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Understanding mosquito behaviours is vital for the development of insecticide-treated nets (ITNs), 
which have been successfully deployed in sub-Saharan Africa to reduce disease transmission, 
particularly malaria. However, rising insecticide resistance (IR) among mosquito populations, owing 
to genetic and behavioural changes, poses a significant challenge. We present a machine learning 
pipeline that successfully distinguishes between innate IR and insecticide-susceptible (IS) mosquito 
flight behaviours independent of insecticidal exposure by analysing trajectory data. Data-driven 
methods are introduced to accommodate common tracking system shortcomings that occur due to 
mosquito positions being occluded by the bednet or other objects. Trajectories, obtained from room-
scale tracking of two IR and two IS strains around a human-baited, untreated bednet, were analysed 
using features such as velocity, acceleration, and geometric descriptors. Using these features, an 
XGBoost model achieved a balanced accuracy of 0.743 and a ROC AUC of 0.813 in classifying IR from IS 
mosquitoes. SHAP analysis helped decipher that IR mosquitoes tend to fly slower with more directed 
flight paths and lower variability than IS—traits that are likely a fitness advantage by enhancing their 
ability to respond more quickly to bloodmeal cues. This approach provides valuable insights based on 
flight behaviour that can reveal the action of interventions and insecticides on mosquito physiology.

Mosquito-borne diseases are responsible for around 1 million deaths every year1. These include some of the 
deadliest viral and parasitic infections affecting humans, such as malaria, dengue, yellow fever, Zika and filariasis2. 
The threat from malaria remains the most significant, with the WHO Africa region accounting for > 90% of cases 
and deaths globally3. In the African region, the main preventative measure is the insecticide-treated net (ITN), 
the use of which has risen from < 5% of households in 2000 to over 50% by 20153. Although malaria deaths fell 
by approximately 55% (normalised figures per 100,000 population) in the same period, malaria incidence and 
mortality rates have largely plateaued since then3. The emergence of resistance to the pyrethroid insecticide used 
on bednets and its spread across sub-Saharan Africa is believed to be at least partially responsible for the lack of 
progress in malaria vector elimination targets.

All ITNs currently recommended for use by WHO contain pyrethroid insecticides and resistance to this 
insecticide class in malaria vectors has rapidly spread since the scale up of ITN use, nearly 25 years ago. 
Resistance can be caused by physiological changes in the mosquito that reduce the amount of insecticide 
reaching the target site, reduce the binding to the target, or result in behavioural mechanisms that reduce 
contact with the insecticide4. In the major African malaria vector, Anopheles gambiae, multiple mechanisms 
causing either behavioural or physiological resistance have been reported5–7. Behavioural resistance can arise if 
changes in the vector population’s preferred biting time (night v day) or location (indoor v outdoor) evolve to 
reduce the likelihood of contact with insecticide on bednets. There have been several reports of shifts in biting 
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patterns8–10 following ITN scale up; higher rates of outdoor transmission since the year 2000 are thought to 
have resulted in millions of additional malaria cases each year11. Nonetheless, the majority of mosquito bites 
can still be prevented by ITN use. Physiological mechanisms, such as mutations in the sodium channel target 
or increased rates of detoxification by cytochrome P450s, can cause very high levels of pyrethroid resistance 
with other, less well-defined mechanisms, further contributing to the phenotype12. The intensity of pyrethroid 
resistance, and the underlying mechanisms responsible, differs between populations, sometimes even within a 
small geographical area13.

The link between physiological resistance mechanisms and mosquito behaviour is poorly understood. Fitness 
effects of specific resistance mechanisms that impact their interaction with ITNs have been reported14, but 
limitations in bioassay methods and the ability to measure mosquito behaviour have constrained understanding 
of the relationship between pyrethroid resistance and the mosquito’s interaction with ITNs.

More detailed analyses of vector behaviour has been achieved via video based optical tracking systems 
including behaviour of mosquitoes at human baited bednets in sub-Saharan Africa15. That study determined that 
net contact of less than 1 min per mosquito was sufficient to reduce activity of pyrethroid susceptible mosquitoes 
to a negligible level 30 min after the mosquitoes were introduced. Insights were gained regarding the preferred 
location of activity - above the bednet – and direction of arrival – descent from above onto the host from above.

Specific mosquito tracking analyses16 have used video tracking to compare flight activity of pyrethroid 
insecticide susceptible (IS; N’gousso and the highly susceptible Kisumu strains) and resistant (IR; VK7 and 
Banfora strains) strains of Anopheles gambiae as they respond to human hosts at different bednets: untreated 
(UT), Olyset (OL, single pyrethroid active ingredient), Permanet 3 (P3, pyrethroid on all net surfaces, roof 
with pyrethroid and piperonyl butoxide, PBO) and Interceptor G2 (IG2, pyrethroid and chlorfenapyr on all 
net surfaces) bednets16. Significantly higher levels of activity were seen around an untreated net in comparison 
to the 3 ITNs, at which the total activity, the number and duration of net contacts, were similar at all ITNs for 
both susceptible and resistant strains. There was a steep decay in mosquito activity after approximately 20 min, 
indicative of knockdown or mortality, for the IS strains at OL and P3 ITNs, but only with the highly susceptible 
Kisumu at IG2. A slow decline in activity was measured with OL, P3 and IG2 nets with the IR strains, indicating 
the slower impact of the second insecticide on the IR strains as they are resistant to the fast acting ‘knockdown’ 
effect of the pyrethroid.

In this study we investigated whether a more detailed examination of mosquito flight, using machine learning 
models, could identify basic or inherent behaviours that distinguish IS and IR populations, prior to insecticide 
contact. Explainable AI (XAI) is an emerging field that attempts to interpret machine learning models for 
better transparency and understanding. By uncovering the rationales behind decision-making, XAI can raise 
confidence in AI systems and enhance their real-world adoption. For example, Ryo et al. successfully employed 
XAI to interpret ML species distribution models boosting the usability and interpretability of the ecological 
models for further research17. That study demonstrated the potential for XAI to assist ecologists identify the 
underlying factors, connecting the key features that influence species distribution within an ML model.

Here, we applied XAI techniques to detect fundamental differences between insecticide-susceptible (IS) 
and insecticide-resistant (IR) mosquito strains using trajectory features. This study utilised trajectory data of 
malaria vectors orienting to a human host within an untreated bednet in order to examine behaviours without 
any effect of insecticides, i.e. the innate behaviours and inherent flight characteristics of pyrethroid resistant 
and susceptible strains of primary malaria vector Anopheles gambiae s.l.. This approach provides insights into 
the baseline behavioural and physiological characteristics associated with pyrethroid resistance. These findings 
establish a foundation for understanding how insecticide resistance may shape mosquito behaviour, with 
implications for improving vector control strategies.

Methods
Our approach for classifying the mosquito trajectories consists of several key steps. Mosquito trajectories are 
first split into segments using a sliding window method. These segments can then be used to generate features 
that describe the flight behaviour of the mosquitoes, such as the mean velocity, turning angle, and angular 
acceleration. The features are then provided to a machine learning model which is trained to classify segments as 
IS or IR. The classified segment predictions are combined using a voting method to form whole track predictions. 
The last stages include model evaluation and model interpretation using XAI techniques.

Throughout this work, a mosquito track was considered as a two-dimensional track or trajectory, T, that can 
be described as follows, where xi and yi correspond to the ith position within a Cartesian coordinate system, 
and ti is time:

 T = {(xi, yi, ti) for i = 0, . . . , N} (1)

Dataset description
The dataset used was generated within laboratory experiments at the Liverpool School of Tropical Medicine 
(LSTM), UK. In each experiment, three-to-five-day old unfed adult female mosquitoes from one of insecticide-
susceptible (Kisumu and N’goussu) or insecticide-resistant (VK7 and Banfora) An gambiae strains were tracked 
around an untreated human-baited bednet for 2 h16. The Kisumu strain originated from Kenya in 1975 while the 
N’gousso strain was established in 2006 from Cameroon18. VK7 and Banfora strains originated from Burkina 
Faso, established in 2014 and 2015, respectively. Both resistant strains exhibit high pyrethroid resistance 
due to fixed kdr mutations (L1014F) and metabolic resistance involving elevated P450 expression18. Further 
information about the strains used can be found in18.

To maintain resistance phenotypes in the insecticide-resistant strains, mosquitoes were exposed to 0.05% 
deltamethrin-treated papers every 3–5 generations using the WHO susceptibility bioassay protocol. Resistance 
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profiles were monitored through annual bioassays assessing susceptibility to multiple insecticides, including 
pyrethroids, carbamates, and organophosphates, ensuring the strains retained their resistance traits over time. 
Additionally, molecular genotyping was routinely performed to verify the presence of kdr (L1014F) and metabolic 
markers, including elevated cytochrome P450 expression, confirming stability of resistance mechanisms 18.

All experiments, also known as trials, were conducted between June 2019 and February 2020 using a custom 
built free-flight climate-controlled testing room (7 × 4.8 m in area, 2.5 m high). The experiments were performed 
in the afternoon to coincide with the ‘night’ phase of the mosquito’s circadian rhythm when they would be host-
seeking in the wild. Mosquitoes were tracked using paired identical recording systems, where each recording 
system used one camera (12 MPixel Ximea CB120RG-CM with a 14 mm focal length lens), aligned with a single 
Fresnel lens (1400 × 1050 mm and 3 mm thick, 1.2 m focal length; NTKJ Co., Ltd, Japan) placed approximately 
1210  mm away. Retroreflective screens (2.88  m², coated with high-gain sheeting) were positioned behind 
the bednet to maximise light capture and improve contrast for video tracking19 . The system operated under 
infrared illumination (850 nm wavelength) to enable night-phase tracking without visual disruption, capturing 
trajectories at 50 frames per second (fps). The setup is telecentric and produces 2D data on mosquito flight, the 2 
cameras are necessary to increase the field of view whilst maintaining spatial resolution. Further information on 
the experimental set up is outlined in16 and the extraction of trajectories from video recordings is outlined in19. 
Figure 1 illustrates the experimental setup and example tracking results. Table 1 summarises the dataset used, 
where a strict limit on the track duration is set (above 1 s).

The primary objective of this work is to explore differences between IR and IS mosquito flight behaviour, i.e. 
to consider Banfora and VK7 data together as IR and Kisumu and N’goussu as IS, as this will give more generic 
understanding and a larger dataset for the computational model. The outcomes of the IR vs. IS model are analysed 
using the SHAPs XAI toolset20 discussed in Sect "Evaluation and Interpretation". Further comparisons have 
been explored to investigate strain-specific behavioural variations and ML model performances are reported 
for pairwise comparisons (Kisumu vs. N’goussu; Banfora vs. VK7) as well as a multiclass model considering the 
4 mosquito strains against each other. The multiclass approach provides additional insights into strain-specific 
differences that may not be captured in the binary classification, enabling a more granular analysis of behavioural 
patterns across strains.

Strain Insecticide-resistance status Number of trials Number of tracks Average track duration (s) Average velocity (mm/s)

Kisumu Susceptible 5 7631 22.39
(1.00-698.11)

344.29
(5.20-2290.84)

N’goussu Susceptible 4 6125 21.40
(1.00-1010.03)

453.78
(3.54-2602.18)

Banfora Resistant 4 7189 24.26
(1.00-475.42)

389.57
(0.74-2478.15)

VK7 Resistant 4 5862 17.04
(1.00-457.77)

429.54
(4.10-2102.89)

Table 1. Information on the trajectories of each mosquito strain.

 

Fig. 1. (A) Schematic of the experimental setup, featuring the camera and imaging lens surrounded by an LED 
ring light, a Fresnel lens, and a retroreflective screen for tracking mosquito flight trajectories. This figure is 
adapted from19. (B) Example of tracking results from a Kisumu trial, where each coloured line represents the 
flight path of an individual mosquito, visualising the movement patterns of multiple mosquitoes during the 
first 15 min of the trial.
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Data processing
The dataset contains trajectories of varying durations, which can have an impact on the features generated and, 
in turn, affect the classification by the machine learning models. This variation in duration arises due to natural 
mosquito behaviour and the recording process. Small obstructions in the camera view, the mosquitoes sitting 
or walking on the bednet, as well as mosquitoes leaving the camera view, can break tracks into various lengths. 
Therefore, the trajectories in the dataset may only represent a portion of any mosquito’s flight path, and the 
reason there are different durations for each trajectory. To address this issue, trajectories were split into fixed 
duration segments using a moving window approach to unify track duration and eliminate duration bias for the 
machine learning model21.

The window size and overlap between consecutive segments becomes a hyperparameter of the pipeline. 
Longer segments provide more information per segment but makes the model larger and increases the risk of 
overfitting. Larger overlap creates more segments per track improving per trajectory prediction but generates 
a lot of very similar segments again causing a risk of the model overfitting. To obtain a suitable window size 
and overlap, these parameters were optimised as described in Sect. "Hyperparameter tuning". The windowing 
approach ensures that each segment had the same duration, and thus the same amount of information, whilst 
excluding the length of the track as a feature (directly and indirectly) and removing the possibility for data leak. 
As a result of this process, only trajectories that have a length greater than or equal to the optimised segment 
length are preserved to train the ML model.

As a result of the recording process, some positions within the mosquito tracks are missed. This can be due to 
mosquitoes flying in areas that were entirely obscured or encountering regions with poor contrast. To maintain 
the continuity of the tracks, linear interpolation was applied to fill in the gaps22. However, in some instances, the 
tracks exhibited substantial gaps introducing bias into the data. Across all tracks, there was a median gap size of 
0.02 s which is expected for a 50 fps camera system. However, there was a mean gap size of 0.07 s with a standard 
deviation of 0.16 s. To address this issue and minimise its impact, we introduced a segment quality metric. It 
evaluated a track segment based on its information content, assigning higher scores to segments with more 
consecutively interpolated positions, as they contribute relatively little information. To establish a threshold for 
the metric, the mutual information of the tracks with the target variable (IR/IS status) at various thresholds of 
the segment quality metric was computed, where segments below this threshold were used, and the weighted 
average of the maximum thresholds that obtained the maximum mutual information for each trajectory feature 
was used as the final threshold. Track segments with segment quality scores larger than this threshold were 
removed. Various segment quality scores and thresholding techniques were assessed and are outlined in the 
supplementary information.

Feature extraction
The extraction of meaningful features from the mosquito track segments is an essential step in the analysis of 
their flight patterns. The features can be broadly categorised into two types: shape descriptors and kinematic 
features. Shape descriptors capture the geometric characteristics of the tracks, such as the curvature of the path. 
On the other hand, kinematic features are based on time-dependent characteristics describing the movement 
dynamics, such as the speed, acceleration, and turning angle of the mosquito. After extraction of these 
characteristics, statistics (mean, standard deviation etc.) are computed for each feature over each segment and 
used as features for the model. As mentioned in the previous section, some of the positions within the tracks are 
interpolated so contain artificially generated positions. Feature statistics are calculated at positions containing 
real (not interpolated) data within a segment. The calculations for the features of flight are detailed in21 for 3D 
trajectories and23 for 2D trajectories and they are also provided in the supplementary.

Dataset partitioning
The dataset was partitioned into two subsets: a tuning set and a modelling set. The tuning set was designated 
for feature selection and hyperparameters tuning. It comprises 2 trials for each strain, resulting in a total of 8 
trials. Meanwhile, the modelling set, with a total of 9 trials, is dedicated to machine learning model training 
and evaluation. Splitting the dataset by trials prevents data leakage and simulates a real-world scenario where 
an entire trial is tested. This division allows for robust model development and comprehensive evaluation of the 
machine learning models through cross-validation as well as elimination of data leaks.

Feature selection
Having extracted meaningful features from trajectory segments (see Sect.  "Feature extraction" for feature 
extraction), the Mann-Whitney U-test, a non-parametric statistical test, was employed to select relevant features 
using SciPy24. To mitigate against group testing p-value inflation, a family-wise error rate (FWER) controlling 
procedure utilising Bonferroni correction was used. Features that demonstrated statistically significant 
differences between groups with rejection of the null hypothesis at an FWER < 0.05 were selected. Additionally, a 
Spearman correlation matrix was computed to identify collinearity between features. Pairs of features with high 
correlation ( ρ > 0.85) were flagged, and one feature from each pair was removed to minimise redundancy, 
prevent multicollinearity, and enhance model stability and generalisability.

Classification model
The primary objective of this study was to accurately differentiate between insecticide-susceptible and 
insecticide-resistant mosquito species using an ML classifier. To achieve this, logistic regression, random forest, 
and XGBoost classification25,26 models were evaluated. In order to generate whole track predictions, every track 
segment was classified independently and the mode of the segment binary predictions for each track used as the 
prediction for the complete track.
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Prior to training the model, several processing steps were taken. Each feature was standardised through 
Z-score normalisation where the mean and standard deviation values were calculated from the training set. Then 
to balance the distribution of segments in each class, the training set was oversampled using SMOTE (Synthetic 
Minority Oversampling Technique)27. These steps mitigate the models fitting to the imbalance of the dataset or 
to prioritise some features due to difference in the magnitude of their values.

Evaluation and interpretation
The performance of the proposed framework was evaluated on the modelling dataset using a cross-validation 
approach. The dataset split in each iteration of this process is known as a fold, with each fold consisting of a 
different combination of two insecticide-resistant (IR - one from each IR strain) and two insecticide-susceptible 
(IS - one from each IS strain) trials in the training set, with the remainder of the trials used for model testing. 
This approach is necessary to maintain consistency in training across different strains while ensuring robustness 
in performance evaluation. Although the number of track segments may differ between folds, the ratio of IR to 
IS segments is balanced using SMOTE to prevent bias and improve generalisability. Overall, there were 24 folds. 
When evaluating the performance of the training set, it should be noted that only those segments that were not 
generated via the oversampling technique (i.e., segments that constitute a genuine track) in the training set were 
used to derive the scores for the final track prediction.

Various performance metrics are calculated using Scikit-learn25 including accuracy, balanced accuracy, ROC 
AUC (area under the receiver operator characteristic curve) score, PR AUC (area under the precision-recall 
curve) score, F1 score, precision score, recall score, Matthew Correlation Coefficient (MCC), Cohen kappa 
coefficient and log-loss score. The performance metrics are calculated on the whole track predictions where the 
arithmetic mean, and the minimum and maximum of performances across all folds is provided.

Balanced accuracy provides an average of recall across classes, making it particularly useful for imbalanced 
datasets, with values ranging from 0 to 1 where higher values indicate better performance. The F1 score balances 
precision and recall, providing a single metric that is particularly useful when false positives and false negatives 
carry similar costs. It ranges from 0 to 1, with higher values indicating better performance, especially in scenarios 
with class imbalances. The ROC AUC score measures a model’s ability to distinguish between classes, with a score 
of 0.5 representing random guessing and values closer to 1 indicating strong discriminatory power. ROC curves 
illustrate the trade-off between sensitivity (true positive rate) and specificity (1 - false positive rate), where curves 
closer to the top-left corner represent better model performance. Together, these metrics offer comprehensive 
insights into a model’s ability to classify data accurately and handle class imbalances. Further information on 
each performance metric, alongside their equations, is detailed in the supplementary. To determine whether 
the model’s balanced accuracy was significantly greater than chance (0.5 for binary classification or 0.25 for 
multiclass classification), a Wilcoxon signed-rank test was performed on the per-fold differences. To control the 
FWER across multiple models, a Bonferroni correction was applied by multiplying each p-value by the number 
of models tested.

Confusion matrices were also used to highlight model performance by displaying the normalised (by true 
class) percentages of true and false predictions for IR vs. IS classifications. High diagonal values indicate accurate 
predictions, while off-diagonal values represent misclassifications. Under random chance, predictions are equally 
distributed across classes, so each row would show 50% in each cell. This normalisation simplifies the assessment 
of model performance within each class and highlights patterns in misclassification.

Shapley Additive ExPlanations (SHAP)20 values are a powerful tool for interpreting machine learning models 
by quantifying how much each feature contributes to a prediction. SHAP values explain whether a feature pushes 
the model’s output higher (toward classifying a mosquito as IR) or lower (toward classifying it as IS) compared 
to the baseline prediction. In the context of studying insecticide resistance in mosquitoes, SHAP values were 
calculated for track segments to reveal behavioural differences between IR and IS strains. Positive SHAP values 
indicate that a feature contributes toward a prediction of IR, while negative SHAP values suggest that the feature 
pushes the prediction toward IS.

SHAP provides various visualisations to aid interpretation. SHAP summary plots provide an overview of 
feature importance and direction of influence, showing which features most strongly differentiate the two classes. 
SHAP bar plots rank features by their average absolute impact, highlighting the most influential predictors across 
the dataset. SHAP scatter plots further explore individual feature effects, displaying relationships between feature 
values and their contributions to predictions, which can uncover non-linear patterns or interactions. Together, 
these visualisations provide a detailed and interpretable analysis of the features driving model decisions, helping 
to characterise behavioural patterns associated the classes.

Hyperparameter tuning
Hyperparameter tuning was employed to identify the best parameters for the model while minimising the risk 
of overfitting. Each machine learning model has various parameters that require tuning, as well as the window 
size and overlap length used to split tracks to segments. The parameters were tuned together in a cross-validated 
grid search approach attempting to maximise balanced accuracy. Tuning was conducted using two trials from 
each strain resulting in four IR trials and four IS trials. Each fold in the cross-validated grid search included 1 
of each strain in the training set with the remainder in the test set. This ensures that the selected parameters 
are optimised based on an unseen dataset over a 5-fold cross validation technique. A full description of the 
parameter ranges and step sizes, as well as the full set of optimised hyperparameters identified for each model 
can be found in the supplementary.
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Results
Data processing
Trajectories were split into segments to mitigate the impact of duration imbalance between tracks. Through 
hyperparameter tuning, various window sizes and overlap lengths for the windowing technique were tested. Each 
model performed best with different window parameters. Table 2 displays the window parameters selected after 
tuning and the effect they have on the number of tracks (tracks shorter than the segment length are discarded) 
and segments within the dataset partitioned for modelling. Note that the numbers of tracks and segments were 
after segment quality filtering.

Model evaluation – classification of insecticide resistance status
The performance of the classification of insecticide resistance status, IR or IS, is provided in Table  3. The 
arithmetic mean and the range (minimum and maximum) of scores across all folds are provided in brackets. 
Wilcoxon signed-rank test comparing each model’s per-fold balanced accuracy to 0.5 indicated that all three 
models were statistically significant ( p = 7.15 × 10−7). The confusion matrix for each model is displayed 
in Fig. 2 which shows the percentage of the predictions over all folds, and the ROC curves are depicted in Fig. 3 
featuring each folds’ curve.

The SHAP plots for the best performing fold for the XGBoost model applied to independent test data are 
provided below. This includes SHAP summary plot, Fig. 4, and SHAP bar plot, Fig. 5.

Velocity in the vertical direction is one of the strongest contributors to the model. There are 5 vertical-
velocity features, ranked 1, 2, 6, 11 and 27 in the SHAPs bar plot. These are the 3rd quartile (identifying 75% 
of the population have lower values), 1st quartile (25% of the population), standard deviation, kurtosis and 
skewness respectively of the vertical-velocity distributions within a track segment. Figure 6 displays the SHAP 
scatter plots for these vertical velocity features. A histogram comparison of vertical velocities for all IR and IS 
tracks, Fig. 7, reveals distinct distributions that are consistent with the SHAP scatter plots.

Fractal dimension is another strong contributor in the separation between IR and IS, ranked 3rd in the SHAP 
bar plots. This feature is a measure of the linearity or complexity of the trajectory. Figure 8 shows the probability 
density histogram of fractal dimension for trajectory segments with the XGBoost segment length (8 s) for each 
strain separately.

Model evaluation – exploring mosquito strains
In addition to the analysis above, further target classifications were explored to assess the differences between 
the mosquito strains. Namely, whether in-class mosquito strains were separable and how different each strain 
was from one another.

Performance metric Logistic regression Random forests XGBoost

Balanced accuracy 0.723 (0.682–0.759) 0.721 (0.680–0.772) 0.743 (0.688–0.786)

ROC AUC score 0.788 (0.734–0.831) 0.806 (0.760–0.859) 0.813 (0.757–0.866)

F1 score (IR) 0.686 (0.642–0.739) 0.687 (0.638–0.747) 0.702 (0.646–0.757)

F1 score (IS) 0.746 (0.675–0.797) 0.730 (0.658–0.776) 0.765 (0.725–0.802)

Recall (IR) 0.725 (0.631–0.798) 0.758 (0.657–0.888) 0.739 (0.628–0.883)

Recall (IS) 0.720 (0.591–0.779) 0.684 (0.543–0.780) 0.746 (0.626–0.852)

Precision (IR) 0.656 (0.540–0.750) 0.637 (0.522–0.746) 0.682 (0.574–0.801)

Precision (IS) 0.780 (0.706–0.869) 0.792 (0.698–0.914) 0.794 (0.694–0.918)

PR AUC (IR) 0.714 (0.621–0.788) 0.750 (0.693–0.800) 0.735 (0.681–0.793)

PR AUC (IS) 0.812 (0.747–0.883) 0.841 (0.779–0.919) 0.840 (0.777–0.917)

Cohen Kappa coefficient 0.435 (0.351–0.508) 0.425 (0.327–0.528) 0.472 (0.373–0.556)

Matthew correlation coefficient 0.440 (0.361–0.509) 0.436 (0.356–0.538) 0.480 (0.374–0.556)

Log loss 0.567 (0.523–0.635) 0.565 (0.539–0.605) 0.552 (0.497–0.594)

Table 3. Performance of each machine learning model applied to independent test data for IR (Banfora & 
VK7) vs. IS (Kisumu & N’goussu), with the arithmetic mean and the range provided across all folds.

 

Classification task and model Window size (s) Window overlap (s) Final number of tracks Number of segments

IR vs. IS, XGBoost 8 7.5 10,514 695,509

IR vs. IS, Random Forests 7.5 6.5 10,943 357,120

IR vs. IS, Logistic Regression 9.5 9 9,589 664,369

IS vs. IS, Kisumu vs. N’goussu, XGBoost 1.5 0.5 11,402 192,150

IR vs. IR, Banfora vs. VK7, XGBoost 6 5.5 6,017 352,761

Multiclass, XGBoost 6 5.5 11,887 683,967

Table 2. Windowing parameters for each model alongside the final number of tracks and segments.
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Classifying between insecticide susceptible (IS) strains
The differences within the insecticide susceptible class were explored, where a binary classification was attempted 
between the IS strains, Kisumu and N’goussu, using the XGBoost classifier. Table 4 displays the performance 
of this task. The Wilcoxon signed-rank test indicated that the balanced accuracy observed across folds does 
not deviate significantly from random performance (0.5), achieving a p-value of 0.19. The confusion matrix is 
displayed in Fig. 9 (A) which displays the percentage of the predictions over all folds. Additionally, the ROC 
curve is depicted in Fig. 9 (B) featuring each folds’ curve.

Classifying between insecticide resistant (IR) strains
Differences within the IR class were also explored using binary classifiers, involving the Banfora and VK7 strains. 
Table 5 displays the performance of this task. The Wilcoxon signed-rank test revealed that the balanced accuracy 
across folds wasn’t statistically significantly higher than chance level (0.5), with a p-value of 0.75. The confusion 
matrix is displayed in Fig. 10 (A) which shows the percentage of the predictions over all folds. Additionally, the 
ROC curve is in Fig. 10 (B) featuring each folds’ curve.

Classifying between each strain
To assess the differences between each strain, we used a multiclass classification approach. The proposed pipeline 
remained mostly unchanged, however in this case the Mann Whitney U-test was performed pairwise for all 
strains and the multiclass XGBoost model was used. The results of the model are displayed in Table  6. The 
performance of each individual strain is also provided in Table 7, by calculating the model accuracy for each 

Fig. 3. ROC Curves from independent test data for each IR vs. IS model, where (A) displays the logistic 
regression model, (B) is the random forests model and (C) is the XGBoost model. The ROC curve plots the 
true positive rate (sensitivity) against the false positive rate (1 − specificity) at different thresholds; curves closer 
to the top-left indicate stronger performance. Each line represents a single fold’s ROC curve.

 

Fig. 2. Confusion matrices from independent test data displaying the percentages of the predictions over all 
folds for IR vs. IS. In the figure, (A) displays the logistic regression model, (B) is the random forests model and 
(C) is the XGBoost model. The matrices compare predicted classes (columns) with true classes (rows); diagonal 
cells represent correct classifications, while off-diagonal cells indicate misclassifications.
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Fig. 4. SHAP summary plot for the best IR vs. IS XGBoost model fold applied to independent test data, 
displaying the feature contributions to model predictions. Features are ranked by their mean absolute SHAP, 
indicating their overall importance. Each dot represents a track segment with position on the x-axis showing 
the SHAP value (contribution) and its colour representing the feature value (low to high). Positive SHAP 
values push the predictions towards the IR class, while negative SHAP values push the predictions towards 
the IS class. Wider spreads indicate greater variability in feature influence across segments. This visualisation 
highlights both the magnitude and direction of feature effects, helping to interpret behavioural differences 
between strains.
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Fig. 5. SHAP bar plot for the best IR vs. IS XGBoost model fold applied to independent test data, showing the 
mean absolute SHAP values for each feature. Features are ranked by their average contribution to the model’s 
predictions, with higher values indicating greater importance.
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strain at each fold. The Wilcoxon signed-rank test demonstrated that the balanced accuracy across folds was 
significantly higher than the random-chance baseline (0.25), with a p-value of 7.15 × 10−7. The confusion 
matrix is displayed in Fig. 11 which displays the sum of the predictions over all folds.

Discussion
ML models have been successful in classifying different mosquito strains based on innate flight trajectory 
features. The classification outcomes for the IR vs. IS model with 2 mosquito strains in each class show the 
strongest performance using the non-linear XGBoost classifier with balanced accuracy and ROC AUC of 0.743 
and 0.813 respectively. The model’s performance is consistent across all folds of the cross-validation process, 
see Fig. 3. Importantly, this classification was achieved without relying on data reflecting mosquito responses 
to insecticides. Instead, it leveraged inherent differences in baseline behaviours between the classes. Responses 
of the same four IS and IR strains were investigated previously as they fed through ITNs and untreated (UT) 
nets, which showed that the blood volume flow rate of the susceptible strain increased by 35% in presence of 
insecticide, but the resistant strain was already at the higher rate for both UT and ITNs28. These prior findings 
align with the results presented here, reinforcing that IR strains exhibit distinct behavioural patterns even in the 
absence of insecticide stimuli.

Whilst exploring the differences between IR and IS mosquito classes, the differences within the classes 
was examined. Within the susceptible class, the classifier identified notable differences between the Kisumu 
and N’goussu strains with an average balanced accuracy of 0.655 and a ROC AUC score of 0.726. Similarly, 
the classifier identified differences between the resistant strains, VK7 and Banfora, with an average balanced 
accuracy and ROC AUC score of 0.662 and 0.717, respectively. This illustrates that even though these strains 
are similar in their insecticide resistance, there are still identifiable differences between them. Yet, despite 
the differences within the classes, they still share common characteristics that enable the separation between 
IR and IS classes. A multiclass approach was also explored to identify distinctiveness of all four strains. The 
performance of this approach was slightly better than chance (score of 0.25) with an average balanced accuracy 
of 0.496. This may indicate that while some behavioural differences exist, there are common behaviours across 

Fig. 6. SHAP scatter plots illustrating the influence of vertical velocity features on model predictions for IR 
vs. IS classification. Each plot shows the SHAP values (y-axis) against the feature values (x-axis), revealing the 
relationship between feature magnitude and its contribution to predictions. Positive SHAP values indicate 
a push toward the IR class, while negative values push toward the IS class. (A) is the 3rd quartile of vertical 
velocity, (B) is the 1st quartile of vertical velocity, (C) is the standard deviation of vertical velocity, (D) is the 
kurtosis of vertical velocity, and (E) is the skewness of vertical velocity.
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some or all mosquito strains. Nevertheless, an interesting feature of the multiclass results was the stronger 
separability of the Kisumu strain as well as the poor separability of VK7 (recall that features are evaluated over 
fixed duration segments and do not include activity levels). It is conjectured that the lower activity of VK7 may 
lead to its behaviour in short trajectory segments being encompassed by the other strains. Additionally, it was 
observed that predictions for the N’goussu strain were closely split between Kisumu and N’goussu, suggesting 
potential behavioural similarities or overlaps between these two strains. This aligns with the earlier results 
where differences within the susceptible and resistant classes were noted, reinforcing that despite shared class 
characteristics, individual strains exhibit distinct behaviours. In comparison, the stronger separability within the 
IR and IS classes may reflect genetic differences between the two IS strains and two IR strains. The susceptible 
strains are from different sides of the African continent (Kisumu originates from Kenya whereas N’gousso is 
from Cameroon) and were colonised more than 30 years apart. The two IR strains are both from southwest 
Burkina Faso, were both colonised in 2015 and both show similar phenotypic levels of pyrethroid resistance13. 
However, the pyrethroid resistance in VK7 (2014) is largely conferred by target site resistance and elevated 
cytochrome P450 activity and whilst the Banfora strain has both of these resistance mechanisms there is also 
an indication that increased rates of respiration, and potentially changes in the microbiome also contribute to 
the resistance phenotype29. The strongest performance is from the IR vs. IS model utilising information from 
2 genetically distinct IS and IR strains suggesting that there are common behavioural traits that evolve with IR 
strains that may associate with fitness benefits as described above.

The SHAPs analysis of the XGBoost IR vs. IS model has identified the features which most strongly 
differentiate IR and IS behaviours. Interestingly, Fig. 5 shows that there are non-negligible contributions for 
the vast majority of the features in the model – indicating that all features play a minor role in classification. IR 
behaviours are characterised by moving more slowly in the vertical direction than IS and hence expending less 
energy in flight. This slower vertical movement might allow IR mosquitoes to modulate their trajectories more 
effectively in response to environmental cues, although this hypothesis was not explicitly tested here. This also 
implies that on average an IR mosquito has lower momentum than IS and can change direction more quickly. 
However, it is important to note that the differences observed between IR and IS are relatively subtle and do not 

Fig. 7. Histogram of vertical velocities for IR and IS mosquito trajectories. The velocity range is restricted 
within the range − 300 mm/s to 300 mm/s to exclude outliers and extreme values. The plot uses logarithmic 
scaling for frequency.
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necessarily imply that IR mosquitoes are easier to predict or more vulnerable to attack. Instead, their slower 
speeds may simply reflect an alternative host-seeking strategy. For example, if the mosquito identifies blood meal 
cues such as CO2 or heat, IR behaviours indicate that it is flying more slowly and hence can adjust its trajectory 
more easily to follow those cues. The skewness of the distributions indicate that IR tend to fly down (negative 
velocities) more slowly than flying up in comparison to IS. In other words, IR fly more slowly when host seeking 
downwards, which may give more opportunity to detect and follow bloodmeal cues. Previous work identified 
that mosquitoes can detect a surface when some 30 to 45 mm away due to the induced velocity and pressure 
changes around the mosquito30 observations that are consistent with experimental findings around a human 
baited bednet15. This mechanism would lead to a reduction in velocity when flying downwards for all mosquitoes, 
however, the model here is comparing IR to IS strains. Hence, these results imply either an active response by the 
mosquito to the signals received when descending towards a surface or a more global behavioural shift or both. 
The skewed vertical velocity distribution also implies that IR fly upwards (positive velocity) quicker. In making 
these interpretations it is important to note that in these experiments the mosquitoes have not blood fed – hence 

Model Balanced accuracy ROC AUC score

XGBoost 0.655 (0.616–0.691) 0.726 (0.688–0.768)

Table 4. Performance of the XGBoost model applied to independent test data when classifying between the IS 
mosquito strains (Kisumu and N’goussu), with the average and the range provided across all folds.

 

Fig. 8. Probability density histogram of fractal dimension of trajectory segments, based on the XGBoost 
segment length (8 s), with each strain highlighted separately. The IR strains (Banfora in blue and VK7 in red) 
demonstrate lower fractal dimension values than the IS strains (Kisumu in orange and N’goussu in green). 
Interestingly, despite containing different strains, the inter-resistance classes show similarities in fractal 
dimension values. IR strains show more directed flight in comparison to IS.
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Fig. 10. (A) Confusion matrix displaying the percentages of the predictions over all folds for the IR mosquito 
strains (Banfora vs. VK7). (B) Figure displaying each folds’ ROC curve for the Banfora vs. VK7 mosquito 
strains. Both graphs show results from independent test data.

 

Model Balanced accuracy ROC AUC score

XGBoost 0.662 (0.606–0.725) 0.717 (0.633–0.809)

Table 5. Performance of the XGBoost model applied to independent test data when classifying between the IR 
mosquito strains (Banfora and VK7), with the average and the range provided across all folds.

 

Fig. 9. (A) Confusion matrix displaying the percentages of the predictions over all folds for the IS mosquito 
strains (Kisumu vs. N’goussu). (B) Figure displaying each folds’ ROC curve for the Kisumu vs. N’goussu 
mosquito strains. Both graphs show results from independent test data.
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these are innate host seeking characteristics not influenced by taking on a blood meal and the considerable 
increase in mass that involves.

Horizontal-velocity features are largely similar to those for the vertical-velocity component in the standard 
deviation (ranked 9), 1st quartile (ranked 15) and 3rd quartile (ranked 26). IR behaviours have a narrower 

Fig. 11. Confusion matrix displaying the performance of the multiclass classifier applied to independent test 
data. The colour and the value of each square represents the percentages of the predictions over all folds.

 

Mosquito strain Accuracy

Kisumu 0.635 (0.515–0.845)

Banfora 0.607 (0.422–0.813)

N’goussu 0.368 (0.264–0.471)

VK7 0.354 (0.240–0.460)

Table 7. Multiclass model accuracy one-vs-all of each strain applied to independent test data with the average 
accuracy and the range across all folds provided in brackets.

 

Model Balanced accuracy (training) Balanced accuracy (testing)

XGBoost 0.928 (0.906–0.952) 0.496 (0.454–0.553)

Table 6. Performance metrics for the multiclass classification model applied to independent test data with the 
average and the range (minimum and maximum) performance across all folds.
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distribution of horizontal-velocities – implying that IR mosquitoes spend more time at slower speed than IS. 
The number of zero values and zero crossings (ranked 5) and number of local minima (ranked 8) introduce a 
further perspective. The number of zero crossings feature is more difficult to interpret as it includes the number 
of zero values of the horizontal-velocity within an 8 second segment. IR behaviours are associated through the 
model with low numbers of zero crossings or zero values, however, they have higher numbers of local minima 
than IS. This suggests that IR tracks are more consistent in direction compared to IS tracks. However, the higher 
number of local minima indicates a ‘jerky’ motion, characterised by frequent speeding up and slowing down. 
In the context of mosquito behaviour, a low amplitude ‘dither’ could enable the mosquito to sample CO2 and 
thermal fields and maintain directed flight towards the highest concentration of these cues and hence a potential 
bloodmeal – see supplementary. While studies have demonstrated that mosquitoes utilise CO2 and thermal 
cues for host-seeking31, the specific role of ‘dither’ motion in facilitating this process has not been explicitly 
investigated. This presents an intriguing avenue for future research to explore how such flight patterns influence 
mosquito behaviour.

These differences in velocity features may be dependent on structure and performance of musculature, as well 
as a myriad of other parameters that may be optimal for these features in IS but not in IR. This could mean that 
there is a cost to being resistant, which leads to slower speeds and the inability to compete. There is evidence32–34 
which supports the notion that the mechanisms underpinning resistance may require additional energy, leading 
to a resource-based trade-off. This trade-off could explain the lower speeds and reduced variability in velocity 
features as observed in the SHAP analysis, Fig. 6. These findings are further supported by raw trajectory data as 
shown in the histogram of positional velocity features, Fig. 7. This lower variability in flight characteristics of IR 
strains could also be explained by the genetic bottleneck caused when selecting for resistance (e.g., fast blood-
feeding). The resistant population may therefore be more genetically uniform showing less variation in features, 
e.g. vertical and horizontal velocity standard deviations, in comparison to IS mosquitoes. In the presence of 
ITNs, these characteristics become advantageous as they are selected for survival. However, in the absence of 
insecticide, these characteristics of IR could become a burden and hence would be lost.

Fractal dimension, ranked third in the model, measures the linearity or complexity of a trajectory. Values 
closer to 1 indicate more direct paths, while values approaching 2 signify complex paths with increased activity. 
SHAP analysis shows that IR has lower values than IS, approximately 1.04 for IR and 1.15 for IS. This trend 
aligns with many other features, consistently showing that IR tracks are more linear and direct compared to IS 
tracks. This potentially indicates that IR trajectories are more efficient or goal-oriented whilst IS tracks reflect 
more exploratory or less directed behaviour. Notably, the higher fractal dimensions in IS mosquitoes could 
also indicate a greater degree of baseline unpredictability or protean behaviour. This unpredictability might 
act as a defensive mechanism, making IS mosquitoes more difficult to attack successfully, as suggested by35, 
who demonstrated that mosquitoes employ unpredictable escape maneuvers to evade threats . Figure 8 further 
illustrates that both IR strains, VK7 and Banfora, have distributions with similar lower values than the two IS 
strains, Kisumu and N’goussu. However, linearity does not imply smoothness, as IR trajectories can be both 
linear in their overall direction and oscillatory in their local patterns, reflecting fine-scale adjustments during 
flight.

Several features describe the shape of a trajectory. The centroid distance function (CDF) quantifies the 
deviations from the centroid, with a larger mean CDF indicating a wider or more variable track. SHAP analysis 
reveals that IR mosquitoes have a higher mean CDF (ranked 10), covering a larger area than IS, consistent with a 
larger convex hull (the 2D envelope of all positions in a segment) for IR. IR also has more local minima in CDF 
(ranked 22), suggesting less smooth and more oscillatory trajectories which may indicate bouncing behaviours. 
IS tends to stay closer to the centroid with fewer oscillations. The mean change in flight angle (ranked 13) is 
higher for IR, consistent with wider directional changes, while the 1st quartile (ranked 16) indicates a broader 
range for IR. IR has more zero-crossings in angle change (ranked 7), suggesting more consistent directional 
patterns supported by a higher number of local minima in CDF and higher tortuosity (ranked 37).

The analysis of angular velocity reveals that IR mosquitoes have a lower median angular velocity (ranked 
23), suggesting smoother movements, but a higher mean angular velocity (ranked 25), indicating occasional 
sharp turns. This discrepancy suggests that while IR trajectories are generally smooth, they can still make sharp 
turns, likely due to their lower overall speed, which enhances manoeuvrability compared to IS. Curvature Scale 
Space (CSS) shows higher median CSS values for IS trajectories, implying sharper turns with smaller radii, 
consistent with IS exhibiting more complex, curved trajectories. In contrast, IR tracks are more direct with fewer 
pronounced turns, though occasional sharp turns may still occur.

In terms of accelerations, the vertical-axis component features generally support the discussion regarding 
preferential IR behaviours in vertical-velocity. The vertical-acceleration median (ranked 19) shows IR behaviours 
with an upwards bias whereas IS is zero to slightly downwards. Furthermore, the 3rd quartile of the vertical-
acceleration distribution (ranked 21) is at higher positive values for IR than IS - supporting the ability of IR 
mosquitoes to generate stronger upward accelerations for escape. The significant horizontal-axis acceleration 
features are the 3rd quartile (ranked 20) which shows IS having larger values than IR and standard deviation 
(ranked 32) which shows IS having a broader distribution of values than IR. The horizontal-axis features are less 
clearly associated with fitness characteristics, and it is notable that these features are further down the ranking 
than for the vertical-axis and hence have lower influence on classification.

IR vs. IS models were also determined using logistic regression and random forest classifiers, whilst the 
XGBoost classifier gave the best performance with an average balanced accuracy of 0.743 and ROC AUC of 
0.813. The worst performing classifier was logistic regression with an average balanced accuracy of 0.723 and a 
ROC AUC score of 0.788. This difference demonstrates that there are complex non-linear relationships across 
features when attempting to separate the classes. However, the performance of even the simpler linear models 
suggests that certain features exhibit linear separability. All models displayed stable results across folds with the 
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range of performance metrics being consistently good (see Fig. 3 (B) and (C) for the ROC curves which exhibit 
the expected slight variation between folds). This highlights that there are no abnormal trials in the dataset; the 
experiments were conducted in environmentally controlled laboratories minimising the variability of external 
effects. The small variation across folds also demonstrates the reliability and potentially high generalisation 
capability of this pipeline for classification tasks of trajectories. The balanced accuracy of 0.743 is particularly 
impressive given the biological complexity and variability inherent in mosquito behaviour, suggesting the model 
effectively captures meaningful and subtle differences between IR and IS strains.

There are some limitations to this study that should be addressed. One such limitation is that the behavioural 
differences identified may not be applicable to all IR and IS strains as only 4 mosquito strains were considered. 
Nevertheless, the classification task over all 4 strains revealed a large in-class diversity, and there were much 
stronger differences between IR and IS that were captured. Further analysis of the SHAP data could be conducted 
to examine consistency in trends across the folds. Future work should explore behaviours when exposed to a 
variety of ITN insecticides and more genetically distinct IR and IS mosquitoes.

In summary, this paper demonstrates the ability of data-driven machine learning classifiers to distinguish 
behaviours of pairs of IR and IS mosquito strains. SHAPs analysis identified that IR mosquitoes exhibit more 
directed flight together with a low amplitude ‘dither’ enabling the mosquito to sample the concentration of 
attractants and maintain flight towards the highest concentration of these cues and hence a potential bloodmeal. 
IR strains also fly slower on average vertically and horizontally – meaning they have less inertia and can change 
direction more easily in response to cues or threats. This approach could potentially be used to assess mosquito 
susceptibility status, providing a complementary tool for insecticide resistance monitoring.

Data availability
The data presented in this study are available on request from LSTM. Please contact Professor Philip McCall 
(Philip.McCall@lstmed.ac.uk) for access. The code used in this paper has been deposited and made publicly 
available on the authors’ GitHub repository: https://github.com/yasserqureshi1/ir-vs-is.
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