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Abstract 

Background Large language models (LLMs) like ChatGPT showed great potential in aiding medical research. A heavy 
workload in filtering records is needed during the research process of evidence-based medicine, especially meta-
analysis. However, few studies tried to use LLMs to help screen records in meta-analysis.

Objective In this research, we aimed to explore the possibility of incorporating multiple LLMs to facilitate the screen-
ing step based on the title and abstract of records during meta-analysis.

Methods Various LLMs were evaluated, which includes GPT-3.5, GPT-4, Deepseek-R1-Distill, Qwen-2.5, Phi-4, Llama-
3.1, Gemma-2 and Claude-2. To assess our strategy, we selected three meta-analyses from the literature, together 
with a glioma meta-analysis embedded in the study, as additional validation. For the automatic selection of records 
from curated meta-analyses, a four-step strategy called LARS-GPT was developed, consisting of (1) criteria selection 
and single-prompt (prompt with one criterion) creation, (2) best combination identification, (3) combined-prompt 
(prompt with one or more criteria) creation, and (4) request sending and answer summary. Recall, workload reduction, 
precision, and F1 score were calculated to assess the performance of LARS-GPT.

Results A variable performance was found between different single-prompts, with a mean recall of 0.800. Based 
on these single-prompts, we were able to find combinations with better performance than the pre-set threshold. 
Finally, with a best combination of criteria identified, LARS-GPT showed a 40.1% workload reduction on average 
with a recall greater than 0.9.
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Conclusions We show here the groundbreaking finding that automatic selection of literature for meta-analysis 
is possible with LLMs. We provide it here as a pipeline, LARS-GPT, which showed a great workload reduction 
while maintaining a pre-set recall.

Keywords Large language model, Meta-analysis, ChatGPT, Deepseek, Phi

Introduction
The medical understanding of diseases has advanced 
rapidly during the last decades, but the translation from 
bench to bedside is lagging [1]. Evidence-based medicine 
(EBM), especially meta-analysis, facilitates the applica-
tion of novel therapies into clinics; however, the processes 
of conducting meta-analysis are time-consuming and 
work intensive [2]. Artificial intelligence (AI) is becom-
ing ubiquitous in medicine. [1] And AI-based solutions 
are developed to reduce human efforts spent on EBM 
with promising performance [3]. AI models can provide 
predicted probability for all records based on “similarity” 
between them. However, human annotators are needed 
to train the AI models [4, 5]. What’s more, although it 
helps to accelerate the research process, researchers still 
need to screen all records.

Recent releases of large language models (LLMs) 
like ChatGPT have dramatic implications on medical 
research; [6–8] however, few studies have evaluated its 
application in aiding EBM and review writing. Shaib et al. 
utilized ChatGPT (text-davinci- 003) to synthesize medi-
cal evidence, [9] and Shuai et al. explored its effectiveness 
in generating Boolean queries for a literature search [10]. 

However, almost no study has investigated its applica-
tion in compensating or substituting human effort spent 
on filtering records during meta-analysis, a key issue 
because of the exponentially increased number of pri-
mary literature and systemic reviews required by medical 
researchers nowadays [11]. Kartchner et al. applied LLM 
to the extraction of clinical data from literature. However, 
they only tested the performance of GPT 3.5 Turbo and 
GPT-JT [12].

In this study, we aimed to explore the possibility of 
using LLM to aid the automatic selection of literature 
records (based on their title and abstract) for meta-anal-
ysis by developing a pipeline named LARS-GPT (Lit-
erature Records Screener based on ChatGPT-like LLM). 
With this study, we show a way to integrate LLMs into 
the field of EBM, which may impact the research pattern 
of meta-analysis.

Methods
Screen pipeline incorporating LLM: LARS‑GPT
In general, the workflow of meta-analysis has the fol-
lowing steps: (1) define research question; (2) select lit-
erature databases and design search strategy; (3) screen 

Fig. 1 Schematic illustration of the LARS-GPT pipeline. Single-prompt represents a prompt with only one criterion. Combined-prompt stands 
for prompt with more than one criterion. Color of labels: single-prompt (blue), combined-prompt and prompt strategy (orange), and answer 
and decision (yellow)
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records based on their titles and abstracts; (4) screen 
records based on full text of records; (5) extract and 
synthesize data. In the present study, we focused on 
incorporating LLM into the third step of this workflow.

To do that, we designed the four-step pipeline, LARS-
GPT (Fig.  1). First, users need to select criteria (some 
suitable criteria from filtering criteria of meta-analysis) 
and create a prompt for each criterion (single-prompt; 
Table  1). Second, users need to evaluate these single-
prompts using a few records and then select the best 
combination of single-prompts. Third, users need to 
choose a prompt strategy and merge single-prompts 
in the best combination to make a combined prompt 
(combined-prompt; Supplementary File 1) in accord-
ance with the selected prompt strategy. Finally, the 
combined-prompt, together with the title and abstract 
of each record, will be submitted to LLM as chat com-
pletion. The decisions about whether a record meets 
the user’s criteria will then be extracted from returned 
answers. In practice, LARS-GPT could be performed in 
batches using Python.

Models and parameter setting
In this study, we evaluated both GPT- 3.5 (gpt- 3.5-turbo- 
0301) and GPT- 4 (gpt- 4–0314) using the API (Applica-
tion Programming Interface) provided by OpenAI. We 
also evaluated Deepseek (DeepSeek R1 Distill (Qwen 
7B)) [13], Qwen (Qwen2.5 7B) [14], Phi (phi- 4 14B) [15], 
Llama (Meta Llama 3.1 8B) [16], Gemma (Gemma 2 27B) 
[17] and Claude (Claude2-alpaca- 13B) [18]. LM Studio 
(version 0.3.10) is applied to download and access those 
LLMs locally. Temperature was set to be zero in LLMs, 
which means no randomness was introduced while gen-
erating answers.

Selection of validation meta‑analyses
To cover broad medical fields, we selected three high-
quality published meta-analyses as validation datasets, 
which focused on inflammatory bowel diseases (IBD), 
[19] diabetes mellitus (DM), [20] and sarcopenia, [21] 
respectively (Table  2). These published meta-analyses 
provided clear search strategies for Medline/PubMed 
database and a complete list of records that remained 
after screening based on their titles and abstracts. Thanks 

Table 1 Representative prompt with single criterion (single-prompt)

single‑prompt name single‑prompt content

Species I want you to act as a helpful assistant. I will give you title and abstract of a publication and you will reply whether it meets 
our criteria or not. I want you to only reply with yes, no, or not sure, and followed with reasons. The criteria is: studies that use 
human as primary research subject

Disease …. The criteria is: studies that involve patients with glioma, glioblastoma, astrocytoma, oligodendroglioma

Research type …. The criteria is: studies that are prospective or retrospective cohort study, case–control study. Of note, these research types 
doesn’t meet the criteria: cross-sectional study, randomized controlled trial, review, protocol or others

Age …. The criteria is: studies that involve adult patients (at least 18 years old)

Protein related …. The criteria is: The title and abstract must mention that the study is related to the consumption of protein (e.g., total dairy, 
milk, meat, fish, poultry, process meat, and egg)

Table 2 Summary of meta-analyses included as validation datasets for LARS-GPT

First author Field Publication 
year

Journal Original research Our repetition (validation 
datasets)

All 
identified 
records

Identified 
records from 
Medline/
PubMed

Records 
preserved 
in title and 
abstract 
screen step

Identified 
records from 
Medline/
PubMed

Records 
preserved 
in title and 
abstract screen 
step (Matched)

Cai X Glioma NA NA 8550 6020 272 1360 264

Talebi S Inflammatory 
Bowel Diseases

2023 Adv Nutr 2755 1285 51 1284 45

Aune D Diabetes Mel-
litus

2023 Eur J Epidemiol 5320 1040 216 1039 124

Beaudart C Sarcopenia 2023 J Cachexia 
Sarcopenia 
Muscle

2293 NA 188 1293 122
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to this, we were able to repeat their literature search in 
Medline/PubMed and match record list to obtain the 
correct answer that whether these identified records 
could pass the screening step in a real-world practice 
(Table  2; Supplementary File 2). On top of these pub-
lished meta-analyses, we conducted a new meta-analysis 
about glioma. The protocol of the glioma meta-analysis 
was registered on PROSPERO (CRD42023425790). In 
doing so, we can evaluate the performance of LLM in a 
first-hand practice.

The number of records used for each step evaluation is 
different, due to the requirements of each step, the work-
load, and the cost of money. In the final step evaluation 
with the combined-prompt, almost all records were used 
for the GPT- 3.5 evaluation. However, only 100 randomly 
selected records were used for the evaluation of other 
models, due to the limited funding and long generating 
time. The detailed randomization method used here can 
be found in Supplementary File 3.

Step1: Prompt strategy design
We designed prompts (Table  1; Supplementary File 1) 
with the guidance from OpenAI (https:// platf orm. openai. 
com/ docs/ guides/ gpt- best- pract ices). However, the high 
flexibility of prompts and the “black box” nature of LLMs 
made it impossible to design a “best” prompt. In this 
study, we designed three distinct types of prompt strate-
gies to help create better combined-prompt (Fig. 1 and 2; 
Supplementary File 1). For the “single criterion” prompt 
(prompt strategy 1), we simply maintain these single-
prompts in the best combination. LLMs will respond 
to each single-prompt and determine whether a record 
meets each criterion or not. After receiving answers from 
LLMs, users need to summarize answers for each single-
prompt and make a final decision for each record. In this 
study, as long as there is one answer that is “No”, the final 
decision for a record is “No”. Otherwise, the final decision 
will be “Yes”. For the “instruction prompt” (prompt strat-
egy 3) and “chain of thought prompt” (prompt strategy 2), 
the best combination of single-prompts was merged into 
one combined-prompt (Fig. 1 and 2; Supplementary File 
1). Users expect a final judgment from LLMs directly. In 
this research, we selected 4–5 criteria from each meta-
analysis (Table 1; Supplementary File 1).

Step2: Evaluation of the classification performance 
of single‑prompt
We (XC and YG) manually labeled the correct 
answers of each single-prompt within 100 randomly 
selected records (about 10 positive records and 90 
negative records) for each validation meta-analysis. 
Here, records were called “positive records” if they 
remained after the screening step based on their titles 

and abstracts. Otherwise, they were called “negative 
records”. To avoid potential bias from the researchers, 
these records were manually labeled before we tested 
them on the LLMs. With these 100-reords datasets, we 
evaluated the performance of LLMs and a random clas-
sifier regarding single-prompts.

Step3: Evaluation of single‑prompt combination 
and identification of best combination
Before conducting any evaluation, the “best” combination 
of single-prompts was unknown. In other words, how 
many single-prompts and which single-prompts should 
be selected for combined-prompt creation? To address 
this question, we evaluated all possible combinations of 
designed single-prompts. Among these combinations, we 
selected the best combination, which has a recall ≥ 0.9 
and the best workload reduction.

Statistical analysis
Because of the nature of ChatGPT, the generated answer 
from ChatGPT varies each time, even with exactly iden-
tical input. So, we assessed the robustness score of each 
single-prompt with repeated requests before testing the 
LARS-GPT pipeline (see Supplementary File 3). In gen-
eral, the returns were stable, with a robustness score 
ranging from 0.747 to 0.996 (Supplementary Fig.  1 and 
2). For other models, temperature was set to be zero to 
avoid introducing randomness.

The performance of LLMs was assessed with precision, 
recall, F1 score, and workload reduction metrics. The 
workload reduction indicator was defined as:

where n is the number of records. The workload reduc-
tion indicator varies between 0 and 1, where 0 indicates 
none of the work was reduced and 1 signifies that all 
work was reduced. For meta-analysis, recall is the most 
significant indicator, followed with workload reduc-
tion, F1, and precision. Throughout the study, we placed 
greater emphasis on recall and workload reduction as the 
primary performance metrics.

For other machine learning (ML) models, it’s possible 
to reach a 100% recall with the compromise of low accu-
racy. However, due to the distinct mechanisms behind 
LLMs and other ML models, this is impossible for LLM-
based solutions, at least for our LARS-GPT pipeline. So, 
in this study, a random classifier was used as a baseline 
reference (see Supplementary File 3). The classifications 
made by human researchers are used as “true decisions” 
to calculate the performance metrics of the LARS-GPT 
pipeline.

workload reduction = nrecords excluded by model/nall records

https://platform.openai.com/docs/guides/gpt-best-practices
https://platform.openai.com/docs/guides/gpt-best-practices
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Fig. 2 The research flow of this study. A representative case showing a request containing a single-prompt and the response from ChatGPT (A). 
The schematic illustrations of the research flow (B). Here also shows the detailed input (made by human researchers) for ChatGPT performance 
metrics calculation. Single-prompt represents a prompt with only one criterion. Combined-prompt stands for the prompt with more than one 
criterion. Color of labels: single-prompt (blue), combined-prompt and prompt strategy (orange), answer and decision (yellow), and true outcome 
of validation datasets (green)
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Results
Single‑prompts exhibit distinct performance
The performance of each single-prompt was assessed 

(Table 3; Supplementary Table 1). Overall, the majority of 
prompts had better performance with LLMs than a ran-
dom classifier. However, Claude- 2 had a precision simi-
lar to that of a random classifier. The mean recall for all 
LLM was 0.800, ranging from 0.72 for Phi- 4 to 0.89 for 
Gemma- 2. A total of 63.9% single-prompts had a recall 
higher than 0.8. Surprisingly, the recalls could be quite 
different between these two versions of GPT, even for 
the same single-prompt, e.g., the “Control” single-prompt 
from sarcopenia meta-analysis (GPT- 3.5: 0.838; GPT- 4: 
0.235; Supplementary Table 1) and the “Protein related” 
single-prompt from IBD meta-analysis (GPT- 3.5: 0.897; 
GPT- 4: 0.483; Supplementary Table 1).

Different single-prompts also exhibited distinct recalls. 
Most single-prompts performed well, like the “Species” 
prompt from DM meta-analysis (all models > 0.8; Sup-
plementary Table 1). However, few single-prompts dem-
onstrated low recalls, e.g., the “Control” prompt from 
Sarcopenia meta-analysis (Qwen- 2.5: 0.191; Llama- 3.1: 
0.044; GPT- 4:0.235; Supplementary Table 1).

The best combination of single‑prompts is identified 
by evaluating the performance of all possible 
combinations
All combinations of single-prompts were shown in 
the form of UpSet plots (Supplementary Fig.  3–6). As 
expected, when the number of single-prompts increases, 
the recall tends to decrease, while workload reduction 
and precision increase. In general, most combinations 
presented superior performance compared to a random 
classifier. To our surprise, it’s not uncommon to find a 
combination with three single-prompts having a recall of 
0.9 or higher.

Based on the preset threshold, we identified the best 
combination with the highest workload reduction 
from combinations that have a recall greater than 0.9. 
However, in some cases, there was only one combina-
tion with a recall ≥ 0.9, which only included one single-
prompt. Because we wanted to evaluate the performance 
of prompt strategies 2 and 3, which were specifically 
tailored for combinations involving multiple single-
prompts, we selected another combination instead as a 
sub-best combination for the following analyses.

Three prompt strategies show similar performance
Full combination (including all designed single-
prompts) and best combination were both evaluated 
with three prompt strategies (Supplementary Table  2; 
Supplementary File 1). Obviously, the best combina-
tions had ideal and much better recalls than full com-
binations (mean recalls: 0.876 vs. 0.540) and random 
classifier. The best combinations demonstrated remark-
able recalls ranged from 0.889 to 1.000 in 65.5% cases. 

Table 3 Performance of single-prompts from glioma meta-
analysis using LLMs, and random classifier

Glioma
single‑
prompt

Model Precision Recall F1 Workload 
reduction

Species GPT- 3.5 0.587 0.786 0.672 0.250

GPT- 4 0.791 0.607 0.687 0.570

Deepseek-
R1-Distill

0.815 0.946 0.876 0.350

Qwen- 2.5 0.840 0.750 0.792 0.500

Phi- 4 0.878 0.643 0.742 0.590

Llama- 3.1 0.700 0.750 0.724 0.400

Gemma- 2 0.662 0.911 0.767 0.230

Claude- 2 0.529 0.821 0.643 0.130

Random clas-
sifier

0.557 0.494 0.523 0.504

Disease GPT- 3.5 0.989 0.905 0.945 0.130

GPT- 4 1.000 1.000 1.000 0.050

Deepseek-
R1-Distill

1.000 0.705 0.827 0.330

Qwen- 2.5 1.000 0.979 0.989 0.070

Phi- 4 1.000 0.979 0.989 0.070

Llama- 3.1 1.000 0.937 0.967 0.110

Gemma- 2 1.000 0.979 0.989 0.070

Claude- 2 0.958 0.716 0.820 0.290

Random clas-
sifier

0.950 0.506 0.659 0.494

Treatment GPT- 3.5 0.530 0.917 0.672 0.170

GPT- 4 0.745 0.792 0.768 0.490

Deepseek-
R1-Distill

0.721 0.646 0.681 0.570

Qwen- 2.5 0.764 0.875 0.816 0.450

Phi- 4 0.917 0.688 0.786 0.640

Llama- 3.1 0.955 0.438 0.601 0.780

Gemma- 2 0.655 0.792 0.717 0.420

Claude- 2 0.472 0.875 0.613 0.110

Random clas-
sifier

0.485 0.504 0.494 0.501

Research type GPT- 3.5 0.915 0.966 0.940 0.060

GPT- 4 0.946 0.989 0.967 0.070

Deepseek-
R1-Distill

0.929 0.584 0.717 0.440

Qwen- 2.5 0.977 0.966 0.971 0.120

Phi- 4 0.944 0.955 0.949 0.100

Llama- 3.1 0.978 0.978 0.978 0.110

Gemma- 2 0.978 0.978 0.978 0.110

Claude- 2 0.939 0.697 0.800 0.340

Random clas-
sifier

0.893 0.495 0.635 0.506
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The corresponding workload reductions varied from 0 
to 0.890, with an average of 0.401.

These three prompt strategies showed comparable 
levels of performance (Fig.  3), regarding all four met-
rics. However, these 8 included models had distinct 
performance (Fig.  4). Claude- 2 showed statistically 
lower precision and F1 scores compared with Gemma- 
2, GPT- 4, Limma- 3.1, Phi- 4, and Qwen- 2.5 (Fig. 4A 
and 4 C). The recall is similar between models, except 
that Claude- 2 had a higher recall than Qwen- 2.5 
(Fig. 4B). Also, Claude- 2 showed a much lower work-
load reduction than other models (Fig. 4D).

Discussion
In this research, we developed LARS-GPT and proved 
that it can greatly reduce the filtering workload 
while maintaining an ideal recall during the screen-
ing step based on the titles and abstracts of records for 
meta-analysis.

The mechanism employed by LLMs is different from 
that of previous AI models. Previous AI models applied 
active learning to select the training dataset and 
returned all records ordered by a “similarity” index [5]. 
However, LLMs have been trained to predict text that 
follows the input text. By doing so, LLMs can directly 

Fig. 3 Comparison of the performance of best and full combinations between three prompt strategies. Comparison of the performance 
between three prompt strategies, regarding precision (A), recall (B), F1 score (C), and workload reduction (D)

Fig. 4 Comparison of the performance of best and full combinations between LLMs. Comparison of the performance between 8 models, 
regarding precision (A), recall (B), F1 score (C), and workload reduction (D). The lower panel shows the results of the corresponding non-parametric 
multiple comparison with a log10 transformed p value
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answer questions and return whether an input record 
meets the provided criteria or not. Due to the distinct 
mechanisms applied, previous AI models can reach a 
perfect recall with the compromise of low accuracy, but 
not for LLM-based methods. Thus, we excluded previ-
ous AI models as baseline references for performance 
evaluation in this study.

LLMs have advantages over previous AI models. One 
advantage is that extra training is unnecessary when 
applying LLMs to a new meta-analysis (although fine-
tuning is possible) because LLMs were pre-trained on 
large-scale datasets. In comparison, a training dataset 
is required for every new meta-analysis if choosing 
previous AI models. Additionally, users do not need 
to worry about the imbalanced data problem [5] when 
using LARS-GPT for the same reason.

An obvious benefit of LARS-GPT is that it could be 
easily adapted to other LLMs by simply changing the 
API, since most LLMs work similarly. However, the per-
formance of LARS-GPT depends on the performance 
of the LLM used, which is not guaranteed. We also 
believe that a well-performed prompt could be used 
for other LLMs. However, further research is needed to 
verify this idea of adapting LARS-GPT to other LLMs.

LLM hallucinations are one issue that has been 
emphasized in research. These hallucinations occur 
when a LLM makes up fake information and describes 
it like it is real [22, 23]. LARS-GPT avoids this issue 
because users need to provide the titles and abstracts 
of records to ChatGPT, rather than having ChatGPT 
search for the information. Nonetheless, we did observe 
instances where ChatGPT made false causal inferences. 
For example, ChatGPT might give a reason supporting 
a record meeting one filtering criterion, which is then 
followed by an opposite judgment. A similar false con-
clusion may occur when users ask ChatGPT to sum-
marize a final judgment, e.g., “The publication meets 
criterion 1, but not criterion 2. So, the publication 
meets all your criteria.” Despite occasional false judg-
ment, LARS-GPT demonstrated an ideal performance 
in the current research.

Surprisingly, in this study, GPT- 4’s performance was 
not much better than GPT- 3.5. Although GPT- 4 may 
be more accurate, it could have lower recall compared 
to GPT- 3.5 (Supplementary Table 2), and recall is much 
more important than precision when screening litera-
ture for a meta-analysis. Furthermore, when evaluating 
the performance of three prompt strategies, Claude- 2 
showed lower precision, F1 score, and workload reduc-
tion than other models (Fig. 4). The other 7 models had 
similar performance across all measures. In short, in the 
context of this research, no model was overwhelmingly 
superior to the other one, except Claude- 2.

It is important to evaluate the performance of LARS-
GPT in various scenarios. Thus, in the study, we selected 
4 meta-analyses with distinct types of diseases, which 
stand for cancer, immune-related disease, metabolic-
related disease, and skeletal muscle disorder, respec-
tively. In general, LARS-GPT demonstrated an ideal 
performance on all of them (Supplementary Table  2). 
What really impacts the performance of LARS-GPT is 
the prompts designed, which also highlights the value of 
prompt design steps in our pipeline.

In this study, a single-prompt is developed from a sin-
gle filtering criteria, and a key step of single-prompt crea-
tion is the selection of criteria. Potential criteria should 
be derived from the inclusion and exclusion criteria of 
the designed meta-analysis. In some cases, however, 
researchers need to extract information from a subgroup 
analysis, which may not be presented in the title and 
abstract of a record, e.g. materials used in surgery, [24] 
and criteria related to such information are not suitable 
for prompt creation. To avoid this issue, it is better to use 
options that are more likely to be adequately judged using 
only the title and abstract of the record, which are cri-
teria related to “Species”, “Disease”, and “Research type”. 
In fact, the majority of the best combinations identified 
in the current research were based on these three crite-
ria. Thus, users are recommended to try them first when 
using LARS-GPT.

To apply LARS-GPT, users need to manually label a few 
records for single-prompts so that the best combination 
can be identified. Based on our experiences, to be well 
evaluated, each single-prompt needs around 10 positive 
and 10 negative records. Considering overlaps between 
the records for single-prompts, researchers need to label 
about 20 to 100 records for five single-prompts. Once an 
application based on LARS-GPT is developed, it will be 
much easier to do this labeling.

We tried three prompt strategies, including a “chain of 
thought prompt” (prompt strategy 2) that was designed 
following the OpenAI’s guidelines. Surprisingly, all three 
prompt strategies showed comparable performance (Sup-
plementary Table 2; Fig. 3). Indeed, the “chain of thought 
prompt” takes more time for LLMs to answer in a more 
organized format. However, this improvement does not 
translate into enhanced performance in LARS-GPT. A 
possible reason is that the two other “less structured” 
strategies already guided LLMs sufficiently. However, 
due to the “black box” nature of LLMs, we cannot explain 
the phenomenon. As a result, users are recommended to 
select whichever they prefer.

In our research, we did not use metrics like Work 
Saved over Sampling (WSS) and Average Time to 
Discover (ATD), [5] which have been commonly 
used to evaluate previous AI models. This is because 
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LARS-GPT works in a completely different way, as 
mentioned before. Within LARS-GPT, LLMs will 
directly answer whether to include or exclude a record, 
instead of returning a probability for it.

In the filtering step of meta-analysis, a high recall is 
of very priority. There is a possibility that recalls are 
not satisfied, even though we have included a “recall 
> 0.9” criteria in choosing the best combination in the 
LARS-GPT. The balance between recall and precision 
is always a difficult issue to be addressed. Users might 
try some more single criteria in the beginning of LARS-
GPT to have a best combination with high recall. Also, 
it is worthwhile to randomly check the filtered results 
after applying LLM.

Conclusion
This study developed a pipeline named LARS-GPT, and 
using this pipeline showed that an automatic selection 
of records for a meta-analysis is possible with LLMs. 
Three prompt strategies showed similar performance. 
All LLMs evaluated, except Claude- 2, also have com-
parable performance. Further research may incorporate 
LLMs (and the multiple LLMs approach) into other 
steps of the meta-analysis workflow.
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