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Patients with intracerebral hemorrhage (ICH) are highly susceptible to sepsis. This study evaluates 
the efficacy of machine learning (ML) models in predicting sepsis risk in intensive care units (ICUs) 
patients with ICH. We conducted a retrospective analysis on ICH patients using the MIMIC-IV database, 
randomly dividing them into training and validation cohorts. We identified sepsis prognostic factors 
using Least Absolute Shrinkage and Selection Operator (LASSO) and backward stepwise logistic 
regression. Several machine learning algorithms were developed and assessed for predictive accuracy, 
with external validation performed using the eICU Collaborative Research Database (eICU-CRD). 
We analyzed 2,214 patients, including 1,550 in the training set, 664 in the validation set, and 513 
for external validation using the eICU-CRD. The Random Forest (RF) model outperformed others, 
achieving Area Under the Curves (AUCs) of 0.912 in training, 0.832 in internal validation, and 0.798 in 
external validation. Neural Network and Logistic Regression models recorded training AUCs of 0.840 
and 0.804, respectively. ML models, especially the RF model, effectively predict sepsis in ICU patients 
with ICH, enabling early identification and management of high-risk cases.
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Intracerebral hemorrhage (ICH) represents about 15% of all stroke cases yet is associated with significant 
mortality, accounting for roughly 2.8 million deaths globally each year1,2. Approximately 11–31% of ICH cases 
lead to infections and long-term disabilities3,4, often exacerbating into sepsis due to immunosuppression-
induced systemic inflammations and metabolic disorders5,6.

In the intensive care unit (ICU), approximately 25% of ICH patients who develop sepsis succumb within 28 
days. Furthermore, sepsis is strongly associated with worsened long-term functional outcomes. These findings 
highlight the critical importance of early detection and effective management of sepsis in ICH patients7. A 
retrospective cohort study revealed that about 28% of ICH patients would develop sepsis, which poses significant 
challenges in their clinical management8. Sepsis is associated with an increased risk of a systemic infectious 
encephalopathy called sepsis-associated encephalopathy (SAE)9, leading to in-hospital coma events and a higher 
risk of complications in ICH patients10.

The initial clinical manifestations of sepsis are not specific, and the disease progresses rapidly11,12. Currently, 
there are no effective treatments, highlighting the significance of early detection and appropriate management 
to mitigate its impact13–15. A comprehensive understanding of the etiology of sepsis after ICH is essential for 
improving targeted prevention and treatment. However, the underlying cause of sepsis has not been fully 
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elucidated to date11. This complicates the management of ICH-associated sepsis, posing challenges in reducing 
mortality rates and addressing cognitive complications. In this context, developing predictive models for early 
sepsis detection and risk factor identification is of great importance for improving early prevention strategies16.

In recent years, advancements in statistical theory and computer technology have propelled machine learning 
(ML) into the forefront of medical research, garnering significant attention from clinicians. ML techniques 
have outperformed traditional methods like logistic regression and Cox regression in disease prediction, as 
evidenced by comparative studies17,18. Particularly, neural networks (NNs) have grown substantially in size and 
sophistication over the last decade, becoming leading tools in ML applications19. Among various algorithms, 
random forest (RF) and boosted trees with calibrated probabilities have demonstrated superior performance 
across multiple metrics20. Previous research has also shown consistent strong performance of RF algorithms on 
various biomedical data sets21,22. These algorithms offer several advantages, such as scalability to large data sets 
and greater robustness compared to other algorithm types23. We can find considerable effort in the application of 
ML algorithms in sepsis prediction24–27. Despite the demonstrated efficacy of ML in predicting various diseases, 
its application in predicting sepsis among patients with ICH remains underexplored, with limited data available. 
This study aims to address this gap by developing and validating multiple ML models to accurately predict the 
onset of sepsis in ICH patients, striving to determine the most effective model for clinical use.

Methods
Database
This study utilized clinical data from two sources: the Medical Information Mart for Intensive Care (MIMIC)-IV 
database (version 2.2), containing ICU patient records from Beth Israel Deaconess Medical Center between 2008 
and 2019, and the eICU-CRD (Telehealth Intensive Care Unit Collaborative Research Database), a database of 
over 200,000 ICU admissions across 208 U.S. hospitals during 2014–2015, used for external validation. Data 
integrity and research compliance were ensured by author Y.L., who completed the National Institutes of Health’s 
“Protecting Human Research Participants” program (certification number:53244021). The study is registered at 
Clinical Trials.gov (NCT06326385).

Study population and definitions
Data were extracted using Structured Query Language in PostgreSQL (version 14.6) and the study adhered 
to STROCSS criteria. Diagnoses from both databases were identified via the International Classification of 
Diseases, Ninth Revision (ICD-9) and Tenth Revision (ICD-10) codes28. Patients were included if they had 
a diagnosis of ICH and were admitted to the ICU. Exclusion criteria included pediatric patients (< 18 years), 
patients with sepsis diagnosed prior to ICU admission, and those with incomplete follow-up data. The primary 
outcome of this study was the occurrence of sepsis within 28 days after ICU admission, defined according to the 
Third International Consensus Definition (Sepsis-3) as suspected or confirmed infection and a Sequential Organ 
Failure Assessment (SOFA) score ≥ 2 points. For patients diagnosed with sepsis, the follow-up time was defined 
as the interval (in days) from ICU admission to the first documented diagnosis of sepsis. For non-sepsis patients, 
the follow-up time was defined as the duration from ICU admission to discharge.

Data collection
In this study, we extracted baseline patient data including age, sex, ethnicity, and Body Mass Index (BMI) 
from the database. ICU admission metrics such as Sequential Organ Failure Assessment (SOFA) and Glasgow 
Coma Scale (GCS) scores were collected, along with the use of mechanical ventilation (MV), continuous renal 
replacement therapy (CRRT), peripherally inserted central catheter (PICC), and intracranial pressure (ICP) 
monitoring. Patients were categorized into craniotomy, minimally invasive surgery (MIS), or non-surgical 
groups based on the type of cranial intervention received. Vital signs and comorbidities were also recorded at 
admission. Laboratory tests performed included White Blood Cell count (WBC), anion gap, creatinine, and 
more. Laboratory measurements taken after the diagnosis of sepsis were excluded from the analysis to avoid bias. 
The primary study outcome was the incidence of sepsis during the follow-up period.

Statistical analysis
The Shapiro–Wilk test was used to test the normality assumption. Continuous variables were summarized using 
median interquartile ranges and compared using the Kruskal-Wallis test. Categorical variables were summarized 
as numbers and percentages and compared using the chi-square test or Fisher’s exact test. Missing values were 
addressed through multiple imputation (missForest R), with variables missing over 25% transformed into 
dummy variables to reduce bias. The number and percentage of missing values for each variable have been 
provided in Supplementary Table 1. To evaluate the impact of sepsis on prognosis, survival curves were plotted 
to compare the outcomes of ICH patients who developed sepsis and those who did not. The impact of sepsis on 
mortality was assessed using the log-rank test.

We divided ICH patients into training and testing sets to identify significant predictors. Using the glmnet 
package, we performed Least Absolute Shrinkage and Selection Operator (LASSO) regression to select non-zero 
coefficient features, followed by stepwise logistic regression to determine significant variables at P < 0.05. Patients 
were randomly split into a 7:3 training-to-testing ratio using the caTools package. Logistic regression was used 
as a baseline model to compare its performance with machine learning approaches (RF and NN). To account for 
nonlinear effects in continuous variables, restricted cubic splines (RCS) were incorporated into the model using 
the rms package in R. Knot placement followed standard recommendations, with four knots.

Our analysis included logistic regression, RF, and NN, with the model’s performance assessed via the area 
under the receiver operating characteristics (ROC) curve using the pROC package. Decision Curve Analysis 
(DCA) was applied to establish the clinical utility of the models. The chosen model underwent five-fold cross-
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validation and was evaluated based on metrics such as the area under the ROC curve (AUC), sensitivity, specificity, 
recall, accuracy, and F1 score29, ensuring robust validation of its predictive capabilities. To further enhance the 
interpretability of the optimal model, SHapley Additive exPlanations (SHAP) analysis was conducted, providing 
insights into the contribution of each feature to the predictions.

Results
Demographic and clinical characteristics of ICH patients
We analyzed 2,214 patients who fulfilled the inclusion and exclusion criteria in MIMIC-IV database, with 1550 
patients in the training cohort and 664 in the validation cohort. The patient selection process is illustrated in 
Supplemental Fig. 1. The baseline characteristics of patients upon admission are shown in Table 1. The study 
found that 53.5% of the participants, totaling 1184 patients, were men. In the group diagnosed with ICH, 813 
patients (36.7%) also experienced complications due to sepsis. The prevalence of hypertension was 63.2% in the 
training cohort and 60.1% in the internal validation cohort. Additionally, the heart disease was present in 46.0% 
of the training cohort and 46.7% of the internal validation cohort. Diabetes was found in 25.1% and 22.4% of the 
training and internal validation cohorts, respectively. Acute pneumonia was observed in 10.9% of the training 
cohort and 9.6% of the validation cohort. The GCS score was consistent across both cohorts at 14 [IQR 11–15]. 
WBC counts (109/l) averaged 10.25 [IQR 8.40–12.10] in the training cohort and 10.16 [IQR 8.40–12.00] in the 
internal validation cohort. Average chloride levels (mmol/L) were noted at 103.40 [IQR 102.00-105.13] mmol/L 
in the training cohort and 103.00 [IQR 101.00-105.25] in the internal validation cohort. Additionally, baseline 
characteristics of the study cohort grouped by the presence or absence of sepsis are provided in Supplement 
Table 2. Furthermore, we investigated the impact of sepsis on the prognosis of patients with ICH. The results 
revealed that sepsis was associated with a significantly higher mortality rate. The survival curve (Supplemental 
Fig. 2) demonstrates a significant difference between the two groups, with ICH patients who developed sepsis 
having a markedly higher risk of mortality compared to those without sepsis (log-rank test, p < 0.0001).

Feature selection and nomogram construction
In our analysis of cohorts from the MIMIC-IV database, sepsis was identified in 813 of the total participants, 
representing 36.7% of the entire sample. This incidence rate was consistent across different study subsets, 
with 36.7% of both the training set (569 out of 1,551 patients) and the internal validation set (244 out of 664 
patients) diagnosed with sepsis. To identify relevant variables, we used LASSO and backward stepwise logistic 
regression. The different mean square errors for different log(lambda) ranges are shown in Supplemental Fig. 3. 
Subsequently, RCS analysis was performed to explore the non-linear relationships of continuous variables in the 
model. The results demonstrated significant non-linear associations between sepsis and both WBC count (non-
linear p < 0.0001) and chloride levels (non-linear p = 0.018), as shown in Supplemental Fig. 4.

Variables with non-zero coefficients from LASSO regression were further screened using stepwise logistic 
regression, which identified race, gender, acute pneumonia, fluid electrolyte disorders, heart diseases, liver 
diseases, renal failure, ICP monitoring, invasive ventilation, supplemental oxygen, GCS score, heart rate, chloride, 
and WBC as independent risk factors for sepsis in ICH patients. Patients undergoing ICP monitoring exhibited a 
significantly higher likelihood of developing sepsis, with odds 4.12 times greater than those not monitored (OR 
4.12; 95% CI: 2.19, 8.00). Similarly, the presence of acute pneumonia in patients increases the odds of sepsis by 
3.56 times compared to those without pneumonia (95% CI = 2.75, 4.63). Furthermore, patients with cerebral 
hemorrhage who also suffer from fluid and electrolyte disorders are 3.56 times more likely to develop sepsis 
than their counterparts without such disorders (95% CI = 2.75, 4.63). Detailed OR and 95% CI values are shown 
in Supplemental Table 3. These results were used to create a nomogram to estimate the odds of sepsis in ICU 
patients with ICH (Fig. 1). For instance, the male patient had liver disease, acute pneumonia, fluid electrolyte 
disorders, and underwent intracranial pressure monitoring, and invasive ventilation upon admission, with no 
supplemental oxygen upon admission, and a chloride level of 110 mmol/l. The sum of these points (68) is located 
on the total points axis. A line is then drawn downward on the axis to determine the probability of developing 
sepsis (> 90%). The feature importance ranking under the framework of RF algorithm is shown in Fig. 2.

Model performance comparisons and internal validation
We developed three ML models to predict the development of sepsis in patients with ICH after ICU admission. 
Figure 3 illustrates ROC curves measuring the discrimination of these models. In the training set, the RF model 
demonstrated the highest predictive performance for sepsis in ICH patients (AUC = 0.912, 95% CI: 0.898–
0.927), followed by the NN model (AUC = 0.840, 95% CI: 0.820–0.861) and the LR model (AUC = 0.804, 95% 
CI: 0.781–0.827).

In internal validation, the RF model achieved the best performance with an AUC of 0.832 (95% CI: 0.801–
0.864), outperforming the NN model (AUC = 0.811, 95% CI: 0.777–0.845) and the LR model (AUC = 0.799, 95% 
CI: 0.763–0.834) for predicting sepsis in patients with ICH. Detailed performance metrics for the three models 
are presented in Supplemental Table 4. Additionally, we incorporated RCS into the logistic regression model 
to account for potential nonlinear relationships between independent variables and sepsis risk. The inclusion 
of RCS terms improved the predictive performance of the LR model. As shown in Supplemental Fig. 5A, the 
AUC of the RCS-enhanced LR model increased to 0.812 (95% CI: 0.790–0.812) in the training set and 0.803 
(95% CI: 0.768–0.803) in the validation set, compared to the original LR model without RCS terms (training 
set: AUC = 0.804, 95% CI: 0.781–0.827; validation set: AUC = 0.799, 95% CI: 0.763–0.834). Additionally, we 
incorporated interaction terms between variables significantly associated with the outcome to further enhance 
the LR model’s predictive performance. As shown in Supplemental Fig. 5B, the inclusion of interaction terms 
improved the AUC of the LR model to 0.822 (95% CI: 0.800–0.822) in the training set and 0.809 (95% CI: 
0.775–0.809) in the validation set.
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Variable

n (%) or median (Interquartile range)

P valueTotal patients (n = 2214) Training set (n = 1550) Testing set (n = 664)

Follow-up time until sepsis (days) 1.2 [0.3, 2.8] 1.2 [0.3, 2.8] 1.2 [0.4, 2.8] > 0.900

Mortality 569.0 (25.7) 418.0 (27.0) 151.0 (22.7) 0.037

LOS 7.1 [3.7, 13.9] 7.5 [3.8, 14.0] 6.7 [3.7, 13.5] 0.300

Sepsis 813 (36.7) 569 (36.7) 244 (36.7) 1.000

Age, years

<40 121 (5.5) 86 (5.5) 35 (5.3)

0.86640–64 751 (33.9) 530 (34.2) 221 (33.3)

≥65 1342 (60.6) 934 (60.3) 408 (61.4)

Gender, Male 1184 (53.5) 830 (53.5) 354 (53.3) 0.956

Race

Asian 80 (3.6) 57 (3.7) 23 (3.5)

0.290
Black 200 (9.0) 146 (9.4) 54 (8.1)

Other 540 (24.4) 391 (25.2) 149 (22.4)

White 1394 (63.0) 956 (61.7) 438 (66.0)

BMI, kg/m²

< 18.5 29 (1.3) 20 (1.3) 9 (1.4)

0.826

18.5–24.9 242 (10.9) 170 (11.0) 72 (10.8)

25-29.9 284 (12.8) 194 (12.5) 90 (13.6)

≥30 266 (12.0) 180 (11.6) 86 (13.0)

Missing 1393 (62.9) 986 (63.6) 407 (61.3)

Comorbidities

Acute pneumonia 233 (10.5) 169 (10.9) 64 (9.6) 0.416

Chronic pulmonary 274 (12.4) 199 (12.8) 75 (11.3) 0.347

Diabetes 538 (24.3) 389 (25.1) 149 (22.4) 0.200

Fluid electrolyte disorders 753 (34.0) 520 (33.5) 233 (35.1) 0.514

Heart disease 1023 (46.2) 713 (46.0) 310 (46.7) 0.802

Hypertension 1378 (62.2) 979 (63.2) 399 (60.1) 0.188

Liver disease 120 (5.4) 93 (6.0) 27 (4.1) 0.082

Non-infectious colon disease 17 (0.8) 13 (0.8) 4 (0.6) 0.750

Obesity 133 (6.0) 90 (5.8) 43 (6.5) 0.610

Renal failure 465 (21.0) 320 (20.6) 145 (21.8) 0.566

Interventions

CRRT 4 (0.2) 2 (0.1) 2 (0.3) 0.743

ICP monitoring 94 (4.2) 66 (4.3) 28 (4.2) 1.000

PICC 125 (5.6) 88 (5.7) 37 (5.6) 1.000

Invasive ventilation 532 (24.0) 374 (24.1) 158 (23.8) 0.909

Supplemental oxygen 735 (33.2) 509 (32.8) 226 (34.0) 0.618

Craniocerebral operations

Craniotomy 24 (1.1) 16 (1.0) 8 (1.2)

0.414MIS 41 (1.9) 25 (1.6) 16 (2.4)

None 2149 (97.1) 1509 (97.4) 640 (96.4)

First laboratory test

Anion gap (mmol/l) 14.57 [13.00, 16.00] 14.55 [13.00, 16.00] 14.61 [13.00, 16.00] 0.646

Bicarbonate (mg/dl) 24.10 [22.00, 25.48] 24.09 [22.00, 25.36] 24.14 [22.00, 25.88] 0.861

BUN (mg/dl) 16.00 [13.00, 19.00] 16.00 [13.00, 19.00] 16.00 [13.00, 19.00] 0.773

Chloride (mmol/l) 103.24 [101.77, 105.16] 103.40 [102.00, 105.13] 103.00 [101.00, 105.25] 0.136

Creatinine (mg/dl) 0.89 [0.70, 1.00] 0.88 [0.70, 1.00] 0.89 [0.80, 1.00] 0.365

Hematocrit 36.46 [34.30, 39.50] 36.44 [34.20, 39.40] 36.50 [34.30, 39.60] 0.827

Hemoglobin (g/dl) 12.20 [11.40, 13.30] 12.20 [11.30, 13.30] 12.22 [11.50, 13.33] 0.356

Platelet (×109/l) 212.00 [177.00, 242.00] 213.00 [178.00, 243.00] 209.13 [176.75, 242.00] 0.319

Potassium (mmol/l) 3.90 [3.70, 4.20] 3.90 [3.70, 4.12] 3.90 [3.70, 4.30] 0.247

WBC (×109/l) 10.23 [8.40, 12.10] 10.25 [8.40, 12.10] 10.16 [8.40, 12.00] 0.534

Lymphocyte percentage

Continued
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The RF model achieved the highest F1 scores in both the training set and the internal validation set (0.88 and 
0.829, respectively), indicating it has the best discriminative ability. Sensitivity and specificity were also the most 
balanced. Taken together, the RF model is considered the optimal model. Finally, a DCA curve (Supplemental 
Fig. 6) demonstrated the RF model provided the highest net benefit and threshold probability, indicating its 
superior clinical utility compared with the other two models.

External validation
The RF model was validated in an external dataset from the eICU-CRD database using the same data extraction 
process as the derivation dataset. After screening, we ultimately selected 513 patients from the e-ICU for external 
validation. In the external validation dataset, the AUC was 0.798 (95% CI 0.606–0.99) (Fig. 4). This indicates 

Variable

n (%) or median (Interquartile range)

P valueTotal patients (n = 2214) Training set (n = 1550) Testing set (n = 664)

< 18 264 (11.9) 193 (12.5) 71 (10.7)

0.625
18–42 78 (3.5) 52 (3.4) 26 (3.9)

> 42 4 (0.2) 3 (0.2) 1 (0.2)

Missing 1868 (84.4) 1302 (84.0) 566 (85.2)

Monocyte percentage

< 2 17 (0.8) 15 (1.0) 2 (0.3)

0.257
2–11 306 (13.8) 219 (14.1) 87 (13.1)

> 11 23 (1.0) 14 (0.9) 9 (1.4)

Missing 1868 (84.4) 1302 (84.0) 566 (85.2)

Neutrophil percentage

< 50 11 (0.5) 10 (0.6) 1 (0.2)

0.302
50–70 64 (2.9) 42 (2.7) 22 (3.3)

> 70 271 (12.2) 196 (12.6) 75 (11.3)

Missing 1868 (84.4) 1302 (84.0) 566 (85.2)

PT, sec

< 10.4 27 (1.2) 17 (1.1) 10 (1.5)

0.852
10.4–13.4 982 (44.4) 685 (44.2) 297 (44.7)

> 13.4 494 (22.3) 346 (22.3) 148 (22.3)

Missing 711 (32.1) 502 (32.4) 209 (31.5)

Sodium, mmol/l

< 133 34 (1.5) 24 (1.5) 10 (1.5) 0.353

133–145 86 (3.9) 53 (3.4) 33 (5.0) 0.353

> 145 13 (0.6) 10 (0.6) 3 (0.5) 0.353

Missing 2081 (94.0) 1463 (94.4) 618 (93.1) 0.353

Heart rate (beats per minute) 80.00 [70.00, 91.75] 80.00 [70.00, 91.00] 80.00 [69.00, 92.25] 0.980

Respiratory rate (inspirations per minute) 18.00 [15.00, 21.00] 18.00 [15.00, 21.00] 18.00 [15.00, 21.00] 0.702

SBP, mmHg

< 90 4 (0.2) 4 (0.3) 0 (0.0)

0.359

90–99 30 (1.4) 19 (1.2) 11 (1.7)

100–109 94 (4.2) 63 (4.1) 31 (4.7)

≥ 110 892 (40.3) 613 (39.5) 279 (42.0)

Missing 1194 (53.9) 851 (54.9) 343 (51.7)

DBP, mmHg

< 140 1019 (46.0) 699 (45.1) 320 (48.2)

0.122140–159 1 (0.0) 0 (0.0) 1 (0.2)

Missing 1194 (53.9) 851 (54.9) 343 (51.7)

GCS score 14.00 [11.00, 15.00] 14.00 [11.00, 15.00] 14.00 [11.00, 15.00] 0.892

SOFA score 1.00 [0.00, 2.00] 1.00 [0.00, 2.00] 0.50 [0.00, 1.00] 0.627

Table 1. Baseline characteristics of the study cohort (grouped by training and testing sets). Variables are initial 
values if not otherwise specified. BMI body mass index, CRRT continuous renal replacement therapy, PICC 
peripherally inserted central catheter, ICP intracranial pressure, MIS minimally invasive surgery, BUN blood 
urea nitrogen, WBC white blood cell, PT prothrombin time, SBP systolic blood pressure, DBP diastolic blood 
pressure, GCS Glasgow coma scale, SOFA sequential organ failure assessment, LOS length of stay, MIMIC-IV 
medical information mart for intensive care IV.
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that the RF model demonstrated good predictive performance in independent external populations. However, 
further clinical evaluation is required to assess the robustness of the RF model across different populations.

SHAP analysis
To enhance the interpretability of the model, we conducted SHAP analysis on the optimal model, a RF classifier. 
The SHAP summary plot (Fig. 5) highlights the most influential features contributing to the prediction of sepsis 
risk in patients with ICH. The analysis identified fluid electrolyte disorders, WBC count, Supplemental oxygen 
use, GCS score, and renal failure as the top five contributors to the model’s predictions. Among these, fluid 

Fig. 2. The variable importance plot under the framework of random forest algorithm.

 

Fig. 1. Nomogram predicts the probability of sepsis in patients with ICH. Nomogram was established using 
variables including race, gender, acute pneumonia, fluid electrolyte disorders, heart diseases, liver diseases, 
renal failure, intracranial pressure (ICP) monitoring, invasive ventilation, supplemental oxygen, GCS score, 
heart rate, chloride, and WBC levels, for predicting the occurrence of sepsis after ICH. The total point was 
calculated as the sum of the individual values of the 14 variables included in the nomogram. Patients were 
scored for each variable and the total score was assigned according to the nomogram.

 

Scientific Reports |        (2025) 15:16326 6| https://doi.org/10.1038/s41598-025-99431-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


electrolyte disorders and elevated WBC counts demonstrated the strongest association with an increased risk of 
sepsis, as evidenced by their high SHAP values.

Discussion
To the best of our knowledge, this study represents a novel exploration of sepsis in ICH patients using the 
MIMIC-IV and eICU-CRD public databases. Our study demonstrates that machine learning models, 
particularly random forest models, exhibit high accuracy in predicting the onset of sepsis in patients with 
cerebral hemorrhage, showcasing superior clinical utility compared to alternative models. Compared to the LR 
algorithm which requires manual selection of independent variables, potentially introducing complex nonlinear 
relationships and interactions between independent variables into the error of the model, the RF model has 
several advantages. It efficiently handles missing data and creates effective predictive models by combining weak 
predictors. Due to its excellent accuracy and performance, the RF algorithm has received increasing attention as 
a competing alternative to LR analysis for predicting adverse clinical events.

Fig. 4. Externally validated ROC curve of the RF model for predicting sepsis in ICH. RF random forest.

 

Fig. 3. ROC curves for sepsis on the (A) training and (B) validation sets. A greater AUC value indicated a 
higher predictive ability of the models. ROC receiver operating characteristic, AUC area under the curve, LR 
logistic regression without regularization, RF random forest, NN neural network.
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Patients with ICH face a heightened susceptibility to sepsis due to immunosuppression and gut microbiota 
dysbiosis16. The combination of ICH and sepsis presents a significant challenge for clinicians, contributing 
to increased mortality rates and cognitive complications. Both conditions share similar pathophysiological 
mechanisms involving systemic inflammation and circulatory disturbance, resulting in high mortality and 
morbidity30–34. Timely risk assessment, prudent antibiotic therapy, and appropriate targeted therapy can reduce 
the incidence of sepsis35, highlighting the importance of developing reliable predictive models for timely 
interventions and better management of high-risk patients.

Based on our study findings, we propose several early intervention strategies to mitigate sepsis risk in ICH 
patients. Integrating the RF model into ICU monitoring systems could enable real-time identification of high-
risk patients, allowing for enhanced monitoring and timely interventions. Proactive infection control measures, 
such as early use of antibiotics, strict aseptic techniques during invasive procedures, and regular microbiological 
assessments, are crucial for reducing the risk of sepsis. Additionally, personalized interventions targeting key risk 
factors, including acute pneumonia, electrolyte imbalances, and renal failure, could further enhance patient care. 
Exploring immune-enhancing therapies to address immunosuppression in ICH patients also holds promise. 
These strategies underscore the critical importance of timely sepsis diagnosis, as early detection and intervention 
during the ICU stay can prevent the progression to severe sepsis or septic shock, ultimately optimizing patient 
care.

LASSO and multivariate logistic regression analysis identified nine clinical characteristic variables for 
assessing sepsis risk in ICH patients, including race, gender, acute pneumonia, fluid electrolyte disorders, heart 
disease, liver disease, renal failure, heart rate, GCS score, ICP monitoring, invasive ventilation, supplemental 
oxygen, chloride, and WBC. Liver disease has been consistently associated with an increased risk of infections, 
including sepsis, due to impaired synthetic function and detoxification processes36,37. This predisposition is 
particularly pronounced in ICU settings where patients are more susceptible to systemic infections38. Similarly, 
renal failure contributes to sepsis risk through mechanisms such as immune dysfunction and accumulation of 
uremic toxins, which impair host defenses39–42. Furthermore, heart disease impacts sepsis risk through multiple 
pathways, including reduced tissue perfusion and altered hemodynamic responses, which can precipitate organ 
dysfunction in critically ill patients43–46. In terms of invasive procedures, the use of invasive ventilation and 
ICP monitoring devices increases the risk of secondary infection, decreases hospital discharge rates, and raises 
mortality47. Aziz et al.48 found that invasive mechanical ventilation is identified as an independent predictor of 
mortality in ICU-treated adults with sepsis. In addition, acute pneumonia is a significant independent predictor 
of sepsis in patients with ICH. Research indicates that around 43% of individuals with ICH develop acute 
pneumonia49, which is linked to a four-fold increased risk of complications50–52. This aligns with the results of 
our study. Moreover, evidence has shown that elevated chloride levels independently correlate with mortality 
in ICU patients with ICH53. When patients have severe sepsis and hyperchloremia, this condition is typically 
observed upon admission to the ICU. Further, hyperchloremic patients admitted to the ICU experienced 
elevated chloride levels even after 72 h of admission, and the exacerbation of hyperchloremia was independently 
associated with all-cause in-hospital mortality54,55.

The present study has certain limitations, including its retrospective and observational nature, which may 
introduce selection bias. The data from the MIMIC-IV database come from a single center in the United States, 

Fig. 5. Shapley value analysis for variable importance in the RF model. Each dot represents a Shapley value for 
an individual observation, indicating the contribution of a specific variable to the model’s prediction. Variables 
are ordered by their average importance. The color gradient reflects the feature value, with yellow indicating 
higher values and purple indicating lower values. RF random forest.
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potentially undermining the generalization to other populations. Therefore, external validation against different 
populations is required to accurately assess the model’s performance. It is important to note that the model 
should be used as a medical reference only, as other complex clinical factors should also be considered in 
treatment decisions. Nevertheless, the established model can assist clinicians in the timely management of high-
risk ICH patients with sepsis in the ICU.

Conclusion
In conclusion, ML models could be reliable tools for predicting sepsis in ICH patients. Among all prediction 
models, the RF model proved to be most effective in providing early identification and timely intervention for 
high-risk ICH patients with sepsis, potentially mitigating disease progression.

Data availability
The raw data for this study were sourced from the MIMIC-IV and eICU-CRD databases, both of which are ac-
cessible to the public. Detailed data pertinent to this study can be made available upon request by reaching out 
to the corresponding author.
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