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Abstract 

Background  Malaria remains a key contributor to mortality and morbidity across Africa, with the highest burden in chil-
dren under 5. Insecticide-based vector control tools, which target the adult Anopheles mosquitoes, are the most efficacious 
tool in disease prevention. Due to the widespread use of these interventions, insecticide resistance to the most used classes 
of insecticides is now pervasive across Africa. Understanding the underlying mechanisms contributing to this phenotype 
is necessary to both track the spread of resistance and to design new tools to overcome it.

Methods  Here, we compare the microbiota composition of insecticide-resistant populations of Anopheles gambiae, An. 
coluzzii and An. arabiensis from Burkina Faso, and in the latter case additionally from Ethiopia, to insecticide-susceptible 
populations.

Results  We show that the microbiota composition between insecticide-resistant and -susceptible populations does 
not differ in Burkina Faso. This result is supported by data from laboratory colonies originating in Burkina Faso across two 
countries. In contrast, An. arabiensis from Ethiopia demonstrates clear differences in microbiota composition in those dying 
from and those surviving insecticide exposure. To further understand resistance in this An. arabiensis population, we per-
formed RNAseq and saw differential expression of detoxification genes associated with insecticide resistance and changes 
in respiration, metabolism and synapse-related ion channels.

Conclusions  Our results indicate that, in addition to changes in the transcriptome, microbiota can contribute to insecticide 
resistance in certain settings.
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Background
Malaria, caused by the Plasmodium parasite and trans-
mitted by Anopheles mosquitoes, remains one of the 
world’s most deadly diseases, with 249 million cases and 
609,000 deaths in 2022 [1]. Despite the gains made in 
malaria control since the implementation of concerted 
intervention strategies, the downwards trend plateaued 
from 2015, and since the recent COVID-19 pandemic 
there has been a clear increase in case numbers [1]. 
Challenges in reversing this trend and making progress 
towards elimination have resulted in the World Health 
Organisation calling for an increase in funding and 
implementation of new approaches.

Insecticide-based vector control tools, such as indoor 
residual spraying and insecticide-treated bed nets, are 
a cornerstone of malaria control programmes; of these, 
insecticide-treated bed nets showed the most substan-
tial influence on the reduction of case numbers [2]. 
These interventions directly target the mosquito vector. 
In Africa, malaria is mainly transmitted by three spe-
cies within the Anopheles gambiae species complex (An. 
gambiae, An. coluzzii and An. arabiensis) and An. funes-
tus [3, 4]. Currently, a limited number of insecticide 
classes are available for malaria control, the most impor-
tant of which is the pyrethroid class, which is used on all 
insecticide-treated bed nets [1]. The selection pressure 
imposed by pyrethroid insecticides has led to widespread 
and intense resistance to this chemistry [5]. Indeed, the 
strength of resistance is such that, in some countries, 
exposure to pyrethroids has no effect on the longevity of 
the mosquito vector [6]. In response to escalating resist-
ance, next-generation bed nets have been developed, 
recommended and deployed, containing pyrethroids 
and a second chemistry [7, 8]. Furthermore, new ways 
to administrator insecticides are being explored, such 
as eave tubes [9] and attractive targeted sugar baits [10], 
and new chemical classes for indoor residual spraying are 
now available [11, 12].

Insecticide resistance is a complex phenotype, includ-
ing increased expression of transcripts involved in meta-
bolic detoxification, single-nucleotide polymorphisms 
reducing the efficacy of the insecticide, reduced penetra-
tion because of thickening of the cuticle and sequestra-
tion of the insecticides [13]. Upregulation of metabolic 
enzymes involves the cytochrome p450 class, which has 
been shown to directly metabolise several licensed insec-
ticides, including pyrethroids [14–16]. Numerous P450s 
are upregulated in multiple populations across Africa, 
including CYP6M2, CYP6P3, CYP9K1 and CYP6AA1 in 
An. gambiae and An. coluzzii, CYP6P4 in An. arabiensis 
and CYP6P9a/b in An. funestus  [14, 17–20]. In addi-
tion to cytochrome P450s, GSTs [21], ABC-transporters 
[22] and most recently UGTs [23] have been implicated 

in metabolic resistance. Other transcriptomic changes 
include upregulation of putative insecticide binders, 
such as the D7 salivary gland proteins [24] and the chem-
osensory proteins [25]. Outside transcriptomic changes, 
mutations to the target sites of the insecticide are well 
characterised. In the An. gambiae species complex, muta-
tions in the voltage-gated sodium cannels have been con-
sistently linked with pyrethroid resistance; this includes 
‘traditional’ kdr, L995F [26] and ‘new’ kdr V402L-I1527T 
[27]. A second known mutation, G119S, in the acetylcho-
line esterase gene ACE-1 [28] is linked to resistance to 
both carbamates and organophosphate insecticides.

Although resistance is typically described as a genetic 
component of the Anopheles vector, recent work has 
shown that the microbiota changes upon insecticide 
exposure, hinting at the role of these organisms in resist-
ance. Indeed, work on the South and Central American 
vector, Anopheles albimanus, showed significant changes 
in the cuticle microbiota after pyrethroid exposure and 
changes in the overall microbiota after organophos-
phate exposure [29]. In Africa, pyrethroid resistance has 
been linked to changes in microbiota composition in 
Cameroon, Kenya and Côte D’Ivoire, whilst laboratory-
adapted An. coluzzii have been shown to have a changed 
their microbiota after selection to pyrethroid resistance 
[30–34]. Furthermore, experimental treatment with anti-
biotics and spiking with known bacteria show increased 
pyrethroid tolerance in a laboratory-colonised An. ara-
biensis [35]. Taken together, these data indicate that 
insecticide resistance may be linked to the mosquito 
microbiota and that this facet of insecticide resistance 
could be manipulated for vector control.

In this study, we use 16S sequencing to determine 
whether the microbiota of laboratory-colonised mos-
quitoes and field-caught mosquitoes from West and 
East Africa differ between mosquitoes surviving and 
dying after exposure to the pyrethroid deltamethrin. In 
the context of insecticide resistance, comparisons of the 
microbiota from different regions in Africa, with differ-
ent species and resistance levels, might provide insight 
into regional influences on microbiota communities. The 
laboratory colonies originated from Burkina Faso and 
were reared at two separate European laboratories (An. 
coluzzii, Germany, and An. arabiensis, UK), mosquitoes 
from Burkina Faso represent all three species of the An. 
gambiae species complex, and those from Ethiopia were 
An. arabiensis. Here, we show that An. arabiensis from 
Ethiopia have distinct microbiota profiles for surviving 
and dying mosquitoes, whilst those from Burkina Faso 
and the two laboratories do not. To further understand 
insecticide resistance in this An. arabiensis population, 
we performed RNAseq and saw upregulation of insecti-
cide resistance-related genes and overall changes in genes 
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related to respiration. Integration of these data with a 
second population from Ethiopia highlights key detoxifi-
cation genes in this region. Further comparisons with An. 
arabiensis from Burkina Faso show a large difference in 
the transcriptomic profile but nevertheless highlight four 
core detoxification genes overexpressed across Africa.

Methods
Field collections
Mosquito collections were carried out in both Ethio-
pia and Burkina Faso respectively using larval sampling. 
Mosquito larvae were collected from 7 July to 2 August 
2021 in Tiefora in Burkina Faso (latitude 10.62411667, 
longitude − 4.55335) characterised by high use of insec-
ticides in agriculture, mainly lambda-cyhalothrin (a pyre-
throid) and pyrethroid-based bed nets (deltamethrin, 
alpha-cypermethrin and permethrin). Since 2019, pyre-
throid plus PBO nets have been deployed in this region. 
From 28 July to 6 August, field sampling was conducted 
in Bahir Dar (latitude 11.588790, longitude 37.3888119) 
in Ethiopia, where using deltamethrin (pyrethroid) in 
LLIN was common, as well as using pirimiphos-methyl 
(organophosphate) and bendiocarb (carbamate) in IRS 
[36].

Mosquito rearing
Mosquitoes were reared under standard insectary condi-
tions of 28°C ± 2   C with a 12:12 h light:dark cycle with 
1 h dawn:dusk. Larvae were fed ground fish food and 
upon emergence transferred to cages and maintained on 
10% sucrose solution. Banfora (An. coluzzii) and Gaoua 
(An. arabiensis) were reared in insectaries at Heidelberg 
University Hospital (UKHD) and Liverpool School of 
Tropical Medicine (LSTM), respectively; each strain was 
originally colonised from Burkina Faso in 2015 and 2018, 
respectively [37, 38]. Moz (An. arabiensis) was originally 
colonised in 2009 from Mozambique [39] and reared 
at UKHD. The field-caught mosquitoes were reared in 
insectaries at University of Gondar (An. arabiensis) and 
Centre National de Recherche et de Formation sur le 
Paludisme (CNRFP) (An. gambiae, An. coluzzii and An. 
arabiensis).

Insecticide susceptibility tests using adult mosquitoes
Mosquitoes were reared and, at 3–5 days old, presumed 
mated, were exposed to 1 ×, 5 × and 10 × diagnostic doses 
of 0.05% deltamethrin for 1 h using standard WHO tube 
tests [40] to determine the dose that gave ~ 70% mortality 
at 24 h. After exposure to the appropriate dose (5XDD in 
field samples, 1XDD at LSTM and UKHD), mortality was 
recorded 24  h later. Control mosquitoes were from the 
same cohort, unexposed and alive at the time of process-
ing. Mosquitoes were then individually stored at – 20  C 

and their live and dead phenotype recorded. Mosquitoes 
from University of Gondar were shipped to CNRFP for 
further processing to ensure consistency of field samples. 
Extractions were done separately at CNRFP, UKHD and 
LSTM following the below protocol.

Sample processing
Mosquitoes were individually thawed and 250 µl of 70% 
alcohol added followed by vortexing for 10  s to remove 
the surface microbiota; 250  µl of sterile distilled water 
was then added, and the samples were vortexed for a 
further 10 s. The samples were then gently rinsed and 
allowed to dry. Once dry, the head and thorax were sepa-
rated from the abdomen, and each was stored in separate 
tubes for further processing.

Species identification and molecular analysis
DNA was extracted from the heads and thoraces by 
boiling in STE buffer for 15 min at 95°C. The subse-
quent DNA from individual mosquitoes underwent 
species identification through SINE200 PCR following 
a previously published protocol [41]. To determine the 
frequency of kdr-L995F [42] and ACE-1 G119S [43], 
additional PCRs were performed following standard 
protocols.

DNA extraction for 16S sequencing
Mosquito abdomens were then pooled into groups of 
five by species, alive:dead phenotype and location. DNA 
was then extracted from individual mosquitoes using 
the LIVAK protocol as previously published [44]. Briefly, 
LIVAK buffer pH 7.5 (1.6  ml 5M NaCl, 1.7 ml 0.5 M 
EDTA, 2.4  ml 1 M Tris, pH 7.5, 5 ml 10% SDS and up 
to 100 ml ddH2O) was heated to 65°C. Mosquitoes were 
then homogenised in 100  µl LIVAK buffer and heated 
for 30 min at 65°C; 14 µl of 8 M potassium acetate was 
added, mixed and left on ice for 30 min. After centrifuga-
tion, the supernatant was collected and 200  µl of 99.9% 
ethanol added. DNA was then precipitated and resus-
pended in 50  µl of ddH2O. DNA was then shipped to 
BIOMES GmbH for 16S sequencing; sample information 
can be found in Supplementary Table 6.

16S analysis
16S abundance tables were provided by BIOMES GmbH 
and analysed using the vegan package [45] in R follow-
ing previously published methodology [33]. Briefly, alpha 
diversity was analysed using an ANOVA on the Shan-
non index followed by Tukey multiple comparisons for 
country, species and alive/dead status. Beta diversity was 
calculated using Brays-Curtis to account for OTU abun-
dance, following by a permuted ANOVA (n = 1000) using 
country and alive/dead groupings. Beta dispersion was 
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explored using a permutation test (n = 1000) on nMDS 
for country pools.

RNA extraction
Total RNA was extracted from the field mosquitoes 
from Bahir Dar, Ethiopia (ETH), after exposing them as 
described above, as well as from susceptible An. arabien-
sis maintained at UKHD (Moz) [37]. RNA was extracted 
from five pooled adults using the PicoPure RNA extrac-
tion kit following the manufacturer’s instructions. Total 
RNA quantity and quality were checked on a NanoDrop 
and Bioanalyzer, respectively, before being submitted to 
Eurofins Genomics for polyA enrichment-based RNA 
sequencing.

RNAseq analysis
The fastq files were aligned to An. arabiensis DONGALA 
assembly using Hisat2 [46] with default parameters. fea-
tureCounts [47] was then used to extract read counts for 
each gene. Count files were analysed using the DESeq2 
package [48] in R as previously described [33]. GO and 
KEGG enrichments were performed within VectorBase 
[49] with p-values taken with Bonferroni correction. 
Fastq files for RNAseq of An. arabiensis from Burkina 
Faso and from Ethiopia (PERM vs DON) were retrieved 
from SRA (PRJNA780362, PRJNA730212). Families 
were extracted from VectorBase using PFAM IDs as fol-
lows: PF00067, PF00201, PF00135, PF00005, PF12848, 
PF03392, PF00011, PF03722, PF00372 and PF01395.

To confirm frequencies of SNPs in our samples from 
Ethiopia, variants were called using bcftools v1.21 and 
allele frequencies at the positions of kdr-L995F, kdr-
L995S, ACE-1 G119S and GSTE2 L119V were checked.

Results
Species identification of field samples
Species identification was performed on a total of 441 
individual mosquitoes collected in Tiefora, Burkina 
Faso and Bahir Dar, Ethiopia, consisting of 248 and 107 
samples, respectively. The Burkina Faso collections con-
sisted of 134 (54%) An. arabiensis, 21 (8.5%) An. coluzzii, 
92 (38.1%) An. gambiae and 1 (0.4%) An. gambiae x An. 
coluzzii hybrid. In contrast, the Bahir Dar samples were 
all An. arabiensis (107 samples). Table 1 shows the num-
ber of control unexposed mosquitoes and those alive and 
dead following exposure to the pyrethroid deltamethrin.

Resistance levels
Resistance to deltamethrin (Fig.  1A) was highest in 
field-caught An. gambiae with 66.3% of the mosqui-
toes surviving 5XDD exposure, in contrast to 20.9% 
survivorship of An. arabiensis. Anopheles coluzzii from 
Burkina Faso also showed similarly high survivorship 
(70.6%) but with only 17 samples. Anopheles arabiensis 
samples from Ethiopia showed similar resistance levels 
to An. arabiensis in Burkina Faso with 20.5% surviving 
5XDD. The laboratory colonies were exposed to 1XDD 
of deltamethrin, with 41% An. arabiensis surviving and 
67.3% of An. coluzzii. Each field-caught individual used 
for subsequent microbiota work was then assessed for 
the presence of kdr-L995F and ACE-1 G119S muta-
tions (Fig.  1B); kdr-L995F was present in 42.6% of the 
An. arabiensis from Ethiopia (29.4% in dead and 33.3% 
in alive) and ACE-1 at 6.4% (3% in dead and 10% alive). 
In Burkina Faso, kdr-L995F was present at 54.4% in An. 
arabiensis (66.7% alive and 36.7% dead) and was sig-
nificantly associated with survival (pχ2 = 0.0379); An. 
coluzzii at 60% (75% alive and 30% dead, pχ2 = 0.045) 
and An. gambiae at 62.5% frequency (63.3% alive and 

Table 1  Breakdown of the mosquito samples by species, mortality status and country

Table 1 shows the country and species for control unexposed mosquitoes, alive, dead and total and those that were exposed to 5XDD deltamethrin through WHO 
tube bioassay, alive, dead and total. The final column shows the total number of mosquitoes tested for each row. The final row shows the total across both countries. 
Bold values show total numbers per country and across countries

Country/species Control Control total Exposed Exposed total Total

Alive Dead Alive Dead 24-h Mortality 
(%)

Burkina Faso 58 58 88 102 54 190 248
Anopheles arabiensis 48 48 18 68 79 86 134

An. coluzzii 4 4 12 5 29 17 21

An. gambiae 6 6 57 29 34 86 92

Hybrid (An. gambiae x An. 
coluzzii)

1 0 1 1

Ethiopia 32 2 34 15 58 79 73 107
An. arabiensis 32 2 34 15 58 79 73 107

Grand total 90 2 92 103 160 61 263 355
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61.9% dead, pχ2 = 0.88). L995S was not tested here but is 
likely present in An. arabiensis from Burkina Faso [37]. 
ACE-1 varied at lower frequency compared to kdr-
L995F across all Burkina samples, with 4.4% in An. ara-
biensis, 3.3% in An. coluzzii and 19.5% in An. gambiae.

Microbiota diversity
16S sequencing was then performed on live and dead 
mosquitoes from pools of each species from each loca-
tion and relative abundance calculated. No differences in 
alpha diversity were observed, indicating no difference 
in operational taxonomic unit (OTU) richness; how-
ever, beta diversity was significantly different between 

Fig. 1  Insecticide resistance status. A Mortality data for each population used in the 16S experiments to 0.05% (1X), 0.25% (5X) or 0.5% (10X) 
deltamethrin in WHO tube assays for each country. As the samples from Burkina Faso underwent species identification after testing, they are 
displayed as a single line. In all other cases, points represent 25 mosquitoes tested together in one WHO tube. Error bars show standard deviation. B 
kdr-L995F frequency in the field populations used for 16S. Total number of individuals given under each pie chart. ETH Ethiopia, BF Burkina Faso, DE 
Germany. Significant p values are indicated above the pie charts comparing alive:dead allelic frequency



Page 6 of 14Worku et al. Parasites & Vectors           (2025) 18:17 

the countries and the interaction term of countries and 
alive/dead status (PANOVA = 0.001 and 0.008 respectively) 
signifying diversity between these factors. No differences 
were observed for beta dispersion across the countries, 
demonstrating similar variances between groups. A Bray-
Curtis multidimensional scaling plot (Fig.  2A) shows 
that the samples largely separate on location, with some 

notable exceptions. Several samples from the An. arabi-
ensis colony and one sample from the An. coluzzii colony 
overlap with the Burkina Faso samples, whilst one An. 
arabiensis pool from Burkina Faso overlaps with those 
from the An. arabiensis colony. This may indicate some 
conservation of original microbiota stochastically in 
individuals across many generations and across multiple 

Fig. 2  16S microbiota diversity. A Brays-Curtis multidimensional scaling plot showing MDS1 (x-axis) and MDS2 (y-axis) for the calculated 
abundances. Each point represents one pool of five individuals; the colour represents alive (green) and dead (pink) after deltamethrin exposure, 
and unexposed controls (yellow). The shape indicates species Anopheles arabiensis (circle), An. gambiae (diamond) and An. coluzzii (square). The 
shape outline denotes the country: Burkina Faso (black), Ethiopia (turquoise), Germany (pink) and the UK (green). Ellipses represent each country 
cluster and are labelled as such. B Relative abundance (% y axis) plots for each pool of five individuals (x axis) at genus level. Label acronyms 
are as follows: col = An. coluzzii. Alive samples are denoted by a blue bar, control a yellow bar and dead a pink bar immediately below the x-axis. 
Countries are denoted by a bar and coloured as in A
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localities. There is no clear distinction between the sam-
ples from Burkina Faso based on species; this lack of 
separation might be expected, as the individuals, despite 
originating from different larval environments, were 
later pooled. Indeed, sharing a niche during the aquatic 
stage has been shown to significantly influence micro-
biota composition [50]. Interestingly, whilst the samples 
from Burkina Faso and the colonies show no separation 
of those mosquitoes surviving or dying after insecticide 
exposure, there is clear separation of the Ethiopian sam-
ples, indicating that microbiota composition is linked to 
insecticide resistance in these An. arabiensis samples. 
These samples were collected from the same collection 
site, potentially explaining the clearer association.

The abundance plots (Fig.  2B) show 2–6 highly abun-
dant genera across each population. Anopheles arabien-
sis from Ethiopia are dominated by Erwiniaceae, which 
align to an unspecified taxon, Salmonella and Pantoea. 
Six OTUs  have > 10% abundance in the colonised An. 
coluzzii, including Asaia, Salmonella, an unspecified 
Erwiniaceae, Swaminathania, Elizabethkingia anophe-
lis and Enterobacter amnigena whilst An. coluzzii from 
Burkina Faso are dominated by Swaminathania, with 
Asaia and Salmonella having > 5% abundance. Simi-
larly, An. gambiae from Burkina have these three OTUs 
with > 5% abundance but uniquely have Tanticharoenia. 
Anopheles arabiensis from Burkina Faso again shows a 
similar dominant taxon, overlapping entirely with the 
other species. The An. arabiensis colony is dominated by 
two taxa: Elizabethkingia anophelis and an unspecified 
Swaminathania.

Bacteria associated with survival to pyrethroid exposure
To explore any association with insecticide resistance, 
the pools were split by country and association with 
survival assessed for OTUs representing > 1% of the 
overall abundance. Field-caught samples from Burkina 
Faso had one genus associated with survival, Sphin-
gomonas, which was significantly more abundant in 
survivors (pANOVA = 0.029). Similarly, the An. arabi-
ensis colony had a low-abundant unspecified Gam-
maproteobacteria, which was more abundant in dead 
mosquitoes (pANOVA = 0.03). Unlike these tenuous asso-
ciations, the field-caught An. arabiensis from Ethiopia 
had clear associations with bacterial genera showing 
significant association with survivorship. As for Bur-
kina Faso, Sphingomonas was significantly associated 
with exposure (pANOVA = 0.045); however, it was found 
at higher abundance in dead mosquitoes. Perhaps the 
most interesting is a highly significant association of 
Pantoea with survival (pANOVA = 0.0067) at > 12% abun-
dance in alive mosquitoes compared to ~ 2% in dead 
mosquitoes. Similarly, the unspecified Erwiniaceae is 

at ~ 66% abundance in live mosquitoes and 12% in dead 
mosquitoes (pANOVA = 0.0082), whilst Salmonella is 
at ~ 14% in alive mosquitoes and 47% in dead mosquitoes, 
although this is not significant because of high variation 
(pANOVA = 0.11) (Fig.  3). The other genera with signifi-
cantly higher abundance in survivors include Escherichia 
and Kosakonia, whilst Rhizobium and Methylbacterium-
Methylorubrum are more abundant in dead mosquitoes; 
however, the abundance of all of these genera is on aver-
age < 1%, so their relationship to IR at such low levels is 
unclear. In addition to the resistance phenotype itself, we 
cannot rule out that the abundance differences might be 
related to physiological processes after death or to direct 
effects of the insecticide exposure. However, the group-
ing of control mosquitoes with alive/dead in Ethiopia 
indicates that limited change occurred in the microbiota 
after death.

Characterisation of insecticide resistance in An. arabiensis 
from Ethiopia
To determine the mechanisms of genetically driven 
pyrethroid resistance in the field-caught An. arabiensis 
from Ethiopia, RNAseq was performed. PCA demon-
strated separation of field mosquitoes from Bahir Dar 
and the laboratory-susceptible Moz (Supplementary 
Fig.  1). In total, 2666 genes (26.3%) were significantly 
overexpressed and 2958 (29.1%) were significantly down-
regulated (Fig.  4A, Supplementary Table  1). GO terms 
show significant enrichment in numerous areas, includ-
ing cellular respiration (p = 6.07e−7), ATP synthase 
(p = 6.15e−3), oxidoreduction activity (p = 2.09e−5), 
ion transport (p = 1.31e−9) and synapse (p = 1.21e−3). 
Four MetaCyc pathways showed significant enrich-
ment, including lipoprotein post-translational modifi-
cation (p = 1.25e−5), aerobic respiration (p = 4.07e-3), 
Fe(II) oxidation (p = 6e−3) and plasmalogen biosynthesis 
(p = 1.47e−2) (Supplementary Table  2). Of the detoxi-
fication genes, 23 ABC transporters, 33 cytochrome 
P450s, 10 GSTs, 5 COEs and 2 UGTs are overexpressed 
(Figs.  4B-C). These genes include CYP9K1, CYP6P4, 
CYP6AA1, CYP6Z3 and CYP6M2, which are all known 
pyrethroid metabolisers in the An. gambiae complex [16, 
18, 19, 51], and CYP4G16, linked to cuticular thickening 
[52]. Additionally, in the syntenic ortholog of ABCH2 
[53], 3 CSPs [25], 3 alpha-crystallins, 3 hexamerins [14] 
and 24 cuticular genes are overexpressed (Supplementary 
Fig. 2). AARA016988 is the homologue of the hexamerin 
AGAP001345 [14] and is the second most highly signifi-
cantly over-expressed gene at 175x, whilst AARA016998, 
the homologue of SAP2 [25], is the fourth with a fold 
change of 18.45. ABCA7 and ABCG2 homologues are 
present in the top 20 significantly overexpressed genes, 
whilst 5 of the top 20 are serine proteases. Variant calling 
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resulted in the confirmation of kdr-L995F in the Ethiopia 
samples in heterozygous form. The other analysed muta-
tions were not found to be present.

GO term enrichments of significantly downregulated 
genes include nucleic acid binding (p = 2.19e−17), gene 
expression (p = 8.55e−31), cellular response to stress 
(p = 5.17e−13) and ribosome biogenesis (p = 8.07e−4). 
The KEGG pathway related to biotin metabolism 
(p = 1.88e−3) is also significantly enriched (Supplemen-
tary Table 2). Taken together, these indicate large meta-
bolic changes between these populations.

Comparison of An. arabiensis from Ethiopia and Burkina 
Faso
A prior dataset of permethrin-resistant An. arabiensis 
from Asendabo, approximately 425 km further south [54], 
was compared with the results from Bahir Dar. Across 
both sites, 1443 genes were significant, 607 consistently 
upregulated and 412 consistently downregulated (Supple-
mentary Table 3). Consistently upregulated genes include 
CYP6P4, CYP6M2, CYP6P3, CYP9J5 and CYP9K1, all 
previously implicated in pyrethroid resistance [16, 51, 55, 
56]. Furthermore, GSTE2, GSTE7, GSTD3, a chemosen-
sory protein homologue and two ABCG transcripts are 
included in this list. Enrichments include oxidoreduc-
tion-driven active transmembrane transporter activity 

Fig. 3  Bacterial OTUs associated with pyrethroid resistance in Anopheles arabiensis from Ethiopia. Relative abundance (y axis) of genera (x-axis), alive 
(green) and dead (pink). Statistical significance calculated by ANOVA, *p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent standard deviation

Fig. 4  Gene expression changes in Anopheles arabiensis from Bahir Dar. A Volcano plot showing significantly up- (pink) and downregulated 
(blue) genes, with genes from members of the ABC transporter, cytochrome P450, chemosensory, carboxylesterase, glutathione-S-transferase 
and uridine diphosphate-glycosyltransferase families highlighted in orange. B Normalised count data for the Bahir Dar (ETH) samples compared 
to the susceptible Moz for all significant cytochrome p450s. C Normalised count data for the Bahir Dar (ETH) samples compared to the susceptible 
Moz for significant genes from all other resistance-related families. Red indicates higher read count, and blue lower, with a normalised Z score of − 1 
to 1

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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(p = 2.09e−17), oxidoreductase activity (p = 1.61e−12), 
electron transfer activity (p = 3.82e−16), cellular respi-
ration (p = 1.82–20) and mitochondria (p = 2.89e−11). 
Consistently downregulated genes include response to 
stress (p = 1.61e−2).

Similarly, previously published data are available for 
An. arabiensis from Gaoua, located in southwest Bur-
kina Faso [57]; this was compared to the Ethiopian sam-
ples (Supplementary Table  4). A pairwise comparison 
with the samples from Bahir Dar shows 2762 genes are 
significant across both sites; of these, 209 are com-
monly upregulated and 176 are commonly downregu-
lated. Consistently upregulated genes include CYP6AA2, 
CYP6AG2, CYP6AK1, CYP6P1 and CYP6P4. The other 
detoxification family members include ABCA2, GSTE7, 
GSTS1, GSTMS3 and a UGT (AARA006222). Enriched 
GO terms relate to transporter activity (p = 4.95e−2).

A three-way comparison shows 726 genes commonly 
differentially expressed, of which 55 are commonly 
upregulated and 22 commonly downregulated (Supple-
mentary Table  5). GSTE7, CYP6AK1, CYP6P4, a UGT 
(AARA006222), one COE (AARA016325) and multiple 
serine protease-related proteins are commonly overex-
pressed. The consistent overexpression in these vastly 
different populations indicates a key role of insecticide 
resistance in these populations.

Discussion
Resistance to pyrethroid insecticides is a complex phe-
notype, and whilst metabolic and target site changes are 
relatively well understood, changes in the microbiota 
are just now beginning to be explored. In this study, we 
show that microbiota changes may be more important in 
specific populations; we further characterise resistance 
in An. arabiensis from Bahir Dar and show changes in 
known resistance-associated transcripts as well as large 
changes in respiration-related genes, which are also evi-
dent in a prior RNAseq study on an An. arabiensis popu-
lation from Ethiopia [43]. Taken together, these results 
indicate that these mosquitoes potentially rely on a mix 
of genetic and non-genetic factors of insecticide resist-
ance, putatively because of a commensal association with 
local bacteria which can complement degradation of 
insecticides in populations with lower levels of resistance.

Bioassay results here show that Ethiopian An. arabien-
sis have similar levels of pyrethroid resistance to the Bur-
kinabe counterparts but significantly lower than  those 
of An. gambiae or An. coluzzii. These findings are in 
line with published literature showing that An. arabi-
ensis generally has lower levels of resistance [58, 59], 
likely due to a lower propensity for anthrophilic behav-
iour. Kdr-West (L995F) was present at high frequency 
in both countries, with higher levels in Burkina Faso; 

however, kdr-East (L995S) was not assessed here and 
so correspondingly high levels of this genotype in Bahir 
Dar cannot be ruled out. Data collected in 2023 indicate 
the frequency of L995S is 5% in An. arabiensis collected 
from the Tiefora site, Burkina Faso (Sanou, unpublished). 
Colony mosquitoes from both the UK and Germany are 
maintained under regular selection pressure [38], and 
thus high levels of resistance are expected. Interestingly, 
An. arabiensis from Burkina Faso showed a significant 
association of L995F and survivorship, which was lacking 
in the samples from Ethiopia, in line with previous data 
[60]. We postulate that the differences seen in depend-
ency on kdr between the countries despite similar levels 
of mortality might be due to a great reliance on metabolic 
resistance in the Ethiopian populations, which could lead 
to a breakdown of the insecticide before reaching the 
target site. These assumptions are based on two aspects 
of pyrethroid resistance: the apparent spread of I1527T-
V402L in An. coluzzii despite this mutation conferring 
less protection against pyrethroid insecticides [61, 62] 
and the upregulation of 33 cytochrome P450s in the pop-
ulation from Bahir Dar compared to 13 from the popula-
tion in Burkina Faso [37].

The microbiota composition observed in the popula-
tions of this study aligns well with previous publications, 
featuring symbionts commonly found in Anopheles mos-
quitoes such as Pantoea, Elizabethkingia anophelis, Asaia 
and Serratia [30–34, 63]. Several bacterial genera are 
found across all populations and notably different species 
here, likely because of previous reports of selectivity in 
bacterial colonisation of the adult gut and natural occur-
rence of soil bacteria [50, 63]. Furthermore, previous 
reports have demonstrated that mosquitoes from simi-
lar habitats share a portion of their microbiota [63, 64]. 
The populations described in this study are dominated by 
one or two OTUs, with many having < 1% abundance, in 
agreement with a deep-sequencing study across multi-
ple mosquito species in Kenya [64]. Surprisingly, several 
pools of mosquitoes from the UK and Germany overlap 
with Burkina Faso samples, indicative of a stochastic 
maintenance of field-like microbiota. This requires fur-
ther investigation as it contradicts the expectation that 
microbiota are largely determined by larval environment 
[65], although vertical transfer of bacteria within a popu-
lation has been suggested previously [66].

Here, we show that An. arabiensis from Ethiopia have 
a significant association of pyrethroid survivorship with 
microbiota composition that was absent in their Bur-
kinabe counterparts and in the other analysed species 
from Burkina Faso. Erwiniaceae, Pantoea, Kosakonia and 
Escherichia are more abundant in mosquitoes surviving 
pyrethroid exposure. These OTUs are thus potentially 
involved in conferring some level of pyrethroid resistance 
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in An. arabiensis from Ethiopia. Unlike previous stud-
ies, we found no association of Serratia or Asaia with 
pyrethroid resistance in this population [32, 34], poten-
tially because of species or locality differences. Pantoea 
is a known insecticide-degrading bacteria [67] and was 
shown to be at significantly higher levels in those mosqui-
toes surviving exposure, as seen previously [29]. Similarly 
Escherichia has previously been linked to fenitrothion 
[30] and deltamethrin [32] resistance and has been shown 
to naturally metabolise carbamate insecticides [68]. Kosa-
konia has not previously been linked to insecticide resist-
ance in pests but is associated with rice paddy fields and 
organophosphate remediation [69] and has been shown 
to inhibit trypanosome infection in tsetse flies [70]. Gut 
microbiota have been shown to affect insecticide resist-
ance also indirectly by altering the expression of detoxifi-
cation genes in Aedes mosquitoes [66], although this was 
linked to Serratia, which we have not found to be impli-
cated in the resistance status here. It thus seems more 
likely that any putative connection between bacterial 
genera and resistance status in this study is conferred by 
direct metabolism of the insecticide.

Mosquitoes from Bahir Dar have previously been 
shown to be resistant to pyrethroid insecticides [60] 
but the underlying mechanisms remained unstud-
ied. Here, we show that the mechanisms of insecticide 
resistance are consistent with other study sites in Ethi-
opia and broadly across Africa. For example, the most 
highly overexpressed genes include a hexamerin [14] 
and a SAP2 homolog [25], indicating that these fami-
lies may be important in An. arabiensis populations in 
addition to An. coluzzii. Furthermore, overexpression 
of key pyrethroid-metabolising cytochrome p450s such 
as CYP6P4 [19], CYP9K1 [51] and CYP6P3 [55] have 
previously been demonstrated in resistant An. arabi-
ensis species. Interestingly, ABCH2, which has been 
shown to reduce uptake of pyrethroid insecticides in 
An. coluzzii [53], is also overexpressed in this popula-
tion. The importance of the overexpression of these 
candidates is underlined by integration of RNAseq 
data available for An. arabiensis from a second site in 
Ethiopia [54], where similar patterns of gene expres-
sion are seen. This second site, Asendabo, is character-
ized by the use of bendiocarb by the National Malaria 
Control Programme. Furthermore, organophosphate 
and pyrethroid resistances have been reported in An. 
arabiensis from this region [60]. In contrast, very few 
genes are commonly overexpressed in the Burkina 
Faso An. arabiensis [57], suggesting local adaptation to 
insecticide pressure. Within the Gaoua region, pyre-
throids are used in agriculture as well as on bed nets. 
Distribution of pyrethroid plus PBO nets only started 
in 2022. Just 55 genes are commonly overexpressed in 

these populations, which may be unsurprising given the 
extreme geographical distance and thus likely lack of 
inbreeding. Nevertheless, key detoxification genes such 
as CYP6P4, CYP6AK1, GSTE7 and a carboxylesterase 
may display convergent evolution of overexpression, 
indicating a key role in pyrethroid resistance in An. 
arabiensis. Temporal separation of these samples (2021 
here, 2017 in the second Ethiopia study and 2018 in 
Burkina Faso) may confound these data as insecticide 
resistance is likely a continuously evolving trait.

Recent work has linked increased respiration with 
insecticide resistance [33], consistent with enriched 
ontology terms both within the Bahir Dar RNAseq pro-
duced here and in the integrated Ethiopian data; this 
again suggests that resistance results in a higher respira-
tory rate either causally or as a result of this phenotype. If 
these changes result in differences in underlying reactive 
oxygen and nitrogen species, as previously shown [71], 
this could impact both vector competence and microbial 
colonisation through differential bacterial resistance to 
ROS killing in long-term commensal bacteria [72, 73].

Conclusions
The data presented here show that the microbiota may 
play a role in insecticide resistance in certain settings. 
We further demonstrate that An. arabiensis from within 
Ethiopia show similar transcriptomic changes resulting 
in insecticide resistance; however, the number of genes 
consistent with An. arabiensis from Burkina Faso are 
few. Several caveats remain regarding the conclusions 
drawn here and other studies. First, a causal relationship 
between pyrethroid survival and the microbiota must be 
shown utilising metabolism studies or microbiota trans-
plant. Furthermore, validation of key candidates across 
multiple populations from vastly different geographies 
should be demonstrated. Finally, integrating transcrip-
tomic data with microbiota data by directed studies after 
transplant would give additional insights into whether 
the microbiota directly impact the mosquito transcrip-
tome in relation to pyrethroid resistance. Nevertheless, 
taken together, our data demonstrate both site-specificity 
and cross-country commonalities in resistance, underlin-
ing the necessity to test new insecticide products across 
multiple localities.
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