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Abstract 39 

There is wide recognition of the threats posed by the open dumping of waste in the environment. 40 

However, tools to surveil interventions for reducing this practice are poorly developed. This study 41 

explores the use of drone imagery for environmental surveillance. Drone images of waste piles 42 

were captured in a densely populated residential neighborhood in the Republic of Malawi. 43 

Images were processed using the Structure for Motion (SfM) technique and partitioned into 44 

segments using Orfeo Toolbox mounted in QGIS software. A total of 509 segments were manually 45 

labeled to generate data for training and testing a series of classification models. Four supervised 46 

classification algorithms (Random Forest, Artificial Neural Network, Naïve Bayes, and Support 47 

Vector Machine) were trained, and their performances were assessed regarding precision, recall, 48 

and F-1 score.  49 

Ground surveys were also conducted to map waste piles using a Global Positioning System (GPS) 50 

receiver and determine the physical composition of materials on the waste pile surface. 51 

Differences were observed between the field survey done by community-led physical mapping 52 

of waste piles and drone mapping. Drone mapping identified more waste piles than field surveys, 53 

and the spatial extent of waste piles was computed for each waste pile. The binary Support 54 

Vector Machine model predictions were the highest performing, with a precision of 0.98, recall 55 

of 0.99, and F1-score of 0.98. Drone mapping enabled the identification of waste piles in areas 56 

that cannot be accessed during ground surveys and further allowed the quantification of the total 57 

land surface area covered by waste piles. Drone imagery-based surveillance of waste piles thus 58 

has the potential to guide environmental waste policy, offer solutions for permanent monitoring, 59 

and evaluate waste reduction interventions.  60 

 61 

Keywords: Waste Pile mapping; Object-Based Image Analysis; Orfeo Toolbox; Environmental 62 

monitoring, low-income countries, waste management 63 

 64 

  65 
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1. Introduction 66 

 67 

Open dumping of waste poses a major global sustainability challenge, and 68 

eliminating the practice is a target on the global agenda for sustainable development 69 

(United Nations 2015) . Communities lacking systems for waste collection and disposal 70 

resort to uncontrolled dumping as the typical practice. It is estimated that three billion 71 

people worldwide lack access to controlled waste disposal facilities (Wilson et al. 2015), 72 

which presents serious consequences for natural ecosystems, human health, and 73 

economies. In Sub Saharan Africa, for example, over 70 % of the waste that is generated 74 

is openly disposed of in the environment (Ayeleru et al. 2020). On land, such disposed 75 

waste materials are generally transported by rainwater to rivers, lakes, and oceans, 76 

where they accumulate and harm natural ecosystems (Ostle et al. 2019; Zhu 2021), 77 

specifically by causing death and physical damage to aquatic fauna through 78 

entanglement and ingestion (Gall and Thompson 2015). Waste materials dumped in the 79 

environment can potentially present serious consequences for public health. Emerging 80 

studies indicate that waste materials such as plastics provide novel microhabitats for 81 

human pathogens (Gkoutselis et al. 2021; Rodrigues et al. 2019), and in 2022, a study 82 

showed for the first time the presence of microplastics in human blood (Leslie et al. 83 

2022).  84 

 85 

To curb the open dumping of waste into the environment, several solutions have 86 

been suggested, including the development and strict enforcement of legislation 87 

promoting household waste separation and collection, the development of adequate 88 

disposal facilities, and the implementation of waste recovery initiatives using a circular 89 

economy approach (Shi et al. 2021). Some countries have implemented a strict ban on 90 

the production and use of certain products such as plastics (Nyathi and Togo 2020; Xie 91 

and Martin 2022), discouraging the use of single-use carrier bags, promoting waste 92 

clean-up campaigns, and introducing community waste recycling programs (Dlamini and 93 

Simatele 2016). Assessing and monitoring the effectiveness of implementing these 94 

public health and environmental initiatives is essential to reducing or eliminating 95 

uncontrolled waste dumping.  96 

 97 

Surveillance plays a crucial approach in quantifying the problems associated with 98 

waste in the environment, thereby allowing policymakers to contextualize them. 99 

Mapping existing waste disposal sites is one approach to understanding where waste is 100 

dumped and assessing the effectiveness of waste mitigation strategies. This will render 101 

the scale of this problem visible to policy makers. Waste piles can be mapped using 102 

Global Navigation Satellite System (GNSS) for example handheld Global Positioning 103 

Systems (GPS). Mobile applications such as ‘Open Litter Maps’ 104 
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(https://openlittermap.com/ ) allow users to capture geotagged photos which later 105 

enable mapping locations where waste is being dumped (Lynch 2018). However, the use 106 

of handheld GPS can only limit observations to locations that are physically accessible to 107 

the observer, and some dumpsites located in areas with rugged terrain or without a 108 

proper access road cannot be mapped. Additionally, it is difficult to quantify the spatial 109 

extent of existing waste piles. In contrast, aerial images have the potential to overcome 110 

these limitations. For instance, satellite images have been used for the mapping of 111 

floating marine plastics at a global scale (Topouzelis et al. 2020). Still, most open 112 

satellite data have relatively coarse spatial resolution, and it is difficult to use such data 113 

to map smaller waste piles, especially in urban settings (Glanville and Chang 2015). Even 114 

high-resolution optically satellite images, usually provided by private companies, are 115 

often affected by cloud cover (Shastry et al. 2023), and can be prohibitively expensive.  116 

 117 

High-resolution aerial images captured by drones offer a promising alternative to 118 

satellite imagery. The use of drone imagery has been employed in previous studies  119 

(Pinto, Andriolo, and Gonçalves 2021; Garcia-Garin et al. 2021; Jakovljevic, Govedarica, 120 

and Alvarez-Taboada 2020; Papakonstantinou et al. 2021; Wolf et al. 2020; Bao et al. 121 

2018; Gonçalves et al. 2020a; 2020b; 2020c; Fallati et al. 2019; Kylili et al. 2019; Ribeiro 122 

et al. 2017), which have reported different approaches for mapping waste. One 123 

approach involves visual identification and manual labelling of objects considered as 124 

waste (Pinto, Andriolo, and Gonçalves 2021; Garcia-Garin et al. 2021; Jakovljevic, 125 

Govedarica, and Alvarez-Taboada 2020). Another approach involves manually 126 

identifying and labelling a small sample of waste piles or individual objects that are 127 

visible on the drone captured imagery and use these data as examples to train an image 128 

classification algorithm (Papakonstantinou et al. 2021; Wolf et al. 2020). Such 129 

classification algorithms that have been previously employed include a segmentation 130 

threshold algorithm (Bao et al. 2018), Random Forest (RF) (Gonçalves et al. 2020a; 131 

2020b; 2020c; Martin et al. 2018), Artificial Neural Networks (ANN) (Pinto, Andriolo, and 132 

Gonçalves 2021) and Convolution Neural Networks (CNN) (Fallati et al., 2019; Garcia-133 

Garin et al., 2021; Gonçalves, et al. 2020; Jakovljevic et al., 2020; Kylili et al., 2019; 134 

Papakonstantinou et al., 2021; Wolf et al., 2020). These algorithms were applied on 135 

water surfaces and sandy beaches with a uniform background where it is relatively easy 136 

to discriminate and identify waste materials. In an urban environment with a non-137 

uniform background, simple algorithms such as the segmentation threshold algorithm 138 

are unlikely to work well.  139 

 140 

This study aimed to assess the practicality of using drones to collect high-141 

resolution aerial imagery for mapping waste piles in an urban environment in Malawi. 142 

We define a waste pile as a collection of waste found in the environment; these might 143 

have either been disposed of by humans or dispersed by an agent such as stormwater or 144 

wind. We hypothesize that on aerial images, piles of waste formed by disposing of waste 145 

https://openlittermap.com/


 

 

6 

materials would exhibit distinct characteristics that might assist in the automatic 146 

mapping of waste piles from optical aerial images. We utilized the drone imagery to 147 

train classification algorithms to automate the detection of waste piles, and 148 

subsequently evaluated the performance of the detection workflow. To the best of our 149 

knowledge, this is the first application of low-cost drone imagery for mapping waste 150 

piles along a river in Sub-Saharan Africa. It is also worth noting that this is the first time 151 

to explore drone imagery for mapping waste piles in an environment other than sandy 152 

beaches or coastal areas.  This practical method will later be refined for use in studying 153 

or interrogating how humans get exposed to pathogens that might be hosted by the 154 

waste pile, thereby helping to shape public health discourse associated with open waste 155 

disposal. Currently, open waste disposal is seen as more of an environmental problem 156 

and less of a health problem, yet evidence of the growth of pathogenic microorganisms 157 

is increasing (Yang et al. 2023; Zettler, Mincer, and Amaral-Zettler 2013; Mphasa et al. 158 

2025), highlighting the public health risks tied to this issue. 159 

 160 

2. Methods 161 

 162 

2.1. Study area 163 

 164 

This study was conducted in Ndirande, the largest informal settlement in 165 

Blantyre – Republic of Malawi’s second largest city (population 800,264). According to 166 

the most recent population census (conducted in 2018), Ndirande had a population of 167 

97,839 people (NSO 2019). Indiscriminate disposal of waste in water drainage channels 168 

is common in the community (Maoulidi 2012; Banda 2015). Ndirande neighborhood has 169 

three administrative wards, namely Ndirande South, Ndirande West, and Ndirande 170 

North, and the current study specifically focused on a small part of the Ndirande South 171 

ward (Figure 1), chosen because the Nasolo River, a tributary of the Mudi River runs 172 

through it. The Mudi River is severely polluted and it has been the subject of several 173 

previous studies (Lakudzala, Tembo, and Manda 2000; Sajidu et al. 2007; Kumwenda et 174 

al. 2012; Kalina et al. 2022). The community also serves as one of the primary research 175 

sites for the Sustainable Attitudes to Benefit Communities and their Environments 176 

(SPACES -  https://spacesproject.stir.ac.uk/ ), aiming to investigate the public health 177 

risks associated with plastic waste. 178 

https://spacesproject.stir.ac.uk/
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 179 

Figure 1. Map of the study location. Panel (a) shows Malawi's location on the African 180 

continent, panel (b) zooms in on Blantyre city within Malawi, and panel (c) pinpoints 181 

Ndirande within Blantyre city.  182 

 183 

2.2. Methodology 184 

 185 

Figure 2 is flowchart that illustrates the three methods that were utilized for 186 

mapping waste. The first method involved physical walking through the entire 187 

study community to map waste piles. The remaining two methods relied on 188 

drone imagery captured in a small part of the study community. All the three 189 

approaches resulted in the generation of maps highlighting community waste 190 

piles. 191 

 192 
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 193 
 194 

Figure 2. Graphical Workflow for all the three methods compared in the study. 195 

 196 

2.2.1. Mapping waste pile using community-led physical mapping of waste piles 197 

A community-led physical mapping of waste piles was conducted by a seven-198 

member team, which comprised five researchers from the SPACES consortium and 199 

members of the local development committee. The team’s task was to locate 200 

waste piles – locations where waste accumulate after direct disposal - in the study 201 

community. The community members guided the study team in locating areas 202 

with existing waste piles. Once identified, the waste piles were assigned a number, 203 

and geographical coordinates were collected using GPS from Samsung Galaxy Tab 204 
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A (https://www.samsung.com/sa_en/business/tablets/galaxy-tab-a/galaxy-tab-a-205 

7-0-2016-t280-sm-t280nzkaksa/ ). Furthermore, data on specific attributes of 206 

individual materials that formed the waste pile was collected. This information 207 

was subsequently used to characterize the overall composition of the waste pile 208 

surface.  209 

2.2.2. Mapping using drone imagery 210 

To understand the practicalities of using drone imagery for mapping waste piles, 211 

we utilized a Mavic 2 Enterprise drone (Model: LIDE - 212 

https://www.dji.com/mavic-2-enterprise ). The drone was manufactured by DJI, 213 

and it is equipped with a 12 Megapixel camera (aperture range f/2.8 – 3. 8). To 214 

capture the aerial images, the drone was flown at an altitude of 60 meters. 215 

While method 1 focused on the entire study community (Figure 3a), we captured 216 

images for a subsection of the study community selected for long-term aerial 217 

monitoring by the SPACES consortium (Figure 3 b). The captured images were 218 

processed using Pix4D mapper (version 4.6.4.) to produce an orthomosaic with a 219 

Ground Sampling Distance (GSD) of 1.8 cm/pixel. The resulting orthomosaic was 220 

saved in a projected coordinate reference system (World Geodetic System 221 

1984/Universal Transverse Mercator Zone 36 S). The orthomosaic was clipped to 222 

only cover 20 meters distance to the river in the study community covering an 223 

area of 45,259 square meters. 224 

https://www.samsung.com/sa_en/business/tablets/galaxy-tab-a/galaxy-tab-a-7-0-2016-t280-sm-t280nzkaksa/
https://www.samsung.com/sa_en/business/tablets/galaxy-tab-a/galaxy-tab-a-7-0-2016-t280-sm-t280nzkaksa/
https://www.dji.com/mavic-2-enterprise
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 225 

Figure 3. Overview of the study community and a highlight of the area that was 226 

targeted for aerial mapping using drone technology. Subfigure (a) presents the 227 

study community and a highlight of the area that was targeted for drone 228 

mapping. Subfigure (b) is a closeup view of the section of the entire study 229 

community that was targeted for drone mapping, displayed on a standard 230 

basemap (Google Satellite), accessed through QuickMapServices plugin in QGIS 231 

(version 3.22.10). 232 

  233 

For method 2, the orthomosaic generated was visualized in QGIS (version 234 

3.22.10). The orthomosaic was inspected manually to identify waste piles, which 235 

were then manually digitized as polygons. The total surface area covered by 236 

waste piles was calculated by summing the surface of all digitized polygons using 237 

the field calculator tool in QGIS software.  238 
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 239 

For method 3, waste piles were automatically identified using an Object-Based 240 

Image Analysis (OBIA) approach.  OBIA involves grouping similar pixels into 241 

segments, calculating feature variables for each segment (e.g., spectral 242 

reflectance, texture), and building a segment-level classification model based on 243 

these feature variables.  A mean-shift algorithm was implemented in the open-244 

source software Orfeo Toolbox to group homogenous neighboring pixels of the 245 

orthomosaic into segments (Grizonnet et al. 2017). The mean reflectance of the 246 

optical bands was computed for each segment alongside segment Haralick 247 

textural characteristics. Haralick textural characteristics represent textural 248 

characteristics of adjacent pixels based on grey-level values (Haralick, 249 

Shanmugam, and Dinstein 1973). A total of twenty-two segment-level feature 250 

variables were extracted (Table S1). To train algorithms for automatic 251 

classification of the segments to identify waste piles, the drone imagery was 252 

examined to identify and label examples of major land cover classes, namely 253 

building rooftops, bare earth (soil), vegetation, waste piles, surface water, and 254 

shadow. A total of 509 segments were labeled, covering these land cover classes 255 

(Table S2).  256 

 257 

We developed automatic classifiers for detecting waste piles using R Statistical 258 

Software (version 4.1.2). Segments that represented the labeled examples were 259 

divided into training and testing segments, with 80 % (406) of the labeled 260 

segments used for training and the remainder (103) used for testing. The 261 

extracted feature variables and labels were used to train binary and multi-class 262 

classifiers. We explored four classification algorithms: (1) RF; (2) ANN; (3) naïve 263 

Bayes classifier and (4) Support Vector Machine (SVM). Full description of the 264 

algorithms and parameters used are presented in Table S3. Figure 4 summarizes 265 

the approach employed to develop, train, and test the four classifiers. For each 266 
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model trained, performance was assessed using precision (Equation 1), recall 267 

(Equation 2), and F-1 score (Equation 3). Precision quantifies the proportion of 268 

correct positive predictions among all positive predictions made. Recall measures 269 

the proportion of actual positives correctly identified by the model. The F-1 score 270 

provides a harmonic mean of precision and recall, emphasizing their balance. The 271 

formulas for these metrics are presented in Table 1. 272 

 273 

Table 1: Equations for assessment of classification performance. 274 

Performance measure Formula Equation 

Precision  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

(1) 

Recall 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

 

(2) 

F-1 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(3) 

 275 

 276 

  277 
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 278 

 279 

Figure 4: Flowchart used to implement the OBIA process for automating 280 

mapping of waste piles.  281 

  282 



 

 

14 

3. Results 283 

 284 

3.1. Mapping of waste piles from community-led physical mapping of waste piles 285 

 286 

 Table 2 summarizes the observations from the community-led physical 287 

mapping of waste piles conducted across the entire study community. The 288 

materials observed to be disposed of in the environment were almost uniform, 289 

encompassing common items such as plastics, textiles, cardboard, soil, glass, 290 

metal, and organic waste, including food waste, among others.  291 

 292 

Table 2. Summary of the characteristics of the waste piles observed during the 293 

community-led physical mapping of waste piles.  294 

 295 

Waste pile located along the 

riverbank 

Total number of piles and percentage 

Yes 51 (89.5%) 

No 6 (10.5%) 

 296 

Figure 5 presents some of the waste piles mapped during the community-297 

led physical mapping of waste piles. The mapped locations represent the center 298 

of the waste piles as identified by the research team conducting the walk. Most 299 

of the waste piles located during the community-led physical mapping of waste 300 

piles were along the banks of two local rivers, Nasolo and Chirimba, with the 301 

remaining ones not directly on the riverbank. Later observations revealed that 302 

one of the 57 waste piles had a positional accuracy of nearly 2000 meters. Of the 303 

57 waste piles, 16 were observed to be within the area that was mapped with 304 

drones.  305 

 306 
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 307 
 308 

Figure 5. Detailed overview of waste piles observed during the community-led 309 

physical mapping of waste piles. Subfigure (a) offers a close-up view of selected 310 

waste piles, while subfigure (b) specifically emphasizes 16 waste piles mapped 311 

during the community-led physical mapping of waste piles, coinciding with the 312 

region covered by drone imagery. Subfigure (c) displays a comprehensive 313 

overview of all 57 waste piles, showcasing their respective locations within the 314 

study community. 315 

 316 

3.2. Mapping of waste piles by manual digitization of the drone imagery 317 

 318 

Figure 6 presents a map showing waste piles manually digitized from the 319 

drone imagery. 50 polygons were digitized across part of the study community 320 

where drone imagery was captured. Some of the digitized waste piles might 321 

have been created through the dispersal of waste from some of the waste piles 322 

mapped during the community-led physical mapping of waste piles. In general, 323 

digitized waste piles covered 5.76 % of the area covered by the drone imagery 324 

(2,609 of 45,259 square meters), with their surface area ranging from 3 to 251 325 

square meters (mean = 52.15).  326 

 327 
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 328 
 329 

Figure 6: Overview of the waste piles that were manually digitized in the part 330 

of the study community where drone imagery was captured. Subfigure (a) 331 

provides a zoomed overview of one of the manually digitized waste piles, and 332 

subfigure (b) provides a broader overview of all the waste piles that were 333 

mapped.  334 

 335 

3.3 Mapping waste piles through OBIA classification approach 336 

  337 

 The use of mean-shift algorithm to segment the drone imagery produced 338 

2356 segments, of which 509 of them were manually labeled to support model 339 

building. Table 3 presents a summary of the characteristics of the feature 340 

variables (in terms of mean and standard error) extracted from the drone 341 

imagery for each of the land cover classes. It is worth noting that the mean 342 

values for some feature variables such as red, green, blue, cluster shade and 343 

haralick correlation show variations across the land cover classes and may be 344 

useful for building of an automatic classification model. Out of the 509 segments 345 

used for model development, 406 were for model training, and 106 were for 346 

model testing. 347 

 348 

  349 
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Table 3. Summary of feature variable values derived from the segments by land 350 

cover class.  351 

 352 

 Rooftops Bare earth 

(Soil) 

 

Vegetation Waste piles Surface water Shadow 

 Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE 

Red 149 3.9 173 3.1 74 1.9 132 2.6 67 2.5 43 2.7 

Mode (red) 152  4.4 185 3.2 71 2.2 132 3.7 58 3.3 32 3.4 

Mean(green) 149  4.1 161 2.9 80 1.9 129 2.4 71 2.4 42 2.5 

Mode (green) 151  4.7 171 2.9 80 2.3 128 3.2 63 3.2 32 3.4 

Mean(blue) 144  4.3 145 2.7 57 1.6 120 2.4 64 2.2 40 2.3 

Mode (blue) 147 5 153 2.8 52 1.9 118 3.3 56 2.7 32 3.1 

Mean(energy) 0.6 0.01 0.7 .01 0.5 .01 0.4 .01 0.6  .01 0.6 .01 

Mode (energy) 0.9 .00 1 .00 0.9 .01 0.9 .02 1 .00 1 .00 

Mean(entropy) 1.2 .04 0.9 .02 1.4 .03 1.9 .03 1.4 .06 1.2 .04 

Mode (entropy) 0 .00 0 .00 0.03 .01 .05 .02 0 .00 0 .00 

Mean(correlati

on) 

0.9 .04 0.8 .02 0.9 .02 0.9 .01 0.8 .03 0.7 .05 

Mode 

(correlation) 

-.01 .01 0 .00 .01 .01 .02 .02 0 .00 0 .00 

Mean (inverse 

difference 

moment) 

0.9 .00 0.9 .00 0.9 .00 0.8 .00 0.9 .00 0.9 .00 

Mode (inverse 

difference 

moment) 

0.9 .00 1 .00 0.9 .01 0.9 .01 1 .00 1 .00 

Mean(inertia) 0.3 .01 0.2 .01 0.3 .01 0.4 .01 0.3 .02 0.3 .02 

Mode (inertia) .02 .01 0 .00 0.2 .01 0.2 .01 .01 .01 .03 .01 

Mean (cluster 

shade) 

-0.2 .04 -.1 .01 0.1 .02 0.2 .02 0.6 .04 1.2 .09 

Mode (cluster 

shade) 

0  .00 0  .00 0 .00 0 .00 0 .00 0 .00 

Mean (cluster 

prominence) 

5.1 .4 2.5 .2 2.4 .2 4.8 .3 5.2 .4 15.3 1 

Mode (cluster 

prominence) 

0 .00 0  .00 0 .00 0 .00 0 .00 0 .00 

Mean (haralick 

correlation) 

321 13 352 6 83 5 316 9 95 8 81 7 

Mode (haralick 

correlation) 

180 10 261 7 32 3 140 8 21 6 15 5 
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Table 4 presents the performance of four automatic classifiers - trained 353 

using RF, ANN, Naïve Bayes, and SVM algorithms respectively – in mapping waste 354 

piles from drone imagery using OBIA approach. Additionally, the table includes 355 

the performance metrics of analogous studies conducted previously. Among the 356 

four algorithms utilized, binary classifiers outperformed multi-class models 357 

(Table S4-10), with the mean Kappa of 0.815 [Range: 0.64-0.90] and accuracy of 358 

0.94 [Range: 0.88-0.97], compared to multi-class classifier with mean Kappa at 359 

0.675 [Range: 0.26-0.85] and accuracy of 0.73 [Range: 0.40-0.87]. In terms of the 360 

algorithms, ANN and SVM has the highest F-1 scores (0.98) highlighting best 361 

overall performance for binary classification. However, for a multi-class classifier, 362 

the RF predictor has the highest F-1 score (0.90) indicating that it outperformed 363 

the other multi-class models trained. The performance of each of the trained 364 

models at classifying the testing dataset has been presented in the 365 

supplementary tables. It has also been observed that there are instances where 366 

the automatic classifier could misclassify the segments, for example, by 367 

suggesting that a segment is a waste pile while in a real sense, the segments 368 

represent one of the other land cover classes considered, and vice-versa. This 369 

was observed for rooftops and vegetation (Supplementary Table S6). However, 370 

automatic classifiers estimated that waste piles covered more area than manual 371 

mapping. For example, the trained binary SVM classifier estimated that waste 372 

piles covered approximately 10,697.5 square meters, whereas the best multi-373 

class model estimated that waste piles covered approximately 5500 square 374 

meters.  375 

 376 

  377 
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Table 4: Performance of different algorithms and approaches for mapping waste 378 

piles 379 

 Method Binary approach Multi-class approach 

  Precision Recall F1-

score 

Precision Recall F1-

score 

This study RF 0.94 1 0.97 0.86 0.95 0.90 

 ANN 0.97 1 0.98 0.72 0.65 0.68 

 Naïve 

Bayes 

0.95 0.90 0.93 0.73 0.96 0.83 

 SVM 0.98 0.99 0.98 0.83 0.95 0.88 

(Papakonstantinou 

et al. 2021) 

CNN 0.83 0.72 0.77 --- --- --- 

(Garcia-Garin et al. 

2021) 

CNN 0.79 0.94 0.86 --- --- --- 

(Pinto, Andriolo, 

and Gonçalves 

2021) 

ANN 80 67 73 56 49 49 

(Gonçalves et al. 

2020b) 

RF 0.73 0.74 0.75 --- --- --- 

(Gonçalves et al. 

2020c) 

RF 0.70 0.71 0.70 --- --- --- 

(Jakovljevic, 

Govedarica, and 

Alvarez-Taboada 

2020) 

CNN --- --- --- 0.82 0.75 0.78 

(Wolf et al. 2020) CNN --- --- --- 0.77 0.77 0.77 

(Fallati et al. 2019) CNN 0.54 0.44 0.49 --- --- --- 

 380 

3.4 Comparison of observations on the utilization of the three approaches 381 

 382 

Table 5 presents some observations of the three methods for mapping waste 383 

piles. Generally, the community-led physical mapping of waste piles involved a 384 
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team that walked in the community for nearly half a day to scout for waste piles. 385 

In contrast, the use of drone imagery involved a team that set up a ground 386 

control station, and the drone captured aerial pictures of the area of interest 387 

using a predetermined flight route. Processing the raw drone images into an 388 

orthomosaic with Pix4D mapper (version 4.6.4) took several minutes. However, 389 

segmenting the orthomosaic, generating segment-level statistics, and manually 390 

labeling training and testing segments was time consuming, taking 391 

approximately more than 6 hours. Model fitting and results extraction took a 392 

further few minutes, but once the model was developed, it could be reused. 393 

  394 

Table 5: qualitative pros and cons of three possible approaches for mapping 395 

waste piles. 396 

 397 

 Community-led 

physical mapping 

of waste piles 

Drone imagery 

(manual 

digitization) 

Drone imagery 

(automatic 

mapping using 

OBIA)  

Pros  Does not require 

expensive 

equipment 

 Convenient, it 

can be practical 

to employ teams 

with no or 

limited training. 

 Enables 

generation of 

data about the 

composition of 

the waste pile  

 Enable mapping 

of inaccessible 

waste piles. 

 Allows estimation 

of the area 

covered by waste 

piles. 

 Produces mapping 

data for further 

automated or 

semi-automated 

classification 

processes 

 Once drone 

imagery is 

collected, it can 

serve as a 

mapping basis for 

other survey 

topics, too 

 Waste piles are 

automatically 

generated from 

drone imagery. 

 Enable mapping 

of inaccessible 

waste piles 

 Allows estimation 

of area covered 

by waste piles. 

 Once a model has 

been developed, 

it is generally 

fast. 

 It can be tested 

for reuse in other 

areas, too 

Cons  Only provide 

point information 

showing 

 Visibility of 

waste piles 

is limited by 

 Visibility of waste 

piles is limited by 
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locations where 

waste is being 

disposed in the 

study area. 

 Underestimate 

number of waste 

piles as it only 

records 

information 

about waste piles 

that are 

accessible.   

 Prone to 

positional errors 

especially when 

GPS receiver 

accuracy values 

are not checked 

in the field. 

the 

presence of 

vegetation. 

 Time 

consuming 

 Require 

more 

expensive 

equipment 

 Requires 

technical 

experience 

of the pilot 

and drone 

team. 

 Require 

time-

consuming 

ground 

truthing 

since it is a 

remote 

sensing 

method 

the presence of 

vegetation. 

 Model 

development and 

application 

requires 

specialized 

training. 

 Labelled examples 

for building a 

classification 

model are not 

always sufficient 

(waste examples 

were limited). 

 Prone to 

misclassifications. 

 Require more 

expensive 

equipment 

 Requires 

technical 

experience of the 

pilot and drone 

team. 

 Require time-

consuming 

ground truthing 

since it is a 

remote sensing 

method 

 398 

4. Discussions 399 

 400 

4.1. Waste disposal patterns and environmental impacts 401 

 402 

It is worth noting that waste disposal into the environment is widespread in the 403 

study community, with 89.5 % of the waste piles located along the riverbanks, 404 

reflecting a reliance on the river as a waste management system that sweeps 405 

waste away from communities (Kalina et al. 2022). Despite this, waste materials 406 
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disposed of in areas not along the riverbanks might possibly be dispersed by 407 

wind and rainwater; potentially, they get dispersed into the river system.  Non-408 

biodegradable materials such as plastics are present in these waste piles, raising 409 

concerns about their impact on the environment and human health. There is a 410 

growing body of evidence reporting the presence of communities of pathogenic 411 

microorganisms on plastic surfaces (Liang et al., 2023), with some studies 412 

reporting the enrichment and dispersal of antimicrobial resistance genes (Rasool 413 

et al., 2021; Yang et al., 2022). Furthermore, reports suggest that rivers play a 414 

role in the dispersal of plastics, contributing to the spread of pathogenic 415 

microorganisms (Rodrigues et al. 2019; Silva et al. 2019).  416 

 417 

4.2. Comparison between the three mapping approaches 418 

 419 

In general, the current study presented three mapping approaches: (1) 420 

community-led physical mapping of waste piles; (2) manual digitization of drone 421 

imagery; and (3) automatic mapping of waste piles from drone imagery using 422 

OBIA. Drone imagery enabled the identification of waste piles that could not be 423 

reached by ground surveys, for example, due to lack of access roads or 424 

dangerous terrain (Lo et al. 2020). However, mapping waste piles using drone 425 

imagery depends on the reflectance captured by the drone sensor. In our study 426 

area, there are many big trees, and it could not be ascertained what was 427 

beneath the branches using drone imagery. Previous studies have also reported 428 

that waste materials might be hidden by shadows or vegetation, so much so that 429 

they are difficult to detect, resulting in a general underestimation of waste 430 

material density (Martin et al. 2018). Nonetheless, drone imagery provides 431 

information such as the spatial extent of waste piles, and though not explored in 432 

this study, the volume of the waste pile can also be explored.  433 

 434 

There is a sharp distinction between mapping waste piles from drone imagery 435 

manually and automating the process with OBIA. The number of waste piles and 436 

total surface area detected by OBIA was greater than the corresponding figures 437 

generated through manual digitization. OBIA has a possibility of misclassifying 438 

other land cover classes as waste piles or vice versa, and this can falsely increase 439 

or decrease the number of waste piles in the study region. OBIA 440 

misclassifications may have arisen from two possible sources. One possible 441 

explanation is that OBIA could not detect objects by detecting multiple objects as 442 

one (under segmentation). Another possible explanation might be the 443 

algorithm's shortcomings from learning patterns that differentiate waste piles 444 

from other classes. Still, depending on the application, misclassified waste piles 445 

can be filtered using posterior class probabilities. Nonetheless, manual 446 

digitization can be slow when human resources are limited; however, this 447 
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approach requires limited training in image labeling. In a previous study by 448 

Papakonstantinou et al. (2021), 27 volunteers underwent training in image 449 

labeling. They successfully classified and labeled 30,793 objects based on 450 

whether they contained waste materials or not  (Papakonstantinou et al. 2021). 451 

Nevertheless, waste piles generated through manual digitization might require 452 

ground validation and quality assurance processes to be developed to be reliable 453 

and reproducible. Crowdsourcing labeling platforms such as Humanitarian 454 

OpenStreetMap Tasking Manager (https://tasks.hotosm.org/ ) or MapSwipe 455 

(https://mapswipe.org/  ) offer opportunities for crowdsourcing mapping effort 456 

and validation. These platforms have the potential to accelerate manual mapping 457 

especially when human resources are limited. Automating the digitization of 458 

waste piles using OBIA is a faster approach, and once a model has been 459 

developed, it can be reused and applied on a large scale. While OBIA has 460 

previously been applied to mapping marine waste (Gonçalves et al. 2020b), 461 

categorizing beach macro waste items (Gonçalves and Andriolo 2022), and 462 

studying the role of vegetation in trapping beach waste (Andriolo et al. 2021), 463 

this study extends its application to mapping waste on land for the first time. The 464 

study also breaks new ground for leveraging entirely free software, including the 465 

Orfeo Toolbox (https://www.orfeo-toolbox.org/ ) and R Statistical Software (R 466 

Core Team 2022), to implement the approach.   467 

 468 

4.3. Potential improvement on using OBIA for mapping waste piles 469 

 470 

Despite a few misclassifications, it is worth noting that, binary classifiers 471 

outperformed the corresponding multi-class models for all algorithms used. This 472 

observation aligns with earlier observations in Portugal, where a binary classifier for 473 

differentiating marine litter items from non-litter items was reported to have higher 474 

accuracy than a multi-class approach (Pinto, Andriolo, and Gonçalves 2021). One 475 

possible explanation for the misclassification is that a binary classifier is trained to 476 

maximize differentiation between segments of waste and non-waste. Conversely, the 477 

multi-class classifier is optimized to differentiate multiple classes. However though, 478 

previous studies (Gonçalves et al. 2020a; 2020b; 2020c; Martin et al. 2018) focused on 479 

mapping individual waste objects disposed of in the environment, while the current 480 

study maps waste piles with aggregates of different waste types. Mapping individual 481 

objects such as plastics has the potential to aid in quantifying the abundance of 482 

pollutants or other discarded materials in the environment. However, it is equally 483 

imperative to note that drone data of GSD between 0.5 and 1.25 cm/pixel is suitable for 484 

mapping individual waste materials (Andriolo et al. 2023). Most common drone sensors 485 

can only achieve this GSD by flying low altitudes. Such flight altitude is impractical in 486 

settings with tall buildings, trees, and powerlines. As demonstrated in this study, drone 487 

data with relatively high GSD can map waste aggregates (waste piles). Thus, mapping 488 

https://tasks.hotosm.org/
https://mapswipe.org/
https://www.orfeo-toolbox.org/
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aggregates of waste has the potential to serve as indicators for monitoring the impact of 489 

waste management programs on reducing waste disposal in the environment.  490 

 491 

In terms of the algorithms that were trained to build the models, the current 492 

study observed that the model developed using an SVM algorithm slightly outperformed 493 

the other binary models, achieving the highest precision, recall, F1-score, overall 494 

accuracy, and Kappa. Similarly, the trained RF model slightly outperformed other multi-495 

class models, also demonstrating the best performance across these metrics. 496 

Nevertheless, studies that explored automating the mapping of waste materials have 497 

reported the use of diverse descriptor variables and model-building practices. For 498 

example, Martin (Martin et al. 2018) used histogram oriented gradients (HOG) as 499 

descriptor variables to train a SVM classifier. Conversely, numerous other published 500 

works transformed RGB bands into alternative color spaces, including Hue Saturation 501 

Value (HSV),  CIE-Lab, and YCbCr for modelling purposes(Gonçalves et al. 2020b; 2020c; 502 

2020a). This underscores the need for standard approaches in developing and 503 

implementing classifiers for mapping waste materials in various environments.  504 

 505 

 506 

4.4. Study strengths and limitations 507 

 508 

The study is the first practical application of drone imagery for mapping disposed 509 

of waste in Sub-Saharan Africa. One of the key strengths of this study is the use of QGIS 510 

and Orfeo Toolbox, free and open-source software for geospatial (FOSS4G), and are 511 

ideal for environmental monitoring program, especially when financial resources to 512 

support purchasing software are lacking. Nevertheless, due to limited GSD, individual 513 

materials within waste piles are not visible in the drone imagery. Visibility of materials in 514 

aerial imagery depends on spatial resolution. Additionally, the current waste mapping 515 

only focused on mapping waste piles located within 20 meters of the river in the study 516 

community. Further investigation is needed to assess the generalizability of the 517 

developed OBIA model to the region beyond the river or images captured at different 518 

time points. We also acknowledge that we did not formally test for class separability 519 

before training the classification model, and we used all the 21 extracted feature 520 

variables without regard to their importance on class separability. Some of the extracted 521 

feature variables might not effectively contribute to class separability and could 522 

introduce noise, complicating the classification process. Future studies should 523 

investigate class separability and apply dimension reduction techniques to remove 524 

irrelevant or redundant features. This could improve model performance by focusing on 525 

the most informative feature variables and simplifying the classification process. 526 

. 527 

  528 
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5. Conclusions and outlook for further work 529 

 530 

The current study illustrates the practicalities associated with using images 531 

collected by drones for mapping waste piles on land in an urban environment in Malawi. 532 

Drone imagery enables the mapping of inaccessible waste piles and the characterization 533 

of their sizes, surpassing the capabilities of field walks. To our knowledge, this is the first 534 

successful application of drone-based remote sensing for mapping waste in an 535 

environment other than beaches or coastal areas, particularly on land and in an urban 536 

environment.  Implementation of OBIA for automating waste pile detection reported 537 

higher accuracy than previous studies. Considering these observations, drone imagery 538 

can be used for mapping waste piles. Thus, future work should focus on three areas: (1) 539 

establishing mapping requirements for mapping materials and individual objects on the 540 

surface of waste piles; (2) exploring the operational performance of different image 541 

classification approaches for automating the process of mapping waste piles; and (3) 542 

translating generated information on waste piles into practical policy actions.  543 

 544 

Currently, we are focused on mapping the distribution of plastic waste within 545 

waste piles and quantifying its dispersal patterns. Future work on automating waste pile 546 

mapping can focus on improving image capturing, object detection, and classification. 547 

For image capturing, we recommend exploring optimal spatial resolution for mapping 548 

individual waste materials (such as plastics). Furthermore, investigating the potential 549 

contribution of different camera choices (optical sensor, infrared, thermal, etc.) on the 550 

performance of the waste pile mapping models is recommended. Besides, exploring 551 

emerging object detection and classification approaches, especially those with capability 552 

to learn patterns associated with waste materials without needing to know the actual 553 

variables needed for model training  - only requiring imagery spectral bands will simplify 554 

the model development process. 555 

 556 
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