented in L.

(Viannia) and L. (Leishmania) spp. The situation is different in two other Leishmania subge-

nera–Mundinia and Sauroleishmania. Out of the four screened isolates of L. (Mundinia) one

was shown to possess a leishbuvirus [36], while a narnavirus and a novel lineage of LRV-2

were documented in three out of seven isolates of L. (Sauroleishmania) analyzed [32].

Leishbuviruses (Negarnaviricota: Polyploviricotina: Bunyaviricetes: Leishbuviridae) [37]

appear scarce in Leishmania but fairly prevalent in monoxenous trypanosomatids of the gen-

era Blechomonas, Crithidia, and Leptomonas [16,38–41]. The family currently contains a single

genus Shilevirus [42] and its members are exclusively associated with trypanosomatids. This

suggests that their ancestors switched from insects (the predominant hosts in the outgroup) to

trypanosomatids only once, after which horizontal transfer events determined co-speciation of

these viruses with their new hosts. Similarly to other viruses of the class Bunyaviricetes, leish-

buviruses have a tripartite genome with large (L), medium (M), and small (S) segments bearing

terminal complementary sequences that facilitate replication [43] and encoding an RNA-

dependent RNA polymerase (RdRp), a surface glycoprotein, and a nucleocapsid protein,

respectively [44]. These viruses form enveloped virions 90–100 nm in diameter, where viral

glycoproteins are incorporated into the membrane envelope [45,46].
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In this work, we demonstrate that in addition to LRVs, Leishmania (Viannia) braziliensis
can be infected by bunyaviruses. The LbrLBV1 virus identified in this work differs from other

described leishbuviruses in sequences of its terminal repeats. The L. braziliensis cells without

LbrLBV1 behave similarly to their virus-positive counterparts in terms of the cell division

kinetics and development in the sand flies. Yet, the complex biological consequences of pos-

sessing a bunyavirus by Leishmania spp. need to be investigated further. We suggest that these

viruses may serve as potential factors of virulence in American leishmaniasis and encourage

investigators and practitioners to test leishmanial strains for the presence of not only LRVs,

but also other RNA viruses.

Materials and methods

Ethics statement

Collection of the Leishmania sample was approved by the Ethics Committee of the Clinics of

Infectious, Parasitic, and Tropical Diseases, Bulovka University Hospital under the approval

number 9214/EK-Z. A formal verbal consent was obtained from the patient.

Clinical history, strain isolation and cultivation, genomic DNA and total

RNA isolation, species validation, and analysis of viral presence

A healthy 31-year-old male Czech tourist visited Argentina, Chile, Bolivia, Ecuador, Peru, and

Colombia from November 2016 to August 2017. The traveler reported numerous sand fly bites

in Rurrenabaque, a popular tourist destination in the north-western Bolivia (14˚26’ S, 67˚31

W), in March 2017. Around mid-July, 2017, a boil with a crust appeared on the right shank

just under the knee (Fig 1) and was painless on the onset. Its size increased from 1 to 2.5 cm

(both values are approximate) over a few weeks, accompanied by the sanguinolent discharge.

On July 27th, 2017, the patient was seen at the local clinics in Colombia and treated with the

antibiotics ceflexin (p.o.) and sulfadiazine (topical) with no effect. Because a secondary bacte-

rial infection has developed, the patient was admitted to the same local hospital and treated

with oxacillin and clindamycin (both i.v.). He was later transferred to the larger Hospital Uni-

versitario San Vicente Fundación in Medellin, Colombia, where the treatment with clindamy-

cin (p.o.) continued for 3 days. The biopsy from the lesion tested positive for leishmaniasis,

and the thermotherapy [47] was performed on August 3rd, 2017. The patient was prescribed

Alyeyuba cream and lotion (both topical) for 28 days. The patient returned to the Czech

Republic on August 14, 2017 and the second biopsy taken in Prague on August 23rd confirmed

Leishmania sp. infection. The blood test results were largely inconspicuous: white blood cell

count and differential count were normal, biochemistry was normal, CRP was 3.9 mg/l, and

alanine aminotransferase level was slightly elevated at 104 units/l. The serology for leishmania-

sis was negative. The patient refused the recommended treatment with antimony and, instead,

continued with Alyeyuba application. Over the next two months, the lesion doubled in size,

which was accompanied by the enlargement of inguinal lymph nodes. A treatment with the

antimony drug Glucantime (20 mg/day (i.m.)) lasted from October 19th till November 8th,

2017, followed by the intralesional application of 2 ml Glucantime (1.5 g/5 ml) once a week for

3 weeks. As there was discharge from the two smaller lesions under the knee, the treatment

with itraconazole was continued under the following regimen: 400 mg daily from December

14th to December 27th, 2017; 300 mg daily from December 28th, 2017 to January 7th, 2018; 200

mg daily from January 7th to January 14th, 2018, when the treatment was discontinued due to

an allergic reaction. The secondary bacterial infection in the scar was treated with clarithromy-

cin in April 2024. There was no relapse of the leishmanial infection.
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The parasite strain isolated from this patient was designated as Leishmania braziliensis
MHOM/BO/17/BO17 (hereafter referred to as BO17 for short). The flagellates were cultivated

in the M199 medium (Sigma-Aldrich/ Merck, Darmstadt, Germany) supplemented with 2 μg/

ml Biopterin (Merck), 2 μg/ml Hemin (Jena Bioscience GmbH, Jena, Germany), 25 mM

HEPES (VWR/ Avantor, Radnor, USA), 50 units/ml of penicillin, 50 μg/ml of streptomycin

(both from Biowest, Nuaillé, France), and 10% fetal bovine serum (Biosera, Cholet, France) at

25˚C as described previously [48].

Total genomic DNA and RNA were isolated from 10 ml of trypanosomatid cultures with

the DNeasy Blood & Tissue and RNeasy Mini kits (both from Qiagen, Hilden, Germany)

according to the manufacturer’s instructions. The cultured species affinity to the subgenus

Viannia was initially confirmed by 18S rRNA gene amplification and sequencing as described

previously [49]. The detection of viral dsRNA in the studied isolate was performed according

to a previously described method [50]. The strains L. (V.) guyanensis MHOM/BR75/M4147

(bearing LRV-1) and L. (S.) hoogstraali RHEM/SD/1963/NG-26 (virus-free) were used as posi-

tive and negative controls, respectively [10,32].

Whole-genome and transcriptome sequencing, assembly and variant

calling

DNA and RNA libraries were prepared as described previously [51] and sequenced on Nova-

Seq X (Illumina, San Diego, USA) at Macrogen Europe (Amsterdam, Netherland) in paired-

end mode with a read length of 150 bp. The sequencing runs produced 36.7 million and 4.9

million reads for DNA and RNA libraries, respectively, with the average base Q score of 36.

The obtained raw sequencing data were deposited in GenBank (BioProject PRJNA1086002).

Fig 1. Clinical manifestation of cutaneous leishmaniasis caused by L. braziliensis BO17.

https://doi.org/10.1371/journal.pntd.0012767.g001
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Genomic reads were quality-checked with FastQC v. 0.12.1 [52] and trimmed with fastp v.

0.23.4 [53]. These reads and those for a number of L. (Viannia) spp. isolates (S1 Table) were

mapped to L. braziliensis MHOM/BR/75/M2904 2019 genome assembly (the most recent ref-

erence sequence for this species available on the TriTrypDB [54]) using SMALT v.0.7.6 [55]

with the following parameters: k = 13; s = 2. Variant calling was performed using the Genome

Analysis Toolkit GATK v. 4.1.4.1. [56] in several steps: i) calling of SNPs and indels in each

sample with HaplotypeCaller; ii) uniting individual gVCF files with CombineGVCFs; iii) joint

genotyping of samples with GenotypeGVCFs; iv) separation of SNPs from INDELs with

SelectVariants; and v) filtration of SNP calls with VariantFiltration using the following criteria:

QD< 2; FS> 60.0; MQ< 40.0; SOR> 3.0; MQRankSum < -12.5; ReadPosRankSum < -8.0;

QUAL < 100; Format DP < 5; Format GQ< 30.

Raw RNA reads were trimmed using Trimmomatic v. 0.40 [57] and assembled de novo with

Trinity v. 2.13.2 [58]. To estimate coverage, reads were mapped back to the assembled contigs

using Bowtie 2 v. 2.4.4 [59] and sorted with SAMtools v. 1.13 [60]. Per-base coverage was cal-

culated using BEDTools v. 2.30.0 [61] and, based on that, per-contig RPKM (Reads Per Kilo-

base per Million) values were computed with a custom awk script.

Phylogenetic analyses and assessment of potential hybrid ancestry of the

studied isolate

A phylogenetic network was reconstructed using SplitsTree v. 4.17 with default parameters [62]

based on 1,055,633 genome-wide biallelic SNPs that were inferred for the BO17 and 49 addi-

tional isolates (S1 Table). The phylogeny reconstruction based on 92 maxicircle SNPs identified

as described previously [63] for the same set of isolates, was performed by the maximum likeli-

hood method in IQ-TREE v. 2.3.4 with substitution model TN + F + ASC as chosen by the

built-in ModelFinder and branch support assessed using 100 standard bootstrap replicates [64].

Species-level ancestry of the BO17 isolate was assessed with PCAdmix v. 1.0 [65] based on

the Beagle v. 5.2 [66] phased genotype data (433,086 SNPs) for the dataset including 28 isolates

of L. braziliensis, L. peruviana, and their hybrids (S2 Table). Local ancestry was inferred across

the genome as described previously in bins of 20 SNPs using three isolates per each of the fol-

lowing categories: L. braziliensis from Peru and Bolivia (parent), L. peruviana from Peru (par-

ent), and known L. braziliensis × L. peruviana hybrids [67]. Potential intraspecific hybrid

ancestry of the studied isolate was investigated as above using a dataset of 169,519 SNPs from

the previous study [67] including three populations of L. braziliensis L1 from Peru and Bolivia

(PAU, INP, and HUP) as putative ancestral/parental groups and one hybrid population

(ADM).

Identification of viral sequences and phylogenetic analysis of viruses

Leishbuviral segments L and S were detected using DIAMOND v. 2.0.2 [68] search of all

assembled contigs against Uniclust50 protein database [69]. Less conserved segment M was

found by TBLASTn search of the Leishmania martiniquensis leishbuvirus 1 glycoprotein

sequence [36,70] against a nucleotide database of assembled contigs. Open reading frames

were annotated with NCBI’s ORF Finder web tool [71]. Terminal complementary sequences

were identified and visualized using IPknot v. 2.2.1 [72].

Phylogeny of the discovered leishbuvirus was inferred from the amino acid sequence of seg-

ment L gene product—a multifunctional protein with RdRp activity [73]. The dataset included

previously reported Leishbuviridae and Phenuiviridae (as an outgroup). Sequences were

aligned using G-INS-i algorithm in MAFFT v. 7.490 [74] with a maximum of 1,000 iterations.

A series of trimmed alignments with different gap thresholds (from 0.2 to 0.975 in steps of
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0.025) was produced with trimAl v. 1.4 [75]. Each alignment was used to test the substitution

model and build a phylogenetic tree with ultra-fast bootstrap supports using IQ-Tree v. 2.2.5. One

alignment with the highest average ultra-fast bootstrap value (gap threshold 0.8) was selected for

phylogenetic inference in IQ-Tree with 1,000 standard bootstrap replicates and the automatically

selected best-fit model LG + I + F + G4. The same alignment and model were used for Bayesian

inference in MrBayes v. 3.2.7. [76]. All other settings were left in their default states.

Obtaining the virus-free clonal lines and assessing growth curves

The BO17 culture was passaged every 10–12 days for two months allowing the culture to reach

the post-plateau stage when the concentration of cells started to decline prior to sub-culturing.

The culture was then spread onto 1% agar/supplemented M199 medium plates as described

previously [77], and total RNA was extracted from 15 clonal colonies. Complementary DNA

was synthesized from 1 μg of total RNA from each clone using Transcriptor First Strand

cDNA Synthesis Kit (Roche Diagnostics, Indianapolis, USA) following the manufacturer’s

instructions. Abundance of LBV was estimated by RT-qPCR using the primers LBV_f:

ttcattgccaccagatttgccc and LBV_r: acatcacccaataccgattccc and normalization to 60S ribosomal

protein L7a [78]. Identities of the two virus-negative clones (named hereafter LBV(-) 1 and

LBV(-) 2) were verified via sequencing of their genomic 18S ribosomal RNA locus as described

previously [79].

For growth kinetics, the original BO17 culture (wild-type) and the two virus-negative lines

were seeded at the density of 5 × 105 parasites per ml in triplicates. Parasite concentrations

were determined every 24 hours for 7 days as described previously [80].

Infection of sand flies

Established laboratory colonies of the sand flies Lutzomyia longipalpis (from Jacobina, Brazil)

and Lu. migonei (from Baturité, Brazil) were maintained under standard conditions [81]. Lut-
zomyia longipalpis is a frequent laboratory model permissive for several Leishmania spp.,

including L. braziliensis [82], while Lu. migonei is a natural vector of this parasite in eastern

Brazil [83]. For sand flies’ infection, the wild type (WT) and LBV-negative cultures were main-

tained at 23˚C in M199 (Sigma-Aldrich/ Merck) supplemented with 10% fetal calf serum

(Thermo Fisher Scientific, Waltham, USA), 1× BME vitamins (Sigma-Aldrich/ Merck), 2%

human urine, and 250 μg/ml amikin (Bristol-Myers Squibb, New York, USA).

Female sand flies (3–6 days old) were fed through a chick skin membrane on heat-inacti-

vated ram blood (Bioveta International, Ivanovice na Hané, Czechia) containing 106 promasti-

gotes/ml. Engorged females were maintained in the same conditions as the colony and

dissected on days 3 and 10 post bloodmeal (PBM). Individual guts were analyzed by light

microscopy for localization and intensity of infection. Parasite loads were graded according to

[84] as light (< 100 parasites per gut), moderate (100 to 1,000 parasites per gut), and heavy

(> 1,000 parasites per gut). The results were summarized for two independent biological

experiments, and differences between groups in infection rate and location of infection at the

stomodeal valve were calculated by “N-1” χ2 test [85].

Results

Genome analysis and classification of the patient-derived Leishmania
isolate

The genome of L. braziliensis MHOM/BO/17/BO17 was sequenced to the median coverage of

266×, with only 0.2% of positions in the reference genome completely uncovered.
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As L. braziliensis represents a phylogenetically complex taxon, which has close relationships

with L. peruviana [86–88], we decided to perform a detailed phylogenetic analysis of the isolate

under study. The phylogenetic network based on the nuclear SNPs convincingly demonstrated

the position of the BO17 isolate within the lineage L1 of L. braziliensis [89] (Fig 2). A closer

look at the clade under scrutiny revealed that BO17 clusters within a group of Bolivian isolates

and shares the same branch with the isolate Lb-7933 [90], suggesting that their genomes are

nearly identical. Indeed, analysis of SNPs in these two isolates identified only 21 heterozygous

Fig 2. Phylogenetic networks of L. (Viannia) based on genome-wide SNPs. Upper panel depicts the relationships at the subgenus level and the lower panel

provides the closer view on the clade (highlighted in yellow) containing the BO17 isolate that is shown in magenta. The double-crossed branch is at 50% of its

length. The scale bar denotes the number of substitutions per site.

https://doi.org/10.1371/journal.pntd.0012767.g002
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and 3 homozygous differences. Thus, BO17 is a Bolivian isolate of L. braziliensis belonging to

the lineage L1. A similar situation was documented when phylogenetic relationships were

inferred using kDNA data (S1 Fig).

Considering the fact that L. braziliensis can form hybrids with L. peruviana [86,91], we

additionally assessed the ancestry of the studied isolate. The PCA plots produced using PCAd-

mix demonstrated that, while the ancestry of the parental samples matched well with their

respective species identities, the L. braziliensis × L. peruviana hybrids occupied an intermediate

position between the two parents. The BO17 isolate unambiguously clustered with L. brazilien-
sis showing no signs of admixture of L. peruviana genome (S2 Fig.). However, our analysis at

the intraspecific level demonstrated that all three previously characterized ancestral popula-

tions of L. braziliensis L1 lineage (HUP, PAU, and INP) contributed to the formation of the

genomes of BO17 and its closest relative, Lb-7933. This was illustrated by the intermediate

position in the PCA scatterplot and mosaic composition of chromosomes (S3 Fig). Thus, we

concluded that the BO17 strain belongs to a hybrid population of L. braziliensis within the

lineage L1 from Bolivia.

Viral presence and virus sequence analysis

The analysis of L. braziliensis BO17 dsRNA preparation allowed visualization of two bands of

approximately 1 and 6 kb (Fig 3A). Of note, the mobility of dsRNA in the agarose gel differs

from that of DNA, and the bands are shifted upwards. This pattern is consistent with the pres-

ence of a leishbuvirus (the M segment is often not detectable on a gel [40,41]). Notably, the

abundance of dsRNA in this sample was lower than that of LRV-1 in L. guyanensis M4147

used as a positive control despite the same starting concentration of total RNA. This is not sur-

prising since, in contrast to LRVs, which are genuine dsRNA viruses, LBVs have dsRNA only

as a replicative intermediate.

Fig 3. LbrLBV1 of L. braziliensis BO17. (A) Agarose gel visualization of BO17 dsRNA. Leishmania guyanensis dsRNA was used as a positive control.

GeneRuler 1kb DNA Ladder was added as size reference. (B) Representation of LbrLBV1 genomic segments (drawn to scale). Directional shapes depict

predicted ORFs with the lengths of encoded proteins displayed inside. Terminal repeats are shown in callouts.

https://doi.org/10.1371/journal.pntd.0012767.g003
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Analysis of the BO17 transcriptome revealed a leishbuvirus (hereafter called LbrLBV1 =

Leishmania braziliensis leishbuvirus 1) with three genomic segments sizing 5.8, 1.1, and 0.8 kb,

each encoding a single ORF (Fig 3B) The lengths of RNA segments and respective ORFs were

typical for the “crown” clade of LBVs [38] (S3 Table). The relative abundance of the three

RNAs estimated based on whole-transcriptome sequencing data was significantly different

from their double-stranded variants observable on the gel. This could be explained by the dif-

ferent levels of strandedness bias and/or efficiency of dsRNA preservation during its prepara-

tion. All three segments contained terminal complementary sequences forming "panhandle"

structures (Figs 3B and S4) characteristic for Bunyaviricetes [92]. Nevertheless, the sequences

of these terminal repeats considerably differed from those in all other Leishbuviridae investi-

gated so far: instead of the typical ACACAAAG, LbrLBV1 termini were AAGA(A/U)UUC

and UUCAAACA for the L/S, and M segments, respectively (Fig 3B). Non-canonical and dif-

ferent between segments terminal repeats have been previously documented only in more

divergent LBVs of the firebug-infecting trypanosomatid Leptomonas pyrrhocoris [38].

Phylogenetic analysis demonstrated a sister relationship of LbrLBV1 with the clade encom-

passing LmarLBV1 and CbomLBV1. These three viruses were nested within a large cluster

of viruses from Leptomonas moramango and various species of Crithidia and Blechomonas
(Fig 4).

Viral load during cultivation and comparison of virus-positive and

-negative clones

Next, we obtained two virus-negative clones: LBV(-) 1 and LBV(-) 2. The analysis of growth

kinetics demonstrated that the WT strain proliferated a bit slower and reached about one third

lower density as compared to the virus-free clonal strains (Fig 5A). Although being small, this

difference was statistically significant (p< 0.005 at day 5 by t-test). This suggests that the pres-

ence of the virus may have a slight deleterious effect on the cells. We also noted that viral prev-

alence was not stable: it increased during the log and early plateau phases reaching maximum

at day 5 after passaging and went down afterwards (Fig 5B).

Finally, we experimentally infected two Lutzomyia spp. (Lu. longipalpis and Lu. migonei)
[83] with either the wild-type or one of the two virus-negative clonal strains of L. braziliensis.
In Lu. migonei, the overall infection rates by all three strains were not significantly different

(p = 0.1736 and 0.0504; χ2 = 1.851 and 3.830 for days 3 and 10 PBM, respectively). In Lu. long-
ipalpis, the overall infection rates of LBV(-) 1 clone were about 20% lower than those of the

wild-type on day 3 PBM (p = 0.0125; χ2 = 6.240) as well as on day 10 PBM (p = 0.0042; χ2 =

8.202), whereas LBV(-) 2 infection rates did not differ significantly from the WT (p = 0.0687

and 0.7486; χ2 = 3.313 and 0.103 for days 3 and 10 PBM, respectively). (S5 Fig). Considering

that the statistically significant difference was observed only for one clone and one sand fly

species, as well as the relatively small extent of this difference, we concluded that the virus did

not essentially impact development of L. braziliensis in the vector.

Discussion

In this work, we investigated a leishmanial strain isolated from a Czech patient who had trav-

elled to South America and identified a novel virus in it. The analysis of genomic data for this

strain allowed us unambiguously identifying not only the parasite species (Leishmania brazi-
liensis) and lineage (L1), but even the geographic origin of the strain (Bolivia), about which the

anamnesis data were inconclusive. Our inference excluded interspecific hybrid ancestry of the

isolated parasite, which was important considering that Leishmania spp. tend to hybridize

[93–99]. However, the strain under study appears to be a result of intraspecific hybridization,
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which has been recently demonstrated to be associated with elevated frequency of infections

by leishmaniaviruses [67]. By the analogy, the same effect could possibly be exerted for LBVs,

but a single currently available example is not enough for making any sound conclusion. Of

note and in contrast to LRVs, LBVs form enveloped virions, which should significantly facili-

tate horizontal viral transmission between host species [16,36].

The evolutionary origin LbrLBV1 cannot be unambiguously established, because the

known diversity of the family Leishbuviridae is still relatively scarce. However, our phyloge-

netic inference indicates that it arose independently from the related virus of L. (M.) martini-
quensis (LmarLBV1) [36]. In both cases, the viruses were likely acquired from monoxenous

trypanosomatids, which are known to co-habit vector’s intestine with Leishmania spp. [100–

102]. Of note, the distinctness of vectors for L. braziliensis and L. martiniquensis (sandflies and

biting midges, respectively) is in line with the independent origin of viruses in these flagellates

[103].

The discovered virus belongs to the crown group of Leishbuviridae and resembles its rela-

tives in the sizes of genomic segments and ORFs. However, it possesses terminal complemen-

tary sequences not only distinct from the canonical ones, but even not identical for all the

genomic segments. This phenomenon, previously detected only in the divergent viruses from

Fig 4. Phylogenetic tree of Leishbuviridae based on the RDRP amino acid sequences. The tree was rooted on Phenuiviridae (collapsed for better visibility).

LbrLBV1 is highlighted in black. Numbers at nodes are standard bootstrap supports/Bayesian posterior probabilities, circles indicate support of 100/1.

https://doi.org/10.1371/journal.pntd.0012767.g004
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the monoxenous trypanosomatid Leptomonas pyrrhocoris [38], warrants special attention,

since it is unclear what could be the functional consequences of such a discrepancy. It may, for

example, impact replication and transcription of a given segment, suggesting that expression

of specific gene products may require specific regulation. In addition, the uniqueness of the

Fig 5. Growth curves and viral load of L. braziliensis BO17. (A) Growth curves of the WT, LBV(-) 1, and LBV(-) 2

cultures. Data are calculated from three independent biological replicates. (B) Viral load in the WT culture analyzed by

quantitative RT–PCR of RdRP mRNA. Data are summarized from three independent biological replicates, each with

three technical replicates. Error bars indicate standard deviation.

https://doi.org/10.1371/journal.pntd.0012767.g005
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terminal sequences for the M segment suggests that it has a different evolutionary origin, i.e.,

LbrLBV1 may be a reassortant.

Our observation that the viral load increases during the log and early plateau stages of the

culture growth and subsequently decreases afterwards may have two explanations. Firstly, in

some cells, the LBV proliferation may occur faster than in others. This would lead to subse-

quent elimination of such cells from the culture due to a presumable toxic effect. The persis-

tence of viruses in the population can then be ensured by the cells, in which the multiplication

of viruses is coordinated with that of their Leishmania host. If the presence of viruses exerts a

negative effect, whatever small it could be in the mildly infected cells, the latter must be out-

competed by their virus-free counterparts. However, this apparently does not happen, which

can be explained by the horizontal transmission of LBVs from the infected to uninfected cells.

Secondly, the drastic decrease in the viral load could be explained by massive discharge of viral

particles from the cells at the plateau stage. The underlying mechanism likely depends mainly

on the host: under the stress conditions (high culture density is likely one of them), Leishmania
and other trypanosomatids greatly intensify the release of extracellular vesicles [104–106],

which may serve as vehicles for viral exit. In this scenario, excessive discharge of viral particles

can result in the rise of virus-free cells.

Leishmania braziliensis is one of the two most common species (along with L. mexicana)

causing American cutaneous leishmaniasis and the most frequent agent of its hyperergic

mucocutaneous form [107]. As the presence of LRV-1 considerably elevates the risk of the

development of the latter variant of the disease [22,108,109], a substantial effort has been put

to the study of leishmaniaviruses in this and related Leishmania spp. belonging to the subgenus

Viannia. Here, we discovered a novel virus from the family Leishbuviridae that has never been

detected in the members of this group of trypanosomatids before. The overwhelming majority

of studies devoted to viral endosymbionts of Leishmania spp. used methods allowing detection

of LRVs only [67,110–112]. Therefore, it is not possible to estimate how prevalent LBVs can be

in L. braziliensis and related species, not to say about the impact of such viruses on the clinical

symptoms of the disease and other aspects of Leishmania biology. By this work we wanted to

attract attention of the scientific community to LbrLBV1 as a potential factor of virulence in

American leishmaniasis (pending validation in vivo) and encourage researchers to test leish-

manial strains for the presence of not only LRVs, but also other RNA viruses.

Supporting information

S1 Fig. Maximum likelihood tree of L. (Viannia) isolates based on maxicircle SNP data.

Bootstrap supports (100 replicates) are shown at nodes, but values below 50 are omitted. The
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and (C) is coordinated with the graphical legend presented in panel (A).
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S3 Fig. PCAdmix intraspecific ancestry assessment. (A) Scatterplot for PCA-based ancestry
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Pacáková, Alain Kohl, František Stejskal, Petr Volf, Vyacheslav Yurchenko.

Visualization: Alexei Yu. Kostygov, Donnamae Klocek, Vyacheslav Yurchenko.

Writing – original draft: Alexei Yu. Kostygov, Danyil Grybchuk, Senne Heeren, Donnamae
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39. Akopyants NS, Lye LF, Dobson DE, Lukeš J, Beverley SM A novel bunyavirus-like virus of trypanoso-

matid protist parasites. Genome Announc. 2016; 4: e00715–00716. https://doi.org/10.1128/genomeA.

00715-16 PMID: 27491985

40. Klocek D, Grybchuk D, Macedo DH, Galan A, Votýpka J, Schmid-Hempel R, et al. RNA viruses of
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