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Objectives: To investigate the transplacental acquisition of measles immunoglobulin (Ig)G in newborns at 

delivery in Bangladesh, Bhutan, India, Ethiopia, Mozambique, Kenya, Nigeria, Mali, and South Africa. 

Methods: Archived cord serum, from a multicenter study on Group B Streptococcus , were tested for 

measles IgG using a commercial enzyme link immunosorbent assay (ELISA). We tested 323 randomly 

selected samples from each of the sites. Models using various measles antibody decay rates in infancy 

were explored. 
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Despite the availability of a safe and effective measles vaccine 

MV), globally in 2022, measles caused approximately 5,138,698 

ases, including 85,417 deaths in children under 5 years of age 

 1 , 2 ]. The World Health Organization (WHO) recommends that the 

rst dose of MV (MV1) be given at 9 months of age, in part to

itigate attenuation of the immune response to MV due to cir- 

ulating maternal-derived anti-measles immunoglobulin (Ig)G. The 

HO does recommend an earlier dose of MV at 6 months of age 

e considered for certain groups, such as children born to women 

iving with HIV, in addition to the subsequent two doses to be ad- 

inistered within the first 2 years of life [ 3 ]. 

Maternally-derived anti-measles IgG in the newborn declines 

ver time, culminating in increased susceptibility to measles up 

ntil MV1 immunization occurs. Anti-measles IgG induced by vac- 

ination alone results in lower titers and wanes faster compared 

ith infection-induced immunity [ 4 , 5 ]. The widespread coverage 

f MV and lowering of infection-induced immunity results in sero- 

pidemiologic changes that could impact the transplacental anti- 

easles IgG acquisition in the newborn [ 6 , 7 ]. Currently, women 

f childbearing age are more likely to have derived measles im- 

unity from vaccination rather than infection [ 5 ]. During an out- 

reak of measles in South Africa in 2009-2010, it was reported that 

verall, 24% of measles cases occurred in children who would not 

ave been eligible to receive MV1 at 9 months of age. An age- 

pecific incidence rate of 302 cases per 10 0,0 0 0 population was 

eported for children under 6 months old [ 8 ]. In addition, infants 

ounger than 6 months accounted for 37% and 32% of all reported 

easles cases in the African and Western Pacific region in 2017, 

espectively [ 9 ]. 

Investigation of the sero-epidemiology of anti-measles IgG in 

ewborns could quantify susceptibility to measles from birth to 

hen MV1 is scheduled. There is a paucity of South Asia and Africa 

tudies investigating measles antibody levels in newborns at birth. 

oreover, existing studies often suffer from small sample sizes, 

utdated epidemiologic conditions, or are conducted in a single 

ite [ 10–12 ]. 

The objective of our study was to determine cord blood anti- 

easles IgG at birth in six African and three South Asian countries 

nd model the susceptibility to measles by 2, 4, and 6 months of 

ge. 

aterial and methods 

tudy design, sites, and population 

This multicenter study included three South Asian (Bangladesh, 

hutan, and India) and six African countries (Ethiopia, Kenya, Mali, 

ozambique, Nigeria and South Africa). The screening and enrol- 

ent of pregnant women occurred during the early stages of labor. 
2

um samples were analyzed. At birth, 49.9% of newborns were measles IgG

tivity ranged from 21.7% in Nigeria to 73.4% in Bhutan. The adjusted odds

mothers born after measles vaccination implementation was 1.78 times

inated mothers (adjusted odds ratio 1.78; 95% confidence interval 1.43-

les-IgG kinetics predicted that 70.8%, 88.3%, and 100% of infants would be

ths, respectively, without further exposure. 

gest low transplacental acquisition of measles IgG in newborns, which

 to measles infection at a very young age. The currently recommended

low- and middle-income countries (LMICs), with the first dose recom-

nd onward, warrant reconsideration, including the need for earlier dosing

er Ltd on behalf of International Society for Infectious Diseases. This is an

 CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )

or this study, we used archived cord serum, from all the coun- 

ries included in the Group B Streptococcus (GBS) multicenter study 

imed at evaluating GBS colonization and sero-epidemiology [ 13 ]. 

ord blood was collected from newborns within the parent study 

onducted from January 10, 2016 to December 11, 2018. The crite- 

ia in the parent study were pregnant women aged 18 to 45 years, 

nrolled at ≥37 weeks of gestation, and tested negative for HIV- 

. The exclusion criteria were women presenting with underlying 

edical conditions, exposure to intrapartum antibiotics, and blood 

ransfusion in the 30 days before delivery. Participants were in- 

luded in the current study if the mothers consented to storing 

nd using cord blood samples. Demographic data on mothers and 

nfant-related factors such as gender and birth weight were also 

ollected. 

Cord blood samples collected immediately after delivery were 

entrifuged at the site to extract serum. The aliquots from the 

ite were shipped on dry ice to the University of the Witwa- 

ersrand Vaccine and Infectious Disease Analytics Research Unit 

Wits-VIDA) in Johannesburg, South Africa, where the serum was 

rchived at −70 °C. Although this study primarily analyzed stored 

ord blood specimens, maternal hemoglobin levels and other 

aternal-related variables were obtained from the GBS main study, 

here maternal blood samples were collected and analyzed. Not 

ll stored cord blood samples were tested and analyzed; only the 

equired sample size for the study was selected for testing and 

nalysis. 

aboratory detection of anti-measles immunoglobulin G 

Anti-measles IgG was evaluated using an indirect enzyme- 

inked immunosorbent assay (ELISA; EuroimmunTM , Lübeck, Ger- 

any; catalog numbers: EI 2610-9601 G), as per manufacturer 

nstructions. Each sample underwent testing in true duplicate. 

eropositivity was defined as IgG titers ≥275 mIU/ml, equivocal if 

iters were ≥200 to < 275 mIU/ml, and seronegative if titers were 

 200 mIU/ml, as per the manufacturer’s criteria [ 14 ]. 

Among available ELISA assays, Euroimmun emerged as an al- 

ernative for evaluating human measles IgG in serum or plasma. 

idely recognized for its precision and sensitivity, Euroimmun 

LISA demonstrated efficacy in measles-IgG detection and quantifi- 

ation. Its reliability and reproducibility have earned it widespread 

doption within the scientific and medical communities. The as- 

ay has also been reported to be accurate and is widely used 

or the detection of human measles-IgG [ 15 ]. It has been re- 

arded as a standard assay for resolving result discrepancies be- 

ween chemiluminescent immunoassay and Enzygnost [ 15 ]. Note- 

orthy for its accuracy, Euroimmun is cost-effective, requires 

ess time on deck, and is user-friendly. It offers both semi- 

uantitative and quantitative analysis options, boasting 100% sen- 

itivity and specificity. The determination of human measles-IgG 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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3

ntibody activity with Euroimmun is measured in Milli interna- 

ional units per milliliter (mIU/ml) based on the third Interna- 

ional Standard (IS) for Anti-measles (NIBSC code: 97/648) of the 

HO. 

tatistical analysis 

Based on measles IgG seronegativity of 88.2% by 4.2 months 

f age from an earlier study in South Africa [ 16 ], we aimed for

 sample size of 323 newborns per site. Samples were randomly 

elected from each of the sites. Models using various measles an- 

ibody decay rates in infancy were explored to estimate the pro- 

ortion of measles IgG seronegativity among newborns, with 0.05 

recision, assuming the true estimate is 0.30. Samples with titers 

 275 mIU/ml (i.e. inclusive of equivocal results) were categorized 

s seronegative for the analysis [ 17–19 ]. Continuous variables were 

escribed using means and standard deviation (SD), and categoric 

ariables were described using counts and proportions. Multivari- 

ble logistic regression analysis was performed to explore the as- 

ociation of measles IgG immunity seronegativity with maternal 

emographic and clinical features. Variables/factors considered in 

he logistic regression analysis included study site, hemoglobin 

evels, middle upper arm circumference (MUAC), body mass in- 

ex (BMI), maternal education, maternal occupation, parity, birth 

eight, gender, and whether the women were born before or after 

outine measles vaccination had been implemented at the study 

ite. To investigate the association between maternal age and vac- 

ine implementation, the year when the routine measles vaccina- 

ion program was introduced in each site was used as per the 

HO: Bangladesh (1980), Bhutan (1979), India (1978), Ethiopia 

1980), Kenya (1980), Mali (1986), Mozambique (1981), Nigeria 

1978), and South Africa (1983) [ 20 , 21 ]. All laboratory specimens 

nd database variables were identified by a numerical identifier. 

redictions of anti-measles IgG decay were derived using an IgG 

alf-life estimate of 28 days based on maternal antibody half-life, 

s well as 40 and 64 days as proposed by Oguti et al and Cáceres

t al., respectively [ 22 , 23 ]. Calculations for anti-measles IgG de- 

ay employed a standard quadratic equation, expressed as follows: 

gG (t) = IgG0 (
1 
2 ) 

t 
t1 / 2 . The model estimates the decline of mater- 

ally derived measles IgG levels using an exponential decay func- 

ion, where antibody concentration at time t was calculated with 

gGo representing the measured cord blood IgG concentration at 

irth, t1/2 denoting the assumed half-life of measles IgG (set at 28, 

0, or 64 days to account for biologic variability), and IgG (t) indi- 

ating the infant’s age in days. The proportion of measles seroneg- 

tivity is calculated from the predicted IgG at monthly intervals up 

o 6 months of age. Statistical analyses were performed using R 

4.3 (Vienna, Austria), STATA version 18 (Texas, USA), and Graph- 

ad Prism version 8.0 (San Diego, California). A P -value of ≤0.05 

as considered statistically significant. 

thical considerations 

The study was approved by the Human Research Ethics Com- 

ittee (HREC) at the University of the Witwatersrand in Johan- 

esburg, South Africa (HREC M210850). The parent study and the 

resent study were approved by all the site-specific ethics com- 

ittees, including the archiving and further testing of serum. Writ- 

en informed consent was obtained from the mothers, including on 

ehalf of their babies, prior to any study procedure including the 

rchiving and further testing of serum. 

esults 

Overall, 2,907 cord blood samples were analyzed, including 969 

nd 1,938 from South Asian and African countries, respectively. The 
3

ean age of mothers was 26.2 (SD 5.5) years, ranging from 23.6 

o 30.4 years with the minimum in Bangladesh and a maximum 

n Nigeria. Overall, 28.5% (774/2,907) had a hemoglobin level of 

 10.5 g/dl (i.e. anemia), with the prevalence of anemia ranging 

rom 4.2% in Ethiopia (13/308) to 78.8% (254/322) in Bangladesh. 

aternal nutritional status differed by country. The overall preva- 

ence of undernutrition (BMI < 18.5) was 6.8% (189/2,763), ranging 

rom < 2% in most countries except for India (8.7%; 28/231), Mali 

17.9%; 55/306), and Mozambique (30.9%; 100/323) ( Table 1 ). Over- 

ll, 16.5% (457/2,763) of women had a BMI ≥30 (obese), with the 

ighest prevalence of obesity being in South Africa (41.6%; 99/238) 

nd Nigeria (43.3%; 140/323). A higher percentage of newborns in 

angladesh weighed < 2,500 g (18.3% vs 2.5% to 11.1% elsewhere) 

 Table 1 ). 

easles IgG seronegativity 

Overall, 49.9% (95% confidence interval [CI] 48.1-51.7%; 

 = 1,451/2,907) of the newborns were seronegative for measles 

gG, with seronegativity being the highest in newborns from 

hutan (73.4%, 95% CI 68.3-77.9%; n = 237/323). Measles IgG 

eronegativity was also high among newborns from Kenya (65.0%, 

5% CI 59.6-70%; n = 210/323), Mali (63.8%, 95% CI 58.4-68.8; 

 = 206/323), and South Africa (63.2%, 95% CI 57.7-68.3%; 

 = 204/323) ( Figure 1 ) ( Supplementary Table S1 ). 

We further analyzed the risk factors associated with measles 

gG seronegativity in newborns at birth. Newborns of mothers born 

fter the widespread implementation of measles vaccination ex- 

ibited a significantly higher likelihood of seronegativity compared 

ith those born prior to the MV1 widespread distribution (ad- 

usted odds ratio [aOR] 1.78; 95% CI 1.43-2.21; P < 0.001) ( Table 2 ).

ompared with South Africa as a reference group, pregnant women 

esiding in Bhutan and Mali were more likely to give birth to new- 

orns who were seronegative for measles IgG (aOR 1.71; 95% CI 

.14-2.58 and aOR 4.8; 95% CI 1.18-32.5, respectively) ( Table 2 ). 

In site-stratified analysis, no association was observed between 

easles IgG seronegativity and the investigated variables on risk 

actors of the mothers and infants in Bangladesh, India, and Nigeria 

 Supplementary Tables S2, S5, S9 ). 

In Bhutan, however, newborns of mothers born post- 

idespread MV implementation exhibited a 3.41-fold increased 

ikelihood of measles IgG seronegativity compared with their coun- 

erparts born from mothers with measles infection-induced immu- 

ization (aOR 3.41; 95% CI 1.68-6.9; P = 0.001) ( Supplementary Ta- 

le S3 ). The findings also indicate a diminished correlation be- 

ween maternal hemoglobin levels and measles IgG seronegativity 

n neonates. Newborns, born from mothers with mild anemia 

how a decreased likelihood of measles IgG seronegativity when 

ontrasted with neonates born to mothers with normal levels of 

emoglobin (aOR 0.42; 95% CI 0.21-0.84; P = 0.01 and aOR 0.30; 

5% CI 0.10-0.90; P = 0.03, respectively) ( Supplementary Table S3 ). 

In Ethiopia, a similar increased trend of measles seronegativ- 

ty was observed in newborns of mothers born post-widespread 

f MV1 immunization compared with newborns of mothers with 

re-widespread MV1 immunization (aOR 1.93; 95% CI 1.09-3.43; 

 = 0.02) ( Supplementary Table S4 ). Furthermore, the birth weight 

f the newborn also emerged as a significant factor. The odds of 

eing measles IgG seronegative for underweight newborns ( < 2.5 g) 

ere 6.64 times than the odds of those with normal-weight ( ≥2.5- 

.5 kg) (aOR 6.64; 95% CI 1.15-38.17; P = 0.034) ( Supplementary 

able S4 ). 

Findings in Kenya observed a positive correlation between new- 

orns of mothers with vaccine-induced immunity and the propor- 

ion of seronegative children, as opposed to newborns of moth- 

rs naturally immunized against measles (aOR 1.89; 95% CI 1.01- 

.54; P = 0.04) ( Supplementary Table S6 ). Furthermore, based 
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Table 1 

Baseline characteristics of mothers and newborns at delivery in nine low- and middle-income African and South Asian countries. 

Characteristics Bangladesh Bhutan Ethiopia India Kenya Mali Mozambique Nigeria South Africa Overall 

Total participants 323 323 323 323 323 323 323 323 323 2907 

Maternal age, 

mean (SD), year 

23.6 (4.6) 26.3 (4.9) 25.1 (4.4) 26.4 (4.2) 25.8 (5.1) 26.1 (6.2) 25.3 (6.4) 30.4 (4.6) 26.7 (5.9) 26.2 (5.5) 

Hemoglobin (g/dl) 

Median 

(interquartile 

range) 

10 (9-10) 12.7 

(11.8-13.2) 

12.7 

(12-13.5) 

11.9 

(11.1-12.6) 

11 (9-12) 11.35 

(10.7-12) 

10.8 

(9.9-11.8) 

11.3 

(10.6-12) 

12.1 

(11.1-12.9) 

11.6 

(10.2-12.6) 

12-16 (Normal) 27 (8.4) 226 (73.4) 239 (77.6) 151 (46.7) 89 (29.2) 64 (38.1) 74 (22.9) 93 (31.7) 178 (55.4) 1.141 (40.7) 

10.6-11.9 (mild 

anemia) 

41 (12.7) 64 (20.8) 56 (18.2) 138 (42.7) 66 (21.6) 65 (38.7) 106 (32.8) 127 (43.3) 93 (28.9) 756 (28.3) 

≤10.5) (anemia) 254 (78.8) 18 (5.8) 13 (4.2) 34 (10.5) 150 (49.2) 39 (23.2) 143 (44.3) 73 (24.9) 50 (15.6) 774 (28.9) 

Maternal 

mid-upper arm 

circumference (cm) 

Under-weight 

( < 23) 

24 (7.4) 17 (5.5) 72 (22.9) 21 (8.1) 30 (9.3) (0) 6 (1.9) 4 (1.2) 13 (4.4) 187 (7.5) 

Normal weight 

( ≥23 to < 33)) 

299 (92.6) 284 (92.2) 243 (77.1) 198 (75.9) 280 (86.7) 31 (93.9) 302 (93.5) 265 (82.1) 213 (72.2) 2,115 (84.5) 

Overweight 

( ≥33) 

(0) 7 (2.3) (0) 42 (16.1) 13 (4.1) 2 (6.1) 15 (4.5) 54 (16.7) 69 (23.4) 202 (8.1) 

Maternal body 

mass index 

Underweight 

( < 18.5) 

0 (0) 0 (0) 2 (0.7) 28 (8.7) 0 (0.0) 55 (17.9) 100 (30.9) (0) 4 (1.7) 189 (6.8) 

Normal weight 

(18.6-24.9) 

144 (44.6) 70 (22.1) 156 (53.2) 130 (40.5) 154 (48.1) 225 (73.5) 159 (49.2) 58 (17.9) 73 (30.7) 1.169 (49.1) 

Overweight 

(25-29.9) 

179 (55.4) 161 (50.9) 116 (39.6) 102 (31.8) 113 (35.3) 26 (8.5) 64 (19.8) 125 (38.7) 62 (26.1) 948 (34.3) 

Obese ( ≥ 30) (0) 85 (26.9) 19 (6.5) 61 (19.0) 53 (16.6) 0 (0) (0) 140 (43.3) 99 (41.6) 457 (16.5) 

Highest level of 

education 

No schooling 21 (6.5) 60 (18.6) 45 (13.9) 3 (0.9) 39 (12.1) 189 (58.5) 30 (9.3) 1 (0.3) 388 (13.4) 

Primary school 45 (13.9) 46 (14.2) 166 (51.4) 17 (5.3) 187 (57.9) 86 (26.6) 120 (37.1) 44 (13.6) 16 (4.9) 727 (25.1) 

High school 182 (56.3) 150 (46.4) 51 (15.8) 67 (20.7) 69 (21.4) 42 (13.0) 165 (51.1) 138 (42.7) 260 (80.5) 1,124 (38.7) 

Tertiary 75 (23.2) 67 (20.7) 61 (18.9) 236 (73.1) 28 (8.7) 6 (1.9) 8 (2.5) 140 (43.3) 47 (14.6) 668 (23.0) 

Parity 

Primigravida 151 (46.7) 197 (60.9) 187 (57.9) 172 (53.2) 106 (32.8) 54 (16.7) 80 (24.8) 69 (21.4) 121 (37.5) 1,137 (39.1) 

1-2 144 (44.6) 109 (33.7) 112 (34.7) 131 (40.6) 132 (40.9) 130 (40.2) 146 (45.2) 151 (46.8) 170 (52.6) 1,225 (42.1) 

≥3 28 (8.7) 17 (5.3) 24 (7.4) 20 (6.2) 85 (26.3) 139 (43.0) 97 (30.0) 103 (31.9) 32 (9.9) 545 (18.8) 

Newborn 

characteristics 

Weight (kgs) 

< 2.5 59 (18.3) 14 (4.3) 9 (2.8) 36 (11.1) 28 (8.7) 34 (10.5) 13 (4.0) 8 (2.5) 10 (3.1) 211 (7.3) 

≥2.5-4.5 264 (81.7) 306 (94.8) 312 (96.6) 286 (88.5) 295 (91.3) 286 (88.5) 308 (95.4) 312 (96.6) 310 (95.9) 2,679 (92.2) 

≥4.5 0 (0.0) 3 (0.9) 2 (0.6) 1 (0.3) 0 (0.0) 3 (0.9) 2 (0.6) 3 (0.9) 3 (0.9) 17 (0.6) 

Gender 

Male 166 (51.4) 179 (55.4) 176 (54.5) 169 (52.3) 160 (49.5) 190 (58.8) 185 (57.3) 163 (50.5) 168 (52.1) 1,556 (53.5) 

Female 157 (48.6) 144 (44.6) 147 (45.5) 154 (47.7) 163 (50.5) 133 (41.2) 138 (42.7) 160 (49.5) 155 (47.9) 1,351 (46.5) 
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n BMI, newborns from women classified as obese in Kenya, 

xhibited a positive association with an increase measles IgG 

eronegativity in newborns (aOR 2.85; 95% CI 1.16-6.98; P = 0.02) 

 Supplementary Table S6 ). 

In Mali, relative to newborns of naturally immunized mothers, 

here was a high odds of being measles IgG seronegative in new- 

orns of mothers born post-widespread MV distribution (aOR 1.92; 

5% CI 1.00-3.7; P = 0.049) ( Supplementary Table S7 ). In multivari- 

te logistic regression analysis, there was no difference in odds of 

ewborns from mothers being measles IgG seronegative based on 

arity, hemoglobin level strata, maternal mid-upper arm circum- 

erence or BMI, maternal occupation, and education. 

The findings from Mozambique reveal two positive associations 

f measles IgG seronegativity: one between newborns from moth- 

rs possessing vaccine-induced immunity (aOR 1.89; 95% CI 1.01- 

.5; P = 0.04), and between newborns from mothers classified as 

verweight based on BMI (aOR 2.86; 95% CI 1.16-6.98; P = 0.02) 

 Supplementary Table S8 ). 

In the final site examined, South Africa, newborns of moth- 

rs born post-widespread MV distribution exhibited a 2.12-fold 

ncreased likelihood of seronegativity compared with their coun- 
4

erparts born prior to newborns from mothers born before the 

accine’s dissemination (aOR 2.12; 95% CI 1.03-4.34; P = 0.04) 

 Supplementary Table S10 ). 

ntibody decay 

Based on a predictive model assuming an IgG half-life of 28 

ays, an estimated 65.0% (1,891/2,907), 78.5% (2,283/2,907), and 

0.2% (2,622/2,907) of infants would be measles IgG seronegative 

t 1, 2, and 3 months, respectively, in the absence of additional 

xposure. Newborns in Bhutan had a high seronegativity rate at 

irth (73.4%, n = 237/323), and by 3 months, except for three 

nfants, every infant was predicted to be measles IgG seronega- 

ive (99.1%, n = 320/323). Although newborns from Nigeria had 

he lowest seronegativity rate at birth (21.7%, n = 70/323) com- 

ared with other study sites, according to our predictions, it would 

ake 4 months for all newborns to be measles IgG seronegative 

 Supplementary Table S11 ). Furthermore, this model predicted that 

ll newborns from each geographical site would attain seronega- 

ivity by the age of 4 months. However, by the age of 3 months, 

nfants from certain sites demonstrated a more rapid attainment of 
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Figure 1. Measles immunoglobulin G seronegative status of newborns at birth in nine low- and middle-income countries. 
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eronegativity, with percentages exceeding 90%. Notably, this phe- 

omenon was observed in infants in Mali (95.7%, n = 309/323), 

outh Africa (95.0%, n = 307/323), Kenya (93.8%, n = 303/323), 

nd Mozambique (93.8%, n = 303/323) ( Supplementary Table S11 ) 

 Figure 2a ). 

Based on a predictive model assuming an IgG half-life of 

0 days, 70.8% (2,055/2,907), 88.3% (2,568/2,907), and 100% 

323/323) of all infants included in the study were predicted to 

e measles IgG seronegative at 2, 4, and 6 months, respectively 

 Supplementary Table S12 ). By the end of the 4th month, in- 

ants born in Mozambique, Kenya, South Africa, Mali, and Bhutan 

ere predicted to reach measles IgG seronegativity levels sur- 

assing 90%, with percentages standing at 92.3% (298/323), 92.6% 

299/323), 94.1% (304/323), 94.1% (304/323), and 98.1% (317/323), 

espectively ( Supplementary Table S12 ). In our predictive model, 

t was discerned that by the 5th month, measles IgG seronegativ- 

ty levels in infants were predicted to increase within the range 

f 90.7-100%. Notably, within this framework, infants from Bhutan 

merged as the earliest cohort to achieve full measles IgG sus- 

eptibility by the age of 5 months ( Supplementary Table S12 ) 

 Figure 2b ). 

In our final predictive model featuring a half-life of 

4 days, 63.3% (1,839/2,907), 75.2% (2,185/2,907), and 86% 

2,500/2,907) of infants under investigation were predicted to 

e measles IgG seronegative at 2, 4, and 6 months, respectively 

 Supplementary Table S13 ). Although this model depicts a slow 

ecay of measles IgG in comparison to the preceding two models, 

xcept for newborns in India, it was predicted that in all other 

ites, measles IgG seronegativity would exceed 50% at 3 months 

f age, ranging from 50.8-89.9%. Universal susceptibility was not 

bserved by the 6th month, however, infants in Mozambique, 

enya, South Africa, Mali, and Bhutan were predicted to exhibit 

easles IgG seronegativity levels above 90%, with rates at 90.4% 
5

292/323), 91.3 (295/323), 92.6 (299/323), 93.2 (301/323), and 96.3 

311/323), respectively ( Supplementary Table 13 ) ( Figure 2c ). 

iscussion 

This study, from low-middle-income settings, revealed a high 

49.9%) measles IgG seronegativity among newborns at birth. Our 

tudy also reported that most (73.4%) of newborns from Bhutan 

ere measles IgG seronegative. Furthermore, newborns of moth- 

rs born after measles vaccination had higher odds (aOR 1.8) of 

easles seronegativity than infants born to mothers with no vac- 

ination history. In addition, our predictive models on the measles 

gG antibody decay kinetics predicted that 70.8%, 88.3%, and 100% 

f newborns would be measles IgG seronegative by 2, 4, and 6 

onths of age, respectively. 

The findings from our study indicate that nearly half of the 

ewborns are born without adequate protection against measles, 

lacing them at immediate risk of infection. This rate is con- 

iderably higher than those reported in previous studies, where 

eronegativity rates ranged from 7.6% in South Africa to 30.4% in 

hina [ 24–26 ]. The discrepancy between our findings and these 

arlier studies could be attributed to differences in maternal im- 

unity, regional vaccination coverage, and environmental factors 

ffecting transplacental antibody transfer [ 27 , 28 ]. 

Another informative observation in our study is the strong 

ependence of infant measles IgG levels on maternal antibody 

oncentrations, emphasizing the importance of transplacental- 

cquired immunity in protecting newborns during the first months 

f life. This finding aligns with earlier research, suggesting that 

educed transplacental transfer of maternal anti-measles IgG con- 

ributes to the increasing seronegativity observed in young infants 

 5 , 23 ]. Studies have shown that maternal immunity acquisition, 

hether through vaccination or natural infection, significantly in- 
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Figure 2. Predicted decay of measles immunoglobulin G during infancy; (a) half-life = 28 days, (b) half-life = 40 days, (c) half-life = 64 days. 
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Table 2 

Overall association of maternal characteristics with measles seronegative status of newborns at birth in nine low- and middle-income African and South Asian countries. 

Characteristic of mothers Measles IgG seronegative Measles IgG seropositive Crude_OR P -value Adjusted_OR a P -value 

Maternal year of birth 

Before vaccine 549/1451 (37.8) 797/1456 (54.7) Ref 

After vaccine 902/1451 (62.2) 659/1456 (45.3) 1.99 (1.71-2.3) < 0.001 1.78 (1.43-2.21) < 0.001 

Sites 

South Africa 204/1451 (14.1) 119/1456 (8.2) Ref 

Bangladesh 146/1451 (10.1) 177/1456 (12.2) 0.48 (0.35-0.66) < 0.001 0.53 (0.35-0.79) 0.002 

Bhutan 237/1451 (16.3) 86/1456 (5.9) 1.61 (1.15-2.25) 0.005 1.71 (1.14-2.58) 0.010 

Ethiopia 97/1451 (6.7) 226/1456 (15.5) 0.25 (0.18-0.35) < 0.001 0.28 (0.18-0.43) < 0.001 

India 100/1451 (6.9) 223/1456 (15.3) 0.26 (0.19-0.36) < 0.001 0.3 (0.2-0.46) < 0.001 

Kenya 210/1451 (14.5) 113/1456 (7.8) 1.08 (0.79-1.5) 0.623 1.25 (0.82-1.9) 0.295 

Mali 206/1451 (14.2) 117/1456 (8.0) 1.03 (0.75-1.42) 0.870 4.8 (1.18-32.55) 0.05 

Mozambique 181/1451 (12.5) 142/1456 (9.7) 0.74 (0.54-1.02) 0.065 0.89 (0.59-1.35) 0.589 

Nigeria 70/1451 (4.8) 253/1456 (17.4) 0.16 (0.11-0.23) < 0.001 0.22 (0.15-0.33) < 0.001 

Hemoglobin (g/dl) 

Normal (12-16) 579/1315 (44.0) 562/1356 (41.4) Ref 

Mild anemia (10.6-11.9) 348/1315 (26.5) 408/1356 (30.1) 0.83 (0.69-1) 0.044 0.88 (0.7-1.11) 0.290 

Anemia ( ≤10.5) 388/1315 (29.5) 386/1356 (28.5) 0.98 (0.81-1.17) 0.791 0.86 (0.66-1.11) 0.238 

Maternal MUAC 

Normal weight ( ≥23 to < 33) 86/1228 (7.0) 101/1276 (7.9) Ref 

Under-nutrition ( ≤22.9) 1057/1228 (86.1) 1058/1276 (82.9) 1.17 (0.87-1.59) 0.296 0.92 (0.65-1.32) 0.661 

Overweight ( ≥33) 85/1228 (6.9) 117/1276 (9.2) 0.85 (0.57-1.27) 0.438 0.68 (0.4-1.15) 0.149 

Maternal BMI 

Underweight ( < 18.5) 109/1370 (7.9) 80/1393 (5.7) Ref 

Normal weight (18.6-24.9) 596/1370 (43.5) 573/1393 (41.1) 0.76 (0.56-1.04) 0.088 0.89 (0.59-1.36) 0.595 

Overweight (25-29.9) 437/1370 (31.9) 511/1393 (36.7) 0.63 (0.46-0.86) 0.004 0.89 (0.57-1.39) 0.617 

Obese ( ≥30) 228/1370 (16.6) 229/1393 (16.4) 0.73 (0.52-1.03) 0.072 1.41 (0.85-2.35) 0.185 

Highest level of education 

No schooling 227/1451 (15.6) 161/1456 (11.1) Ref 

Primary school 376/1451 (25.9) 351/1456 (24.1) 0.76 (0.59-0.97) 0.030 1.11 (0.76-1.62) 0.589 

High school 592/1451 (40.8) 532/1456 (36.5) 0.79 (0.62-1) 0.047 1.03 (0.71-1.5) 0.870 

Tertiary 256/1451 (17.6) 412/1456 (28.3) 0.44 (0.34-0.57) < 0.001 1.03 (0.68-1.56) 0.884 

Parity 

Primigravida 592/1451 (40.8) 545/1456 (37.4) Ref 

1-2 631/1451 (43.5) 594/1456 (40.8) 0.98 (0.83-1.15) 0.787 1.11 (0.89-1.37) 0.354 

≥3 228/1451 (15.7) 317/1456 (21.8) 0.66 (0.54-0.81) < 0.001 0.76 (0.55-1.06) 0.105 

Newborn characteristics 

Weight (kgs) 

2.5-4.5 1341/1451 (92.4) 1338/1456 (91.9) Ref 

< 2.5 103/1451 (7.1) 108/1456 (7.4) 0.95 (0.72-1.26) 0.729 0.98 (0.7-1.39) 0.931 

≥4.5 7/1451 (0.5) 10/1456 (0.7) 0.7 (0.25-1.82) 0.468 1.08 (0.32-3.57) 0.898 

Gender 

Male 781/1451 (53.8) 775/1456 (53.2) Ref 

Female 670/1451 (46.2) 681/1456 (46.8) 0.98 (0.84-1.13) 0.747 0.99 (0.83-1.19) 0.941 

a ORs were adjusted for all variables in the analysis including sites, vaccine generation, hemoglobin, MUAC, BMI, education, occupation, parity, weight, gender.BMI: body 

mass index; Ig: immunoglobulin; MUAC: mid-upper arm circumference; OR: odds ratio; Ref, reference. 
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uences the quality and quantity of antibodies transferred to the 

etus [ 29 ]. In this study, maternal measles vaccination status was 

nferred based on the year routine measles immunization was in- 

roduced into the public immunization program in each country, 

ather than being directly ascertained. This approach provides an 

stimate of maternal immunity sources (natural infection vs vac- 

ination) at a population level, but it does not account for indi- 

idual variations, such as catch-up vaccinations or private immu- 

ization programs. Nevertheless, this method aligns with previ- 

us studies assessing population-level immunity trends. Vaccine- 

nduced immunity, for instance, may result in antibodies with al- 

ered epitope specificity or avidity, impairing their transplacental 

ransfer efficiency [ 5 ]. Our study supports this, as we observed 

igher seronegativity in newborns born to mothers with vaccine- 

nduced immunity. Our results corroborate findings from previ- 

us studies in South Africa [ 16 , 24 ], Belgium [ 5 ], and other regions

 30 , 31 ]. Although antibodies are a reliable indicator of measles im- 

unity, cell-mediated immunity (CMI) plays a crucial role in long- 

erm protection [ 32 ]. The CMI may be as necessary as antibodies 

n providing immunity against measles. A strong maternal CMI re- 

ponse typically results in higher levels of transferred measles an- 

ibodies, which can delay the rate of antibody decay in the infant 

 33 ]. Adequate activation of the CMI response may be essential for 
7

he development and long-term maintenance of measles antibod- 

es [ 33 ]. Maternal antibodies can interfere with measles vaccina- 

ion, leading to potential vaccine failure in infants. Studies have 

hown that even low levels of maternal antibodies can inhibit the 

roduction of measles-specific antibodies in vaccinated infants, al- 

hough T-cell responses may still occur. In addition, residual ma- 

ernal antibodies can neutralize the live attenuated measles virus 

n the vaccine, preventing adequate seroconversion and leading to 

rimary vaccine failure [ 34 ]. 

Nigeria, one of our study sites, exhibited the highest seropos- 

tivity of measles IgG (78.3%) among newborns, suggesting ro- 

ust natural immunity among women in this region. Our findings 

orroborate a previous study in Nigeria, suggesting immunity to 

easles in all newborns investigated at birth [ 10 ]. The frequent 

irculation of the measles virus in these regions might lead to 

omen developing higher natural immunity over time, potentially 

esulting in a high transplacental transfer to newborns [ 35 ]. This 

ould also be due to the frequent circulation of the measles virus 

n densely populated areas, leading to repeated natural boosts in 

mmunity. Vaccination remains the preferred strategy for measles 

ontrol. Although natural infection results in robust immunity, it 

omes at the cost of significant morbidity and mortality, particu- 

arly in infants and immunocompromised individuals. 
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Because newborns were not followed up after birth, the pre- 

ise value of the decay could not be reported. The prediction of 

ntibody decay was evaluated using three models. Our predictive 

odels indicate a rapid decline in measles IgG levels, with most 

ewborns likely to become susceptible to measles before reaching 

 months of age. This accelerated loss of immunity highlights a 

ritical vulnerability period for infants, which is earlier than the 

urrent WHO recommended age for MV1 at 9 months. Previous 

tudies have shown similar trends of early antibody decay, with 

eronegativity rates rising dramatically by 6 months of age in var- 

ous countries, including Nigeria [ 10 ], India [ 36 ], Canada [ 37 ], and

outh Africa [ 38 ]. Furthermore, due to the lack of a natural im-

unologic booster by measles virus not circulating endemically, 

 concerning trend was observed among infants of naturally im- 

une mothers who tend to become more susceptible to measles 

t an average of 3-6 months of age, a period potentially shorter 

n newborns of vaccinated mothers [ 39 ]. Supporting this observa- 

ion, research by Leuridan et al. found the median duration of ma- 

ernal anti-measles antibodies in infants born from naturally im- 

une mothers was approximately 3.78 months, whereas in infants 

orn to vaccinated mothers, it was notably shorter at 0.97 months 

 5 ]. If newborns have antibody concentrations below the protective 

hreshold at birth, their susceptibility to severe measles illness in- 

reases [ 40 ]. This early loss of immunity calls into question the ad- 

quacy of the current vaccination schedule in protecting young in- 

ants in regions with high measles exposure. Although our model- 

ased approach relied on established half-life estimates to predict 

he timing of seronegativity, we recognize that antibody decay can 

e influenced by individual variability and environmental factors. 

o account for this, we used varying half-life values conducted in 

ensitivity analyses, all of which produced similar findings. The 

ack of serial serologic measurements in this study means that the 

xact rate of antibody decay and the timing at which individual in- 

ants become susceptible remain uncertain. Future research incor- 

orating prospective follow-up of infants, with repeated serologic 

ssessments and documentation of measles exposure or infection, 

ould be critical to validate these findings. Moreover, such studies 

ould inform whether alternative immunization strategies, such as 

arlier measles vaccination or maternal immunization during preg- 

ancy, could effectively reduce early-life vulnerability. 

The WHO recommended age for measles immunization in chil- 

ren was based on the assumption that maternal immunity would 

rotect infants for at least 9 months after birth. However, infants 

ounger than 6 months of age accounted for more than 32% of 

ll reported measles cases in the African and Western Pacific re- 

ion [ 9 ]. Moreover, findings from our study observed a substan- 

ial number of newborns at risk of measles infection from birth. 

indings from this study support the emerging concern of measles 

usceptibility during early infancy and before the age (9 months) 

hich WHO recommends for MV1. Strategies aimed at mitigating 

easles susceptibility prior to the age at which the first vaccine 

s given warrant urgent consideration within public health frame- 

orks. A booster dose of MV in non-pregnant women of repro- 

uctive age could also assist in boosting immunity and enhancing 

ransplacental anti-measles IgG in a future pregnancy. However, 

hether measles vaccination of non-pregnant women enhances 

ransplacental measles IgG transfer in a future pregnancy has not 

een evaluated and such a strategy may be challenging to imple- 

ent. Another strategy could be early vaccination of infants at 4-6 

onths of age. Evidence from studies evaluating early measles vac- 

ination suggests that immunization as early as 4.5 months and at 

 months has been explored, including in South Africa, with vary- 

ng outcomes in terms of immunogenicity and protection [ 16 , 41 ]. 

lthough early vaccination may provide critical protection in set- 

ings with high measles transmission and waning maternal anti- 

odies, concerns remain regarding potential vaccine failure due to 
8

nterference from residual maternal antibodies. More data would 

e required to determine whether maternal-acquired measles IgG 

ay interfere with infant immune responses and to refine the op- 

imal timing of early immunization to maximize both its safety and 

ffectiveness. 

In conclusion, current WHO recommendations for MV1 at 9 

onths may leave a significant window of susceptibility for in- 

ants, particularly in regions with high measles seronegativity 

ates. Consideration should be given to lowering the age of the 

rst vaccine dose to 4-6 months to better protect infants during 

heir most vulnerable early months, possibly coupled with two ad- 

itional doses before 2 years of age. 

The study’s main limitation is the lack of longitudinal follow-up 

ata, which prevents direct assessment of how measles-IgG anti- 

odies decay over time in newborns. Instead, the study relies on 

redictive models, which may not fully capture the actual dynam- 

cs of antibody decline. Nevertheless, the seronegativity at birth al- 

eady showed a high proportion of neonates would be suscepti- 

le to measles. In addition, enrolling pregnant women only from 

7 weeks of gestation onward may lead to an underestimation 

f the association between maternal antibody levels and measles 

eronegativity with adverse outcomes, such as preterm birth or 

tillbirth. Another limitation of this study is the lack of data on 

ertain confounding factors that may influence transplacental an- 

ibody transfer. Although our study did not include HIV-positive 

articipants, we enrolled otherwise healthy mother-newborn pairs, 

hereby minimizing the influence of major maternal comorbidi- 

ies on transplacental antibody transfer. Consequently, although 

ur findings may not be fully generalizable to the broader pop- 

lation, they likely represent a conservative estimate of neonatal 

easles susceptibility. Other unmeasured factors, such as maternal 

o-infections and broader indicators of nutritional status beyond 

nemia and obesity may further accentuate the observed trends. 

hese considerations should be taken into account when interpret- 

ng our results. 
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