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Abstract 
Delays in identifying and treating individuals with infectious tuberculosis (TB) contribute 

to poor health outcomes and allow ongoing community transmission of M. tuberculosis 

(Mtb). Current recommendations for screening for tuberculosis specify community char-

acteristics (e.g., areas with high local tuberculosis prevalence) that can be used to target 

screening within the general population. However, areas of higher tuberculosis burden are 

not necessarily areas with higher rates of transmission. We investigated the transmission 

of Mtb using high-resolution surveillance data in Blantyre, Malawi. We extracted and per-

formed whole genome sequencing on mycobacterial DNA from cultured M. tuberculosis 

isolates obtained from culture-positive tuberculosis cases at the time of tuberculosis (TB) 

notification in Blantyre, Malawi between 2015-2019. We constructed putative transmission 
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networks identified using TransPhylo and investigated individual and pair-wise demo-

graphic, clinical, and spatial factors associated with person-to-person transmission. We 

found that 56% of individuals with sequenced isolates had a probable transmission link 

to at least one other individual in the study. We identified thirteen putative transmission 

networks that included five or more individuals. Five of these networks had a single spatial 

focus of transmission in the city, and each focus centered in a distinct neighborhood in the 

city. We also found that approximately two-thirds of inferred transmission links occurred 

between individuals residing in different geographic zones of the city. While the majority 

of detected tuberculosis transmission events in Blantyre occurred between people living 

in different zones, there was evidence of distinct geographical concentration for five 

transmission networks. These findings suggest that targeted interventions in areas with 

evidence of localized transmission may be an effective local tactic, but will likely need to 

be augmented by city-wide interventions to improve case finding to have sustained impact.

Introduction
Tuberculosis (TB) is a major global health threat and a leading infectious cause of death. The 
World Health Organization’s (WHO) End TB Strategy aims to reduce global tuberculosis 
incidence by 80% by 2030 from 2015 levels [1]. Rapid diagnosis and treatment, key pillars of 
the End TB Strategy, can reduce tuberculosis transmission by limiting the time an individual 
is infectious and potentially transmitting M. tuberculosis (Mtb). Passive case detection, which 
depends on individuals with tuberculosis seeking care, is insufficient to rapidly reduce Mtb 
transmission in most settings [2]. In high-burden settings, WHO recommends systematic 
screening for tuberculosis disease in communities [3]. However, there is inconsistent evidence 
to indicate whether screening decreases tuberculosis prevalence [4,5].

Targeting screening in areas where most transmission occurs may decrease TB prevalence 
[6,7], but identifying these areas using routinely collected data is challenging. Among newly 
infected individuals, the incubation period is variable and the risk of progressing to symptom-
atic disease is generally low [8]. Areas of high disease burden may therefore reflect higher risk 
of progression to active disease rather than higher risk of transmission [9]. This phenomenon 
may be more pronounced in settings with a high prevalence of human immunodeficiency 
virus (HIV) because people living with HIV are more likely to progress to active tuberculosis 
disease [10] and less likely to transmit Mtb to others [11]. Consequently, methods are needed 
that can identify areas of active transmission, which may not necessarily align with areas of 
high notification rates.

The increasing availability of whole genome sequencing (WGS) data, paired with method-
ological advances in transmission inference, has improved the ability to understand pathogen 
transmission dynamics [8,12,13], information that is critical for the design of targeted active 
case finding efforts. Several studies have leveraged these types of data to characterize spatial 
patterns in tuberculosis burden and Mtb transmission [14–19], but few have been conducted 
in cities with high rates of TB/HIV co-infection [20].

The aim of this study was to describe patterns of TB transmission in an endemic setting 
using high-resolution surveillance and WGS data. In this study, we collected and sequenced 
mycobacterial specimens from individuals diagnosed with culture-positive tuberculosis in 
Blantyre, Malawi between 2015 and 2019. We used WGS data to infer networks of transmis-
sion; we paired those findings with geographical coordinates (GPS) of patient home locations 
to identify local transmission of specific strains and describe patterns of transmission between 
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administrative areas. We hypothesized that whole genome sequencing would provide novel 
insights into Mtb transmission dynamics in a city with a high prevalence of both tuberculosis 
and HIV.

Methods

Study setting and population
Blantyre is a city in southern Malawi, with a population of approximately 800,000 [21]. It is 
the second largest city in Malawi and is the nation’s industrial and commercial capital. Over 
half of the population live in areas without access to basic municipal services and 43% of city 
land is considered unplanned or rural [22]. Blantyre is a hilly city, and its varied topography 
creates distinct neighborhoods separated by ridges and valleys.

This retrospective study included people identified through passive case detection and 
diagnosed with tuberculosis in Blantyre, Malawi between 1 January 2015 and 31 Decem-
ber 2019. All people with notified tuberculosis in Blantyre were registered in the ePAL 
(electronic Participant Locator) system [23–25]. ePAL is an app-based data entry platform 
for the collection of patient information combined with an electronic case report form 
with high resolution satellite maps and community-identified points of interest [25]. Data 
available in ePAL include age, sex, diagnosing clinic, microbiology results (acid-fast bacillus 
[(AFB]) smear and Xpert MTB/RIF), symptom history and duration, tuberculosis classifi-
cation (pulmonary, extra-pulmonary), HIV and antiretroviral therapy (ART) status, HIV 
clinic (if applicable), presence of known TB exposures (e.g., household contacts), locations 
of the three most recent clinics attended, number of hospital admissions within the year 
preceding diagnosis, and a range of poverty indicators. The patient’s current home location, 
selected via touch-screen and converted in-app to GPS coordinates [25], is also available. 
The authors of this study had access to data that could identify individual participants, 
including age, gender, and home GPS coordinate data. The authors were given access to all 
data in January, 2021.

We estimated tuberculosis notification rates at a resolution of 500 m2 grid cells. Population 
denominators were calculated from WorldPop [21] 2020 data and aggregated from the origi-
nal resolution of 100 m2. We also present grid-specific HIV prevalence estimates, which were 
derived from two national HIV prevalence studies, one Blantyre-specific prevalence study, 
and antenatal prevalence data. These data were combined in a Bayesian model to derive highly 
spatially resolved HIV prevalence estimates, as described previously [26].

Ethics statement
The study protocols were reviewed and approved by the University of Malawi College of 
Medicine Research and Ethics Committee (#P.12/18/2556), the London School of Hygiene and 
Tropical Medicine (#16228-4), and Yale (#2000028431). Oral consent was provided by people 
registering for TB treatment for electronic data capture, including recording of household 
co-ordinates. Oral consent and assent were used for the latter since the electronic register data 
capture was conducted as part of normal clinical practice by District TB Officers. Jr

Laboratory regrowth, DNA isolation, and whole genome sequencing
We set out to re-culture and sequence samples from all culture-positive cases notified over the 
five-year study period. Study isolates were thawed from -80°C and cultured in liquid Middle-
brook 7H9 media using the BD BACTECT™ MGIT™ 960 system, then subcultured on Löwen-
stein–Jensen medium at 37°C to obtain pure colonies. A minimum of 1 µg Mtb DNA (either 
100µl of 10000 ng/ml, or 40µl of 25000 ng/ml, etc) was manually extracted following standard 
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operating procedures as previously described [27] and validated in-country, with DNA stored 
at -20oC before shipping for sequencing at TGen in Flagstaff, Arizona.

Sequencing libraries were constructed using either Illumina’s DNA Prep kit or Watch-
maker’s DNA Library Prep Kit with Fragmentation. Whole genome sequencing (WGS) was 
performed on Illumina NextSeq550 or NextSeq1000 to produce paired-end 150 bp reads. 
A phiX (Illumina) sequencing control was spiked into each run at 1% of the total library to 
be sequenced to facilitate run performance monitoring. Raw sequencing FASTQ files were 
checked for non-Mycobacterium DNA using Kraken; [28] isolates containing > 80% Mtb 
reads were retained and non-Mtb reads filtered out using a custom script. Sequence reads 
were mapped to the H37Rv reference strain (GenBank accession number NC_000962.3) with 
BWA v.0.7.17 ‘mem’ [29], removing sequences with < 80% mapping to the reference strain 
and <50x average coverage.

Variant calling was carried out using GATK v.4.4.0.0 ‘HaplotypeCaller’ and ‘Gene-
typeGVCFs’ [30]. Single nucleotide polymorphisms (SNPs) were filtered to remove sites with 
low quality (Q < 20), low read depth (DP < 5), or high proportion missingness (missing call in 
≥ 10% of isolates). Sites showing more than one allele (mixed sites) were assigned the majority 
allele where ≥ 90% of reads agreed, otherwise these were assigned an ambiguous character ‘N’. 
Finally, sequences with a high likelihood of mixed infection identified using MixInfect [31] 
were removed. In silico lineage prediction and drug resistance profiling was carried out on the 
remaining isolates using TB-Profiler v.5.0.1 [32].

Phylogenetic reconstruction
A multi-sequence alignment of concatenated SNPs was used to produce phylogenetic trees. 
SNPs in repetitive regions and known microbial resistance-associated and PE/PPE genes were 
removed to account for potential homoplasy that may confound phylogenetic reconstruction 
(S1 Table). IQ-tree v.2.2.2.6 [33] was used to construct a maximum-likelihood phylogeny of all 
isolates, with the ‘-m TEST’ parameter used to determine the optimal nucleotide substitution 
model of Kimura’s model with unequal base frequencies (K3Pu+F).

Transmission inference
Transmission networks and the probability of person-to-person transmission among 
sequenced cases were inferred using a two-step process. First, we identified preliminary, 
broad clusters of sequences using a 50 SNP threshold and constructed timed phylogenies with 
BEAST2 v.2.7.5 [34]. We used a relaxed lognormal substitution rate and constant coalescent 
population tree prior, along with adapting the XML file to include a correction for invariant 
sites. We ran the model for 2x108 Markov chain Monte Carlo (MCMC) iterations or until con-
vergence was achieved and an adequate number of posterior samples were collected, demon-
strated by the collected samples from all parameters reaching an effective sample size (ESS) of 
greater than 200 after a 20% burn-in was discarded.

Second, we ran TransPhylo [35] on each broad cluster to identify transmission networks. 
We used the implementation of TransPhylo with simultaneous inference of multiple trees [14] 
to account for phylogenetic uncertainty by taking a random sample of 50 posterior trees from 
the BEAST2 output, discarding the first 20% as burn-in. We assumed a prior gamma genera-
tion time distribution (α =1.3, β = 0.3) and a prior gamma sampling time distribution (α =1.1, 
β = 0.4), as has been previously applied for Mtb transmission reconstruction [35–37]. We 
ran the model for 1x105 MCMC iterations using a fixed within-host coalescent parameter of 
100/365 and a beta sampling proportion distribution (α = 2, β = 20) that updated through the 
runs. This produced a predicted pairwise probability of direct transmission between isolates in 
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clusters, and all isolates that were not present in the same broad cluster were de facto assigned 
a pairwise transmission probability of 0.

Transmission networks predicted by TransPhylo for each broad cluster with the highest 
probability were further refined. Where inferred networks were linked by more than three 
non-sampled hosts, we considered these as separate networks. This allowed us to identify 
putative transmission networks while accounting for missing cases.

Identification of spatial foci of transmission
For each putative transmission network with at least five cases, we investigated spatial areas 
where individuals with tuberculosis had relatively higher likelihoods of transmission to or 
from others in the area, based on individuals’ reported home locations. We called these areas 
spatial foci of transmission, and we identified them using a non-parametric distance-based 
mapping (DBM) [38] approach implemented in the R package hotspotr [39]. Using hotspotr, 
we divided the city into a 100 by 100 grid of cells (each cell is 194 m by 144 m). The analysis 
then proceeded for each transmission network. First, we selected a transmission network to 
analyze. Second, we used the home location of sequenced TB cases that were not part of that 
transmission network to calculate the expected number of cases within each grid cell. Third, 
we calculated the risk that there are more cases belonging to the transmission network in 
a given grid cell than expected, assigning a score between 0 (no spatial aggregation of indi-
viduals from the same transmission network) and 1 (highest risk of spatial aggregation). We 
repeated these steps for each transmission network with five or more individuals. Any grid 
cell with a score ≥ 0.95 was considered a spatial focus of transmission, and we used a narrow 
window (width = 0.01) to smooth results across grid cells [39]. Note that this method allows 
that there may be multiple foci of transmission for a single transmission network.

Estimation of factors associated with transmission
We used a dyadic regression model to understand the factors associated with pairs of individ-
uals (1) belonging to the same transmission network and (2) having more closely related Mtb 
isolates (conditional on belonging to the same network). To answer the first question, we fitted 
a single logistic regression model using a binary outcome of whether two individuals were in 
the same network. We included several predictors (age, sex, HIV status, clinic where HIV care 
is received (if applicable), clinic where TB diagnosis was made), and we included the distance 
between homes as two effects in the model; continuous distance between cases that were close 
together (< 6 km) and cases that were further apart (≥ 6 km). We chose to model distance in 
this way because we believe the association between distance and cluster membership may 
be stronger at shorter distances; we performed model comparisons using AIC, and found 
that two effects outperformed a single linear effect, and a 6 km threshold outperformed other 
choices of threshold.

To answer the second question (i.e., which factors are associated with two individuals in 
the same network having more similar strain sequences), we performed a separate analysis in 
which we fitted a negative binomial regression model with a logit link for each transmission 

network with at least 10 cases (i.e., 
10
2

45









=   pairs ), and we modeled the number of SNPs by 

which pairs differed. This allowed us to investigate predictors of genetic similarity of iso-
lates. We used the same set of covariates as above, and also included the zone in which the 
individuals resided. We excluded predictors if there was missingness among any individuals 
within the network or if there were fewer than four pairs of individuals in any level of the 
predictor.
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We implemented these models using the R package GenePair [40]. Regression models with 
dyadic outcomes will produce effect estimates with erroneously reduced uncertainty if the cor-
relation between dyadic outcomes is not considered [40,41]. GenePair addresses this potential 
problem by including spatially structured individual-level random effect parameters that 
induce correlation between the dependent variables [40]. For all analyses, we based inference 
on samples from the joint posterior distribution, removing 10,000 iterations of burn-in and 
thinning the remaining 25,000 by a factor of 5 to reduce correlation in the posterior samples.

Transmission flow analysis
Using the posterior transmission probabilities obtained from TransPhylo, we computed the 
number of transmission events between and within each of the seven zones (we mapped a 
sequenced TB case to a zone based on their reported home location), assuming one possible 
infector per infected individual. That is, the individual with the highest posterior probability 
of transmission is taken to be the infector of each recipient. We then assign infector-recipient 
pairs to their respective zones. The transmission flows from zone a to zone b, adjusted for 
sampling are given by

	 π
ξ ξ

ξ ξ

ab

ab

a b

c d
cd

c d

n

n
=











∑








,

	

where nab denotes the number of transmission events from zone a to zone b and ξa denotes the 
sampling fraction in region a (S2 Table). We compared this approach to a previously pub-
lished method to estimate flows based on transmission trees [42]; our results were consistent 
with this established approach (S2 Fig).

Results
Between January 2015 and December 2019, 12,238 tuberculosis disease episodes were noti-
fied and recorded in ePAL. The mean tuberculosis notification rate over the study period was 
279 per 100,000 population per year, which declined from 299 per 100,000 in 2015 to 225 per 
100,000 in 2019. The notification rate varied across city zones, and grid cells with high noti-
fication rates abutted areas of apparent lower burden (Fig 1A). Among individuals notified 
in ePAL, most were new cases (10,608; 87%), most were male (7,438; 61%), the median age 
was 35 years (IQR: 26, 43), and most were living with HIV (7,860; 64%). Areas of higher HIV 
prevalence in the general populations in Zone 2 and Zone 6 overlapped with areas with high 
tuberculosis notification rates (Fig 1B). Population coverage of ART is estimated to be greater 
than 50% [43].

Whole genome sequencing analysis
Over the study period, 8,386 (68.5% of all TB cases) individuals received a TB culture test 
and 3,856 (31.5% of all TB cases) individuals tested positive by tuberculosis culture. Among 
culture-positive specimens, 1,333 (34.6%) were available for whole genome sequencing, and 
1,009 (26.2%) samples could be matched to patient clinical data (S3 Fig). Among sequenced 
isolates, 861 (64.6% of available isolates, 22.3% of positive cultures) passed quality control 
checks and 717 (53.8% of available isolates, 18.6% of positive cultures) were found to be pure 
(non-mixed) samples, which were included in the final sample dataset. Home location data 
were available for 707 (99%) of these cases (Fig 1C). The population characteristics of cases 
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Fig 1.  Map of Blantyre, Malawi.  (A) Culture positive tuberculosis case notifications per 100,000 population per year over the study 
period; (B) HIV prevalence estimates for the city population (with and without TB-coinfection), aged 15-49 years; (C) all notified 
tuberculosis cases, colored by major lineage or shown in grey if no sequencing data were available; (D) inset map indicating the 
location of Blantyre in Malawi. All points are based on reported home locations. Points have been jittered for privacy. Zones drawn by 
authors based on existing administrative boundaries. Base map citation: Humanitarian Data Exchange, Accessed May 1 2023, https://
data.humdata.org/dataset/cod-ab-mwi CC-BY-IGO.

https://doi.org/10.1371/journal.pgph.0004040.g001

https://data.humdata.org/dataset/cod-ab-mwi
https://data.humdata.org/dataset/cod-ab-mwi
https://doi.org/10.1371/journal.pgph.0004040.g001
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included in the final sample dataset can be found in Table 1. We compare all TB cases,  
culture-positive TB cases, and cases included in the final sample dataset in S3 Table.

A freezer failure, during which alarms were not acted on (due to COVID-19 lockdowns) 
occurred in 2020, resulting in lower-than-expected sequencing yield for affected frozen Mtb 
isolates. The fraction of individuals with a successfully sequenced diagnostic specimen did not 
differ meaningfully by sex, age, HIV status (Table 1), or city zone of residence (S4A Table). 
However, the fraction of successfully sequenced culture positive cases varied by year, ranging 
from 12% to 33% (S4B Table).

Most isolates included in the final sample dataset belonged to lineage 4 (Euro-American, 
72%) followed by lineage 1 (Indo-Oceanic, 14%) (Fig 2), similar to previously reported studies 
in Blantyre [44]. The diversity of strains differed markedly by lineage; lineages 1 and 4 had 
larger pairwise SNP distances, on average, as compared to lineages 2 and 3 (S4 Fig). The pro-
portion of sequences collected from each lineage remained consistent throughout the study 
period (S5 Fig). There was a low prevalence of drug resistance, with 94% (676/717) of sam-
ples susceptible to all antimicrobials. We identified 2 rifampin mono-resistant, 22 isoniazid 
mono-resistant strains, and 4 multidrug resistant strains (< 1%).

Transmission inference
There were 393 isolates (56%) that belonged to one of 130 transmission networks inferred 
with TransPhylo and had an associated home location. The average pairwise SNP distance 
within a network was 4.5 (IQR: 1, 7). Most transmission networks contained only one pair 
of individuals (87/130; 67%); 13 transmission networks comprised five or more individuals 
(10%)(S6 Fig) and three transmission networks comprised 10 or more individuals (2%) (Fig 
3). The largest transmission network contained 25 individuals. There were 50 pairs of indi-
viduals with a high probability of direct transmission (probability ≥ 0.5) and a further 97 pairs 
with a moderate probability of direct transmission (probability ≥ 0.25).

We also attempted to identify household transmission events. In total, 270 individuals 
(2.2% of the TB notifications over the study period) reported a household contact with TB. 
The final sample dataset included 44 of these individuals (6.1% of the dataset); among these 

Table 1.  Characteristics of cases with positive culture results.

Characteristic Culture Positive, Not Sequenced N = 3,148 Final Sample dataset N = 717
Sex
Male 2,046 (65%) 496 (69%)
Female 1,102 (35%) 221 (31%)
Age
Median 34 33
IQR (27,40) (26,39)
HIV status
Positive, on ART 1,663 (53%) 380 (53%)
Positive, Not on ART 194 (6.2%) 50 (7.0%)
Negative 1,220 (39%) 269 (38%)
Not Collected 71 (2.3%) 18 (2.5%)
Patient Type
New 2,754 (87%) 647 (90%)
Relapse 312 (9.9%) 61 (8.5%)
Other 82 (2.6%) 9 (1.3%)

https://doi.org/10.1371/journal.pgph.0004040.t001

https://doi.org/10.1371/journal.pgph.0004040.t001
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individuals, 21 (47.7%) belonged to any transmission network. Individuals who reported 
having a household contact with TB were not more likely to belong to a transmission net-
work than individuals who did not report a household contact (two-sample proportion test, 
p = 0.36). In addition, while 19 individuals could plausibly belong to the same household as 
another individual in the final sample dataset (i.e., home GPS coordinates were within 50 
meters), none of these plausible household pairs belonged to the same transmission network.

Identification of spatial foci of transmission
In distance-based mapping (DBM) of 13 transmission networks with ≥ 5 individuals (S5 
Table), we detected spatial foci of recent transmission in five transmission networks (Fig 4). 
For the largest transmission network (network #2, n = 25), we did not detect any spatial aggre-
gation of cases, suggesting that it was widespread throughout the city.

Transmission network #47 (n = 17) was the largest network for which we identified a spa-
tial focus. Most individuals in this network were people living with HIV (n = 10, 67%) and the 
spatial focus of transmission was in a high HIV prevalence area. Network #71 was the second 
largest transmission network, and had a spatial focus on the periphery of the city where there 
was a high case notification rate. Only 20% (n = 3) of individuals within network #71 were 
people living with HIV.

Not all members of a transmission network with a spatial focus of transmission lived in or 
near the focus we identified (S5 Table). In network #80, 75% of network members (n = 6) lived 
inside the focus, and, in network #1, 60% of network members (n = 3) lived within 1km of the 
focus boundary (Fig 3A). Overall, of the 393 individuals with TB belonging to a transmission 
network, 252 (64%) lived within 1 km of a transmission focus.

Estimation of factors associated with transmission
We performed a logistic regression to estimate factors associated with belonging to the same 
transmission network. We analyzed individuals who had both WGS data and home location 
data (n = 707) and found that two individuals had a higher odds of belonging to the same 
putative transmission network if they shared a tuberculosis diagnostic clinic (adjust odds 

Fig 2.  A maximum likelihood phylogeny illustrating the genetic relatedness of the 717 isolates included in the 
study.  Branch lengths are colored by major Mycobacterium tuberculosis complex lineage and scaled by substitutions 
per site. Outer band denotes transmission network membership; the three largest networks are shown in maroon 
(Network 2), green (Network 43), and pink (Network 71).

https://doi.org/10.1371/journal.pgph.0004040.g002

https://doi.org/10.1371/journal.pgph.0004040.g002
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ratio (aOR) 1.58 95% highest posterior density interval (HPD) 1.13, 2.09) (Fig 5A). A 1 km 
increase in the distance between home location was associated with a 0.82 (0.77, 0.87) aOR of 
belonging to the same cluster for distances up to 6 km. Each 1 km increase in distance above 
the 6 km threshold was associated with a 0.91 (0.88, 0.93) aOR. We did not find a significant 
association between shared HIV clinic exposure (aOR 0.87, 95% HPD 0.57, 1.23), or HIV 
status (aOR for HIV positive pairs: 0.95 [0.65, 1.30]; aOR for HIV negative pairs: 1.34 [0.92, 
1.86]) and belonging to the same putative transmission network. Because there was very high 
coverage of antiretroviral therapy among HIV positive individuals in this study (91%), we did 
not include ART as a covariate in our model.

We also performed a negative binomial regression to understand factors associated with 
closer genetic relatedness of isolate strains. We analyzed the three largest transmission net-
works (#2, #43, and #71) in separate analyses (Fig 5B). Individuals in transmission network 
#2 whose TB was diagnosed at the same clinic had sequences with smaller SNP differences on 

Fig 3.  Putative transmission networks.  (A–C) Time-resolved phylogenies with taxa linked to case home location. 
Each panel contains a different transmission network. The three networks with 10 or more individuals are shown; all 
three networks have strains belonging to lineage 4. Points have been jittered for privacy. (D) Distribution of transmis-
sion network sizes (number of sampled hosts within the network), colored by main lineage. Zones drawn by authors 
based on existing administrative boundaries. Base map citation: Humanitarian Data Exchange, Accessed May 1 2023, 
https://data.humdata.org/dataset/cod-ab-mwi CC-BY-IGO.

https://doi.org/10.1371/journal.pgph.0004040.g003

https://data.humdata.org/dataset/cod-ab-mwi
https://doi.org/10.1371/journal.pgph.0004040.g003
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average (aRR 0.58, 95% HPD 0.28, 0.93). We did not identify statistically significant effects of 
any covariates on SNP differences in networks #43 and #71.

Transmission flows analysis
We estimated between and within zone rates of transmission based on transmission pairs 
identified using TransPhylo (Fig 6). We found that 70% of transmission within the city 
occurred between, rather than within, zones. Zone 7 in the south-west of the city had the 
highest percentage of within-zone transmission, followed by Zone 4 in the center of the city. 
The highest rates of between zone transmission were between Zone 1 and Zone 7 and between 
Zone 4 and Zone 7. We estimate that 68% of all tuberculosis transmission in Blantyre could be 
attributed to infectious individuals from Zone 1, Zone 4, or Zone 7. Finally, there was effec-
tively no transmission flow through Zone 3, a mostly industrial zone in the center of the city 
with a smaller residential population relative to other zones.

Discussion
This analysis presents novel insights into transmission patterns of M. tuberculosis in Blantyre, 
Malawi between 2015 and 2019, a period when treatment coverage for HIV was being rapidly 
scaled up and TB notifications were falling. In phylogenetic analyses, 56% of sequenced 
isolates could be mapped to a putative transmission network. We identified two main 

Fig 4.  Foci of recent transmission.  Foci identified using a distance based mapping (DBM) approach based on home 
address, applied to transmission networks with 5 or more individuals. Circled regions represent areas where the risk 
of spatial aggregation for a network is greater than 95% (spatial foci). A single transmission network may have mul-
tiple spatial foci. Individuals belonging to a transmission network with a spatial focus may reside outside the focus. 
Points have been jittered for privacy. Zones drawn by authors based on existing administrative boundaries. Base map 
citation: Humanitarian Data Exchange, Accessed May 1 2023, https://data.humdata.org/dataset/cod-ab-mwi CC-BY-
IGO. Topographic information: Republished from Africa GeoPortal (“Malawi SRTM DEM 30meters”) under a CC 
BY license, with permission from Patrick Kabatha, original copyright 2017. Accessed April 24, 2024. https://www.
africageoportal.com/datasets/rcmrd::malawi-srtm-dem-30meters/about.

https://doi.org/10.1371/journal.pgph.0004040.g004

https://data.humdata.org/dataset/cod-ab-mwi
https://www.africageoportal.com/datasets/rcmrd::malawi-srtm-dem-30meters/about
https://www.africageoportal.com/datasets/rcmrd::malawi-srtm-dem-30meters/about
https://doi.org/10.1371/journal.pgph.0004040.g004
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Fig 5.  Factors associated with transmission. (A) Effect of covariates on the odds that case pairs belong to the same 
putative transmission cluster. Adjusted Odds Ratio > 1 is associated with increased odds of belonging to the same 
putative transmission cluster. (B) Effect estimates of covariates on SNP difference in isolates from case pairs within 
the same transmission network. Adjusted Rate Ratio < 1 is associated with smaller SNP differences on average; 
smaller SNP differences are associated with increased likelihood of direct transmission between case pairs. Gender 
is excluded in the analyses of network 2 and network 71 because only three individuals were female. HIV status is 
excluded in the analysis of network 71 because only three individuals were people living with HIV.

https://doi.org/10.1371/journal.pgph.0004040.g005

https://doi.org/10.1371/journal.pgph.0004040.g005
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characteristics of transmission with implications for the design of public health interven-
tions. First, despite evidence that Blantyre’s tuberculosis epidemic is receding, most detected 
transmission events occurred across city zones. Second, we identified a sizeable minority of 
transmission events that occurred in local outbreaks in distinct areas of Blantyre. Geograph-
ical location of residence has long been known to be linked to tuberculosis epidemiology, 
with poor-quality housing, air pollution, undernutrition, crowding, and suboptimal access to 
healthcare as key drivers of incidence. While the residential proximity of two individuals is an 
important predictor of membership in the same transmission network (Fig 5A), we found that 
the majority of transmission events occurred between individuals residing in different zones 
of the city (Fig 6). High rates of inter-zone transmission are consistent with findings in other 
high TB/HIV burden settings [18], and indicate that high levels of population mixing may 
play a role in sustaining Blantyre’s tuberculosis epidemic [45].

In this study, five of the thirteen large transmission networks were associated with a 
spatial focus of transmission, and none of these foci overlapped or abutted each other (Fig 4). 
This finding is distinct from patterns reported from other genomic analyses of tuberculosis 
in urban settings [20,39], and raises new questions about the projected impact of targeted 
interventions in locations with complex multifocal epidemics. We note that a limitation of 
this analysis is that spatial foci were identified based only on the home location of individuals 
with TB; we did not have data about social activity locations where transmission may occur, 
such as schools, workplaces, or other congregate settings. However, we found that receiving 
a TB diagnosis at the same clinic was associated with a greater odds of belonging to the same 

Fig 6.  Estimates of the percent of overall transmission occurring within- and between-zones of Blantyre. (A) Map of estimates; 
arrows point from source zone to recipient zone, and cyclic arrows represent within-zone transmission. Arrows are omitted if there 
was no evidence of within-zone transmission (e.g., Zone 3) or if there was no evidence of between-zone transmission (e.g., Zone 5 
to Zone 3). (B) Grid of estimates, with source region on the y-axis and receiving region on x-axis. Zones drawn by authors based on 
existing administrative boundaries. Base map citation: Humanitarian Data Exchange, Accessed May 1 2023, https://data.humdata.org/
dataset/cod-ab-mwi CC-BY-IGO.

https://doi.org/10.1371/journal.pgph.0004040.g006

https://data.humdata.org/dataset/cod-ab-mwi
https://data.humdata.org/dataset/cod-ab-mwi
https://doi.org/10.1371/journal.pgph.0004040.g006
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transmission network, independent of home location of individuals. While this could be 
explained by transmission within healthcare settings, it could also reflect a shared neighbor-
hood effect that was not completely captured by home location since people living in the same 
neighborhood would be more likely to attend the same clinic.

An important limitation of this study is the relatively low fraction of sequencing (18% 
of culture-positive isolates over the study period). Diagnostic isolates were available for 
approximately one-third of eligible cases, and lab contamination further reduced the number 
of sequenced isolates. This poses a challenge for inferring transmission networks, as most 
existing methods have been designed for more densely sampled outbreaks, and it is likely that 
sequenced isolates that were not within transmission networks in our analysis may actually 
have been linked with other isolates that were just not available or successfully sequenced. 
We address this limitation using two approaches: first, we accounted for this by allowing for a 
higher number of unsampled intermediate cases in transmission networks which introduced 
additional uncertainty to our transmission inference as expected. Second, we focused our 
analysis only on the largest transmission clusters which reduces the sensitivity of our analysis 
to the expected misclassification of isolates in small (i.e., 2-3 cases) transmission networks as 
unique isolates. We also note that 144 sequences were excluded due to evidence of polyclonal 
infections, which reduced the fraction of cases which could be included in this study because 
of the challenge in including these types of complex samples in phylogenetic reconstruction 
and transmission analysis.

Whole genome sequencing data provide information about local transmission and help to 
identify geographic areas where transmission is highest. Focused interventions to interrupt 
transmission could be effective at reducing incidence in these areas, and previous models 
have suggested that interventions targeted to a single transmission focus may have broader 
benefits to reducing incidence in an entire city [6]. However, given the interconnectedness 
of transmission in Blantyre, the degree to which targeting interventions to small numbers of 
geographic foci will have these positive ‘spill-over’ effects in unclear. Transmission models cal-
ibrated to the spatial transmission patterns estimated in this study provide an attractive next 
step for estimating the potential health benefits of targeting interventions to transmission foci. 
In the absence of such estimates, our results suggest that TB control efforts should focus on 
improving access to tuberculosis services through primary clinics citywide, and that supple-
menting these general improvements with targeted active case finding should be considered as 
a secondary tactic.

Supporting information
S1 Fig.  Zones of Blantyre with ward boundaries. Zone 7 has been expanded to include a 
small area outside the city boundary with a high TB notification rate (unlabeled ward between 
Green Corner Ward and Soche West Ward). Zones drawn by authors based on existing 
administrative boundaries. Base map citation: Humanitarian Data Exchange, Accessed May 1 
2023, https://data.humdata.org/dataset/cod-ab-mwi CC-BY-IGO.
(TIFF)

S2 Fig.  Comparison of transmission event summation approach to existing (‘Flows’ on the 
y-axis) to a previously described transmission flow analysis (‘PhyloFlows’ on the x-axis). 
(TIFF)

S3 Fig.  (A) Fraction of cases that were culture-positive and sequenced over time and (B) 
fraction of sequenced cases belonging to a transmission network (“clustered”) over time. 
(TIFF)

http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0004040.s001
https://data.humdata.org/dataset/cod-ab-mwi
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0004040.s002
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0004040.s003


PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0004040  April 2, 2025 15 / 18

PLOS Global Public Health Genomic approaches for characterizing M. tb transmission in a high HIV-prevalence setting

S4 Fig.  Pairwise SNP distances, by lineage. 
(TIFF)

S5 Fig.  Proportion of sequences belonging to the four major MTBC lineages and M. bovis. 
(TIFF)

S6 Fig.  Time-resolved transmission networks with 5-10 sampled cases. 
(TIFF)

S1 Table.  Sites that were excluded from the multi-sequence alignment. 
(XLSX)

S2 Table.  Population size estimates and sequencing coverage by zone. 
(XLSX)

S3 Table.  Comparison of TB cases, culture-positive TB cases, and cases included in the 
final sample dataset. 
(XLSX)

S4 Table.  Characteristics of sequenced and not sequenced culture positive TB cases. 
(XLSX)

S5 Table.  Summary of transmission networks used in the DBM analysis. 
(XLSX)

S1 Data.  Deidentified individual-level data used in this analysis (excluding home location 
and clinic information). 
(CSV)

S1 Code.  Example BEAST2 code to estimate time-calibrated phylogenetic trees. 
(XML)

Author contributions
Conceptualization: Elizabeth L Corbett, Joshua A Salomon, Peter MacPherson, Ted Cohen.
Data curation: Elizabeth L Corbett, Victor Ndhlovu, Patrick G.T. Cudahy, David M 

Engelthaler, Megan Folkerts, Geoffrey Chipungu, Marriott Nliwasa, Peter MacPherson.
Formal analysis: Melanie H. Chitwood, Benjamin Sobkowiak, Yu Lan, Jennifer McNichol, 

Joshua L Warren.
Funding acquisition: Elizabeth L Corbett, Joshua A Salomon, Peter MacPherson, Ted Cohen.
Investigation: Melanie H. Chitwood, Elizabeth L Corbett, Benjamin Sobkowiak, Caroline 

Colijn, Jason R Andrews, Rachael M Burke, Peter J Dodd, Jeffrey W Imai-Eaton, Helena 
R.A. Feasey, Jen Lewis, Nicolas A Menzies, Daniel M Weinberger, Joshua L Warren, Joshua 
A Salomon, Peter MacPherson, Ted Cohen.

Methodology: Caroline Colijn, Jennifer McNichol, Joshua L Warren.
Project administration: Elizabeth L Corbett, Joshua A Salomon, Peter MacPherson, Ted 

Cohen.
Resources: Elizabeth L Corbett, Ted Cohen.
Software: Caroline Colijn, Joshua L Warren.
Supervision: Elizabeth L Corbett, Peter MacPherson, Ted Cohen.
Validation: Melanie H. Chitwood, Elizabeth L Corbett, Peter MacPherson, Ted Cohen.
Visualization: Melanie H. Chitwood, Benjamin Sobkowiak, Yu Lan.

http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0004040.s004
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0004040.s005
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0004040.s006
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0004040.s007
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0004040.s008
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0004040.s009
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0004040.s010
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0004040.s011
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0004040.s012
http://journals.plos.org/globalpublichealth/article/asset?unique&id=info:doi/10.1371/journal.pgph.0004040.s013


PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0004040  April 2, 2025 16 / 18

PLOS Global Public Health Genomic approaches for characterizing M. tb transmission in a high HIV-prevalence setting

Writing – original draft: Melanie H. Chitwood, Benjamin Sobkowiak, Yu Lan, Peter 
MacPherson, Ted Cohen.

Writing – review & editing: Melanie H. Chitwood, Elizabeth L Corbett, Victor Ndhlovu, 
Benjamin Sobkowiak, Caroline Colijn, Jason R Andrews, Rachael M Burke, Patrick G.T. 
Cudahy, Peter J Dodd, Jeffrey W Imai-Eaton, David M Engelthaler, Megan Folkerts, 
Helena R.A. Feasey, Yu Lan, Jen Lewis, Jennifer McNichol, Nicolas A Menzies, Geoffrey 
Chipungu, Marriott Nliwasa, Daniel M Weinberger, Joshua L Warren, Joshua A Salomon, 
Peter MacPherson, Ted Cohen.

References
	 1.	 Implementing the end TB strategy: the essentials, 2022 update. Geneva: World Health Organization; 

2022. License: CC BY-NC-SA 3.0 IGO.

	 2.	 Yuen CM, Amanullah F, Dharmadhikari A, Nardell EA, Seddon JA, Vasilyeva I, et al. Turning off the 
tap: stopping tuberculosis transmission through active case-finding and prompt effective treat-
ment. Lancet. 2015;386(10010):2334–43. https://doi.org/10.1016/S0140-6736(15)00322-0 PMID: 
26515675

	 3.	 WHO operational handbook on tuberculosis. Module 2: screening – systematic screening for tubercu-
losis disease. Geneva: World Health Organization; 2021. License: CC BY-NC-SA 3.0 IGO.

	 4.	 Burke RM, Nliwasa M, Feasey HRA, Chaisson LH, Golub JE, Naufal F, et al. Community-based 
active case-finding interventions for tuberculosis: a systematic review. Lancet Public Health. 
2021;6(5):e283–99. https://doi.org/10.1016/S2468-2667(21)00033-5 PMID: 33765456

	 5.	 Feasey HRA, Khundi M, Soko RN, Bottomley C, Chiume L, Burchett HED, et al. Impact of active 
case-finding for tuberculosis on case-notifications in Blantyre, Malawi: A community-based 
cluster-randomised trial (SCALE). PLOS Glob Public Health. 2023;3(12):e0002683. https://doi.
org/10.1371/journal.pgph.0002683 PMID: 38051717

	 6.	 Dowdy DW, Golub JE, Chaisson RE, Saraceni V. Heterogeneity in tuberculosis transmission and the 
role of geographic hotspots in propagating epidemics. Proc Natl Acad Sci U S A. 2012;109(24):9557–
62. https://doi.org/10.1073/pnas.1203517109 PMID: 22645356

	 7.	 Khundi M, Carpenter JR, Nliwasa M, Cohen T, Corbett EL, MacPherson P. Effectiveness of spatially 
targeted interventions for control of HIV, tuberculosis, leprosy and malaria: a systematic review. BMJ 
Open. 2021;11(7):e044715. https://doi.org/10.1136/bmjopen-2020-044715 PMID: 34257091

	 8.	 Mathema B, Andrews JR, Cohen T, Borgdorff MW, Behr M, Glynn JR, et al. Drivers of Tuberculosis 
Transmission. The Journal of Infectious Diseases. 2017;216(suppl_6):S644–S53.

	 9.	 Cudahy PGT, Andrews JR, Bilinski A, Dowdy DW, Mathema B, Menzies NA, et al. Spatially tar-
geted screening to reduce tuberculosis transmission in high-incidence settings. Lancet Infect Dis. 
2019;19(3):e89–95. https://doi.org/10.1016/S1473-3099(18)30443-2 PMID: 30554997

	10.	 Pawlowski A, Jansson M, Sköld M, Rottenberg ME, Källenius G. Tuberculosis and HIV co-infection. 
PLoS Pathog. 2012;8(2):e1002464. https://doi.org/10.1371/journal.ppat.1002464 PMID: 22363214

	11.	 Martinez L, Woldu H, Chen C, Hallowell BD, Castellanos ME, Lu P, et al. Transmission Dynamics in 
Tuberculosis Patients With Human Immunodeficiency Virus: A Systematic Review and Meta- 
analysis of 32 Observational Studies. Clin Infect Dis. 2021;73(9):e3446–55. https://doi.org/10.1093/
cid/ciaa1146 PMID: 32770236

	12.	 Lemey P, Rambaut A, Welch JJ, Suchard MA. Phylogeography takes a relaxed random walk in con-
tinuous space and time. Mol Biol Evol. 2010;27(8):1877–85. https://doi.org/10.1093/molbev/msq067 
PMID: 20203288

	13.	 Pybus OG, Suchard MA, Lemey P, Bernardin FJ, Rambaut A, Crawford FW, et al. Unifying the 
spatial epidemiology and molecular evolution of emerging epidemics. Proc Natl Acad Sci U S A. 
2012;109(37):15066–71. https://doi.org/10.1073/pnas.1206598109 PMID: 22927414

	14.	 Xu Y, Cancino-Muñoz I, Torres-Puente M, Villamayor LM, Borrás R, Borrás-Máñez M, et al. High- 
resolution mapping of tuberculosis transmission: Whole genome sequencing and phylogenetic 
modelling of a cohort from Valencia Region, Spain. PLoS Med. 2019;16(10):e1002961. https://doi.
org/10.1371/journal.pmed.1002961 PMID: 31671150

	15.	 Yang C, Sobkowiak B, Naidu V, Codreanu A, Ciobanu N, Gunasekera KS, et al. Phylogeogra-
phy and transmission of M. tuberculosis in Moldova: A prospective genomic analysis. PLoS Med. 
2022;19(2):e1003933. https://doi.org/10.1371/journal.pmed.1003933 PMID: 35192619

https://doi.org/10.1016/S0140-6736(15)00322-0
http://www.ncbi.nlm.nih.gov/pubmed/26515675
https://doi.org/10.1016/S2468-2667(21)00033-5
http://www.ncbi.nlm.nih.gov/pubmed/33765456
https://doi.org/10.1371/journal.pgph.0002683
https://doi.org/10.1371/journal.pgph.0002683
http://www.ncbi.nlm.nih.gov/pubmed/38051717
https://doi.org/10.1073/pnas.1203517109
http://www.ncbi.nlm.nih.gov/pubmed/22645356
https://doi.org/10.1136/bmjopen-2020-044715
http://www.ncbi.nlm.nih.gov/pubmed/34257091
https://doi.org/10.1016/S1473-3099(18)30443-2
http://www.ncbi.nlm.nih.gov/pubmed/30554997
https://doi.org/10.1371/journal.ppat.1002464
http://www.ncbi.nlm.nih.gov/pubmed/22363214
https://doi.org/10.1093/cid/ciaa1146
https://doi.org/10.1093/cid/ciaa1146
http://www.ncbi.nlm.nih.gov/pubmed/32770236
https://doi.org/10.1093/molbev/msq067
http://www.ncbi.nlm.nih.gov/pubmed/20203288
https://doi.org/10.1073/pnas.1206598109
http://www.ncbi.nlm.nih.gov/pubmed/22927414
https://doi.org/10.1371/journal.pmed.1002961
https://doi.org/10.1371/journal.pmed.1002961
http://www.ncbi.nlm.nih.gov/pubmed/31671150
https://doi.org/10.1371/journal.pmed.1003933
http://www.ncbi.nlm.nih.gov/pubmed/35192619


PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0004040  April 2, 2025 17 / 18

PLOS Global Public Health Genomic approaches for characterizing M. tb transmission in a high HIV-prevalence setting

	16.	 Yang C, Lu L, Warren JL, Wu J, Jiang Q, Zuo T, et al. Internal migration and transmission dynamics 
of tuberculosis in Shanghai, China: an epidemiological, spatial, genomic analysis. Lancet Infect Dis. 
2018;18(7):788–95. https://doi.org/10.1016/S1473-3099(18)30218-4 PMID: 29681517

	17.	 Huang C-C, Trevisi L, Becerra MC, Calderón RI, Contreras CC, Jimenez J, et al. Spatial scale of 
tuberculosis transmission in Lima, Peru. Proc Natl Acad Sci U S A. 2022;119(45):e2207022119. 
https://doi.org/10.1073/pnas.2207022119 PMID: 36322726

	18.	 Nelson KN, Shah NS, Mathema B, Ismail N, Brust JCM, Brown TS, et al. Spatial Patterns of Exten-
sively Drug-Resistant Tuberculosis Transmission in KwaZulu-Natal, South Africa. J Infect Dis. 
2018;218(12):1964–73. https://doi.org/10.1093/infdis/jiy394 PMID: 29961879

	19.	 Sobkowiak B, Banda L, Mzembe T, Crampin AC, Glynn JR, Clark TG. Bayesian reconstruction of 
Mycobacterium tuberculosis transmission networks in a high incidence area over two decades in 
Malawi reveals associated risk factors and genomic variants. Microb Genom. 2020;6(4):e000361. 
https://doi.org/10.1099/mgen.0.000361 PMID: 32234123

	20.	 Baker CR, Barilar I, de Araujo LS, Rimoin AW, Parker DM, Boyd R, et al. Use of High-Resolution 
Geospatial and Genomic Data to Characterize Recent Tuberculosis Transmission, Botswana. Emerg 
Infect Dis. 2023;29(5):977–87. https://doi.org/10.3201/eid2905.220796 PMID: 37081530

	21.	 WorldPop. Malawi 100m Population, Version 2.: University of Southampton; 2017. Available from: 
https://hub.worldpop.org/doi/10.5258/SOTON/WP00538.

	22.	 Malawi: Blantyre Urban Profile. UN-HABITAT. Available from: https://unhabitat.org/sites/default/files/
download-manager-files/Malawi%20Blantyre%20Urban%20Profile.pdf; 2011.

	23.	 MacPherson P, Choko AT, Webb EL, Thindwa D, Squire SB, Sambakunsi R, et al. Development and 
validation of a global positioning system-based “map book” system for categorizing cluster residency 
status of community members living in high-density urban slums in Blantyre, Malawi. Am J Epidemiol. 
2013;177(10):1143–7. https://doi.org/10.1093/aje/kws376 PMID: 23589586

	24.	 MacPherson P, Khundi M, Nliwasa M, Choko AT, Phiri VK, Webb EL, et al. Disparities in access to 
diagnosis and care in Blantyre, Malawi, identified through enhanced tuberculosis surveillance and 
spatial analysis. BMC Med. 2019;17(1):21. https://doi.org/10.1186/s12916-019-1260-6 PMID: 30691470

	25.	 Harris R. Informing development strategies for new tuberculosis vaccines: mathematical modelling 
and novel epidemiological tools: London School of Hygiene & Tropical Medicine; 2018.

	26.	 Burke R, Khundi M, Lam K, Feasey H, Kawalazira G, Choko A, et al. Fine-resolution estimates of 
HIV prevalence in Blantyre, Malawi: a Bayesian modelling analysis of survey, health facility, and 
household testing data. AIDS 2022; Montreal, Canada. https://programme.aids2022.org/Abstract/
Abstract/?abstractid=16662022

	27.	 Somerville W, Thibert L, Schwartzman K, Behr MA. Extraction of Mycobacterium tuberculosis DNA: a 
question of containment. J Clin Microbiol. 2005;43(6):2996–7. https://doi.org/10.1128/JCM.43.6.2996-
2997.2005 PMID: 15956443

	28.	 Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact align-
ments. Genome Biol. 2014;15(3):R46. https://doi.org/10.1186/gb-2014-15-3-r46 PMID: 24580807

	29.	 Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformat-
ics. 2009;25(14):1754–60. https://doi.org/10.1093/bioinformatics/btp324 PMID: 19451168

	30.	 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis 
Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 
2010;20(9):1297–303. https://doi.org/10.1101/gr.107524.110 PMID: 20644199

	31.	 Sobkowiak B, Glynn JR, Houben RMGJ, Mallard K, Phelan JE, Guerra-Assunção JA, et al. Identifying 
mixed Mycobacterium tuberculosis infections from whole genome sequence data. BMC Genomics. 
2018;19(1):613. https://doi.org/10.1186/s12864-018-4988-z PMID: 30107785

	32.	 Phelan JE, O’Sullivan DM, Machado D, Ramos J, Oppong YEA, Campino S, et al. Integrating infor-
matics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous 
drugs. Genome Med. 2019;11(1):41. https://doi.org/10.1186/s13073-019-0650-x PMID: 31234910

	33.	 Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: 
New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology 
and Evolution. 2020;37(5):1530–4.

	34.	 Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, et al. 
BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 
2019;15(4):e1006650. https://doi.org/10.1371/journal.pcbi.1006650 PMID: 30958812

	35.	 Didelot X, Fraser C, Gardy J, Colijn C. Genomic Infectious Disease Epidemiology in Partially Sampled 
and Ongoing Outbreaks. Mol Biol Evol. 2017;34(4):997–1007. https://doi.org/10.1093/molbev/msw275 
PMID: 28100788

https://doi.org/10.1016/S1473-3099(18)30218-4
http://www.ncbi.nlm.nih.gov/pubmed/29681517
https://doi.org/10.1073/pnas.2207022119
http://www.ncbi.nlm.nih.gov/pubmed/36322726
https://doi.org/10.1093/infdis/jiy394
http://www.ncbi.nlm.nih.gov/pubmed/29961879
https://doi.org/10.1099/mgen.0.000361
http://www.ncbi.nlm.nih.gov/pubmed/32234123
https://doi.org/10.3201/eid2905.220796
http://www.ncbi.nlm.nih.gov/pubmed/37081530
https://hub.worldpop.org/doi/10.5258/SOTON/WP00538
https://unhabitat.org/sites/default/files/download-manager-files/Malawi%20Blantyre%20Urban%20Profile.pdf
https://unhabitat.org/sites/default/files/download-manager-files/Malawi%20Blantyre%20Urban%20Profile.pdf
https://doi.org/10.1093/aje/kws376
http://www.ncbi.nlm.nih.gov/pubmed/23589586
https://doi.org/10.1186/s12916-019-1260-6
http://www.ncbi.nlm.nih.gov/pubmed/30691470
https://programme.aids2022.org/Abstract/Abstract/?abstractid=16662022
https://programme.aids2022.org/Abstract/Abstract/?abstractid=16662022
https://doi.org/10.1128/JCM.43.6.2996-2997.2005
https://doi.org/10.1128/JCM.43.6.2996-2997.2005
http://www.ncbi.nlm.nih.gov/pubmed/15956443
https://doi.org/10.1186/gb-2014-15-3-r46
http://www.ncbi.nlm.nih.gov/pubmed/24580807
https://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
https://doi.org/10.1186/s12864-018-4988-z
http://www.ncbi.nlm.nih.gov/pubmed/30107785
https://doi.org/10.1186/s13073-019-0650-x
http://www.ncbi.nlm.nih.gov/pubmed/31234910
https://doi.org/10.1371/journal.pcbi.1006650
http://www.ncbi.nlm.nih.gov/pubmed/30958812
https://doi.org/10.1093/molbev/msw275
http://www.ncbi.nlm.nih.gov/pubmed/28100788


PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0004040  April 2, 2025 18 / 18

PLOS Global Public Health Genomic approaches for characterizing M. tb transmission in a high HIV-prevalence setting

	36.	 Sobkowiak B, Romanowski K, Sekirov I, Gardy JL, Johnston JC. Comparing Mycobacterium tuber-
culosis transmission reconstruction models from whole genome sequence data. Epidemiol Infect. 
2023;151:e105. https://doi.org/10.1017/S0950268823000900 PMID: 37293984

	37.	 Ayabina D, Ronning JO, Alfsnes K, Debech N, Brynildsrud OB, Arnesen T, et al. Genome-based 
transmission modelling separates imported tuberculosis from recent transmission within an immi-
grant population. Microb Genom. 2018;4(10):e000219. https://doi.org/10.1099/mgen.0.000219 PMID: 
30216147

	38.	 Jeffery C, Ozonoff A, White LF, Pagano M. Distance-based mapping of disease risk. Int J Biostat. 
2013;9(2):265–90. https://doi.org/10.1515/ijb-2012-0024 PMID: 23658215

	39.	 Zelner JL, Murray MB, Becerra MC, Galea J, Lecca L, Calderon R, et al. Identifying Hotspots of  
Multidrug-Resistant Tuberculosis Transmission Using Spatial and Molecular Genetic Data. J Infect 
Dis. 2016;213(2):287–94. https://doi.org/10.1093/infdis/jiv387 PMID: 26175455

	40.	 Warren JL, Chitwood MH, Sobkowiak B, Colijn C, Cohen T. Spatial modeling of Mycobacterium tuber-
culosis transmission with dyadic genetic relatedness data. Biometrics. 2023.

	41.	 National Research Council. Dynamic social network modeling and analysis: Workshop summary and 
papers: National Academies Press; 2003.

	42.	 Xi X. PhyloFlows 2019 [updated 2022. Available from: https://github.com/BDI-pathogens/
phyloscanner/tree/master/phyloflows

	43.	 Kanyerere H, Girma B, Mpunga J, Tayler-Smith K, Harries AD, Jahn A, et al. Scale-up of ART in 
Malawi has reduced case notification rates in HIV-positive and HIV-negative tuberculosis. Public 
Health Action. 2016;6(4):247–51. https://doi.org/10.5588/pha.16.0053 PMID: 28123962

	44.	 Ndhlovu V, Kiran A, Sloan D, Mandala W, Kontogianni K, Kamdolozi M, et al. Genetic diversity of 
Mycobacterium tuberculosis clinical isolates in Blantyre, Malawi. Heliyon. 2019;5(10):e02638. https://
doi.org/10.1016/j.heliyon.2019.e02638 PMID: 31667430

	45.	 Brown TS, Robinson DA, Buckee CO, Mathema B. Connecting the dots: understanding how human 
mobility shapes TB epidemics. Trends Microbiol. 2022;30(11):1036–44. https://doi.org/10.1016/j.
tim.2022.04.005 PMID: 35597716

https://doi.org/10.1017/S0950268823000900
http://www.ncbi.nlm.nih.gov/pubmed/37293984
https://doi.org/10.1099/mgen.0.000219
http://www.ncbi.nlm.nih.gov/pubmed/30216147
https://doi.org/10.1515/ijb-2012-0024
http://www.ncbi.nlm.nih.gov/pubmed/23658215
https://doi.org/10.1093/infdis/jiv387
http://www.ncbi.nlm.nih.gov/pubmed/26175455
https://github.com/BDI-pathogens/phyloscanner/tree/master/phyloflows
https://github.com/BDI-pathogens/phyloscanner/tree/master/phyloflows
https://doi.org/10.5588/pha.16.0053
http://www.ncbi.nlm.nih.gov/pubmed/28123962
https://doi.org/10.1016/j.heliyon.2019.e02638
https://doi.org/10.1016/j.heliyon.2019.e02638
http://www.ncbi.nlm.nih.gov/pubmed/31667430
https://doi.org/10.1016/j.tim.2022.04.005
https://doi.org/10.1016/j.tim.2022.04.005
http://www.ncbi.nlm.nih.gov/pubmed/35597716
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

