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Abstract 

Malaria Early Warning Systems (EWS) are predictive tools that often use climatic 

and other environmental variables to forecast malaria risk and trigger timely interven-

tions. Despite their potential benefits, the development and implementation of malaria 

EWS face significant challenges and limitations. We reviewed the current evidence 

on malaria EWS, including their settings, methods, performance, actions, and eval-

uation. We conducted a comprehensive literature search using keywords related to 

EWS and malaria in various databases and registers. We included primary research 

and programmatic reports on developing and implementing Malaria EWS. We 

extracted and synthesized data on the characteristics, outcomes, and experiences of 

Malaria EWS. We screened 6,233 records and identified 30 studies from 16 countries 

that met the inclusion criteria. The studies varied in their transmission settings, from 

pre-elimination to high burden, and their purposes, ranging from outbreak detection 

to resource allocation. The studies employed various statistical and machine- learning 

models to forecast malaria cases, often incorporating environmental covariates 

such as rainfall and temperature. The most common mode used is the time series 

model. The performance of the models was assessed using measures such as the 

Akaike Information Criterion (AIC), Root Mean Square Error (RMSE), and adjusted 

R-squared (R 2). The studies reported actions and responses triggered by EWS 

predictions, such as vector control, case management, and health education. The 

lack of standardized criteria and methodologies limited the evaluation of EWS impact. 

Our review highlights the strengths and limitations of malaria early warning systems, 

emphasizing the need for methodological refinement, standardization of evaluation 

metrics, and real-time integration into public health workflows. While significant prog-

ress has been made, challenges remain in automating forecasting tools, ensuring 
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scalability, and aligning predictions with actionable public health responses. Future 

efforts should enhance model precision, usability, and adaptability to improve malaria 

prevention and control strategies in endemic regions.

Introduction

The fight against malaria has reached a critical phase. Despite remarkable strides 
in reducing the global malaria burden from 2000 to 2015, progress has stalled since 
2016, especially in high-burden countries within sub-Saharan Africa [1–3]. This stag-
nation signals an urgent need for innovative tools and strategies to revive the push 
toward the World Health Organization’s (WHO) 2030 targets for malaria elimination 
[4]. For these elimination targets to not merely be aspirational, there is a need to 
deploy new or effective vector control measures, diagnostic tools, antimalarial med-
ications, and social behaviour change communication. A transformation of malaria 
surveillance systems is equally essential, shifting from passive reporting to dynamic 
systems capable of tracking hotspots, forecasting outbreaks, and evaluating the 
effectiveness of interventions [5].

Malaria Early Warning Systems (EWS) are embedded within these enhanced 
surveillance systems, which are critical for forecasting and mitigating potential out-
breaks. By synthesizing data on intervention strategies, environmental conditions, 
and resistance patterns, EWS equips health authorities and policymakers with the 
means to respond effectively to upcoming threats. This proactive approach is vital for 
reducing the strain on healthcare infrastructure and saving lives. As countries move 
closer to malaria elimination, the frequency of outbreaks is expected to increase due 
to the ‘heterogeneous’ nature of transmission [5,6]. This heterogeneity, driven by dis-
parities in intervention uptake, climate variability, and resistance among vectors and 
parasites, necessitates robust EWS to navigate and control the evolving landscape of 
malaria transmission [7].

An effective malaria EWS is a powerful predictive tool, enabling public health 
officials, governments, and stakeholders to take informed, pre-emptive actions 
to prevent impending outbreaks. Integrating data on intervention uptake, climatic 
conditions, vector and parasite resistance, and other critical factors is essential [8]. 
However, the implementation and development of EWS face significant challenges. 
Diverse methodologies to predict future malaria risk present two distinct scenarios: 
some EWS provide reasonable certainty (reliability associated with the warning 
information) but inadequate lead time (duration between issuing a warning or alert 
and the onset of the event) for action. In contrast, others offer good lead time but with 
modest certainty in predictions. Striking a balance between accurate forecasts and 
timely response is complex yet crucial in developing effective malaria EWS [9,10].

The sustainability of investments in malaria EWS is a significant challenge, with 
funding often being reactive to an outbreak or disaster. This pattern can undermine 
the long-term effectiveness and maintenance of these systems. For an EWS to be 
successfully integrated into malaria surveillance, there is a need for improved infra-
structure, capacity building, and collaboration among stakeholders, including the 
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community, researchers, and policymakers. These improvements are crucial for the effective functioning and utilization of 
EWS in malaria prevention and control efforts [11].

The Roll Back Malaria (RBM) initiative established a framework for malaria EWS in 2001, guiding its development and 
implementation [12]. However, progress in establishing EWS in Africa has been slow over the past two decades. The role 
and importance of malaria EWS vary depending on the epidemiological setting. In low-burden settings aiming for elimina-
tion, EWS can help identify transmission hotspots and optimize resource allocation for targeted interventions [13].

In contrast, in high-burden settings, EWS are critical for anticipating seasonal surges and ensuring adequate case man-
agement and vector control preparedness. Research has shown that malaria incidence is closely linked to seasonal vari-
ations, with higher burdens observed during warmer and wetter seasons, underscoring the necessity for EWS to predict 
these trends. Despite these differences, the fundamental objective remains to provide timely and actionable predictions 
that enhance malaria control and prevention strategies. However, many existing models have not been explicitly designed 
to accommodate these epidemiological variations, limiting their practical utility across diverse settings. A scoping review 
identified that while various models exist, their applicability varies across transmission settings, from pre-elimination to 
high burden, indicating a need for adaptable EWS frameworks.

Zinszer et al.‘s (2012) systematic review of malaria EWS focused on forecasting methodologies, predictors, and model 
evaluations but did not address other critical aspects, such as actions following early warning predictions, performance 
evaluation, and integration into existing systems for scalability and sustainability [14]. More recent reviews have similarly 
been limited in scope. Hussain-Alkhateeb et al. (2021) examined EWS across multiple vector-borne diseases. Still, they 
did not focus on malaria-specific forecasting approaches or their integration into health systems[8]. Baharom et al. (2022) 
focused on climate-driven malaria projections [15]. Still, they did not assess the broader methodological landscape or the 
implementation challenges of EWS in different epidemiological settings. These gaps emphasize the need for a thorough 
review, synthesizing malaria-specific early warning system methodologies while assessing their practical application, 
effectiveness, and usefulness.

Given the continued burden of malaria and the increasing risks posed by climate variability and changing epidemiologi-
cal patterns, a comprehensive assessment of malaria EWS that evaluates their methodological approaches, implementa-
tion challenges, and practical applications is still needed. Recent studies have emphasized the importance of data-driven 
malaria prediction models, highlighting the role of climate, environmental, and socio-economic factors in outbreak predic-
tion [14,16,17]. However, the translation of these models into operational EWS remains inconsistent.

This review aims to synthesize current evidence on malaria EWS, examining their settings, EWS methodologies, 
performance assessment approaches, and response actions. Unlike previous reviews, our study systematically assesses 
the strengths and weaknesses of existing EWS, explores their application across different malaria-endemic settings, and 
evaluates their impact on decision-making in malaria control.

In this review, we set out to answer the following questions.

1. What are the transmission settings in which malaria EWS are developed?

2. What are the methodologies used in developing malaria EWS?

3. What actions have been documented following malaria EWS predictions?

4. What are the approaches to evaluating a malaria EWS’s performance, effect, and impact?

Methods

This review focused on developing and implementing malaria EWS for populations affected by or at risk of malaria, includ-
ing all age groups and demographics. These systems, either standalone or integrated into broader programs, utilized 
routinely collected data or data from studies and surveillance systems to predict future malaria risks. Instead of comparing 
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these systems with specific alternatives, we assessed various characteristics of each malaria EWS. The outcomes evalu-
ated included predictions or forecasts of malaria cases, disease, mortality, and anti-malarial drug resistance. We incorpo-
rated original research published in peer-reviewed journals and available online programmatic reports.

Eligibility criteria

The studies included met the following inclusion and exclusion criteria.
Inclusion criteria. 

•  Original research in a peer-reviewed journal - Published or available through online programmatic reports.

• Develops a prediction model for predicting malaria cases, deaths, or anti-malarial drug resistance.

• Malaria is the disease of interest. Specific outcomes include malaria cases, disease, death, and antimalarial drug 
resistance.

• Presents the development, evaluation, or other experiences of an EWS in a standalone setting or as part of a 
program.

Exclusion criteria. 

• Studies focusing solely on general malaria trends, risk factors, or predictors without examining or forecasting the spe-
cific outcomes related to EWS.

• Studies focusing on malaria in non-human subjects, such as animal or in vitro studies.

• Any study that does not explicitly address a prediction model, including the development, evaluation, or other experi-
ences with EWS.

• Studies that do not present predictions or forecasted outcomes for malaria cases, disease, death/mortality, or antimalar-
ial drug resistance.

• Non-peer-reviewed apart from online programmatic reports.

Information sources. We used the EBSCOhost platform, which gave us access to several significant databases: 
Medline Complete, Global Health, CNHL Complete, and Green File.

Search strategy. The final search presented in the manuscript was done on 28 January 2024.

Keywords

“malaria” as Medical Subject Headings (MeSH) terms and as a keyword
AND
“early warning” OR “prediction” OR “forecasting” as MeSH terms

As accessible text terms truncated as follows predict* OR forecast* OR “early warn*”
Limiters. 

•  Published between January 2012 and January 2024 (a prior review was done before 2012 [14]).

• Online full text available.

• Peer-reviewed.

• Human.

There were no language restrictions in the search



PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0003751 May 14, 2025 5 / 18

Data management

Study selection. The Rayyan tool was used to manage the extracted studies. Two reviewers (DM and JG) 
independently screened all retrieved studies’ titles and abstracts and excluded irrelevant studies based on eligibility 
criteria. Full-text screening was conducted for all potentially eligible studies to assess eligibility based on the inclusion and 
exclusion criteria. Any disagreements between reviewers were resolved through discussion.

Data extraction and management. Data extraction used a pre-designed standard data extraction form developed 
in-house. This form included vital information such as the author(s), year of publication, study location, study year, study 
setting, study design, and EWS description parameters.

Risk of bias assessment

The risk of bias in the included studies was not formally assessed because the scope of this review did not encompass a 
complete systematic approach, which typically necessitates such an evaluation. However, inclusion and exclusion criteria 
were strictly applied to maintain the integrity and reliability of the findings.

Data synthesis

The synthesis of data from the included studies was structured to provide a comprehensive understanding of malaria 
EWS. This process included a summary of the characteristics of the studies, including the methodology, population, 
geographic location, and primary findings. A thorough narrative synthesis was done to align with the specific objectives 
of the review, providing an in-depth analysis and synthesis of key findings. These included: (1) Exploration of the settings 
and methods used in developing each malaria EWS, data sources, prediction modeling, and technological platforms, (2) 
Operational aspects of the malaria EWS, focusing on effectiveness, user experience, implementation challenges, and 
sustainability in diverse contexts, (3) Actions and responses triggered by EWS predictions with identification of successful 
practices, challenges, and coordination among various stakeholders, and (4) Review of methodologies and criteria used 
to evaluate EWS’ performance, effect, and impact.

Results

Following our search, we retrieved 6,233 database records (Table 1). No additional records were identified from the 
programmatic reports’ registers. After 983 duplicate records were removed, titles and abstracts of the remaining 5250 
records were screened. After excluding ineligible articles, we identified 54 studies for a detailed full-text evaluation of their 
eligibility. During the full-text review, we excluded 24 studies that did not meet the inclusion criteria, with 30 included. The 
reasons for exclusion have been included in the PRISMA diagram (Fig 1). All identified studies were in English apart from 
one study in Mandarin that did not meet the titles and abstract review criteria.

Supplementary File 1 (S1 Table) contains all collated data. The review identified studies from 18 countries, with India 
contributing the most significant proportion, accounting for seven studies (23%). Sixteen of the thirty included studies 
(53%) were conducted in Africa, with South Africa and Kenya being the most represented, as illustrated in Fig 2.

Table 1. Number of studies identified through each database search (including duplicates).

Database Number of studies identified

Medline Complete 4399

Global health 1291

CNHL Complete 473

Green File 70

Others 0

https://doi.org/10.1371/journal.pgph.0003751.t001

https://doi.org/10.1371/journal.pgph.0003751.t001
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Settings where malaria EWS were developed

Our systematic review identified a range of papers on malaria EWS across varied transmission settings. These settings 
included seasonal transmission areas such as Afghanistan (1/30, 3%) [18] and Pakistan [19], where EWS models pre-
dicted malaria trends based on climatic fluctuations. Other included studies were from highly heterogeneous regions like 
Ethiopia [20] and Kenya [21], where the EWS focused on the high transmission settings of the countries. Several studies 
(7/30, 23.3%) from India [22–28] and Mozambique [29,30] represented perennial transmission settings, demonstrating 
year-round prediction systems. Four of the included studies (13.3%) covered regions nearing malaria elimination, such as 
South Africa [31–34], or focused on detecting residual transmission in Thailand [35]. Other aspects included regions with 
high transmission during rainy seasons [36], provinces with malaria epidemics in China [37], areas with stable transmis-
sion in Uganda[38], and those with low risk in South Korea [39]. Some studies focused on specific [34]challenges, such 
as the re-emergence of malaria in border regions of China [40] or leveraging indigenous knowledge in high-risk zones in 
Zimbabwe [41] (Fig 3).

Fig 1. Review Flow diagram.

https://doi.org/10.1371/journal.pgph.0003751.g001

https://doi.org/10.1371/journal.pgph.0003751.g001
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Fig 3 was generated using computer code and derivative works from the geoBoundaries
project (https://www.geoboundaries.org) under a CC BY 4.0 license with permission from Runfola, D. et al. 

(2020) [42].

Approaches to developing EWS

Several approaches were used to develop malaria EWS (Table 2). We broadly classified the models into statistical, 
machine learning, and indigenous knowledge models. Statistical approaches typically relied on predefined models where 
covariates were carefully selected based on prior knowledge and were explicitly included in the model structure to explain 
the relationship between variables. These models often assumed a specific distribution for the data and emphasized 
interpretability, allowing for clear inferences about the effects of each covariate. In contrast, machine learning approaches 
usually focused on predictive performance rather than interpretability, using algorithms that could automatically select, 
transform, and weigh covariates in complex ways without requiring prior assumptions about the data’s distribution. While 
statistical models typically conveyed uncertainty through confidence intervals and p-values, machine learning models 
often relied on techniques such as cross-validation and bootstrapping to estimate uncertainty. However, such estimates 
were not always directly interpretable.

Fig 2. Frequency plot showing the countries where included studies were conducted.

https://doi.org/10.1371/journal.pgph.0003751.g002

https://www.geoboundaries.org
https://doi.org/10.1371/journal.pgph.0003751.g002
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Twenty of the thirty included studies (67%) used statistical models to develop EWS, with 13 out of the 20 (65%) stud-
ies using a time series analysis [18,19,21,24,28,31,32,34,37,38,43–45]. The time series analysis approaches included 
AutoRegressive Integrated Moving Average (ARIMA) in three studies (15%) [21,28,43]. In contrast, some studies used 

Fig 3. Countries where the included studies were done and their malaria transmission setting.

https://doi.org/10.1371/journal.pgph.0003751.g003

Table 2. Approaches to the development of EWS.

Approach Category Methods Used Studies/References

Statistical Correlation Dhiman et al (2017)

Statistical Dynamic System Harris et al (2020)

Statistical Geostatistical model Colborn et al (2018)

Statistical Process Roy et al (2015)

Statistical Regression Bouma et al (2016), Sewe (2017), Verma (2018)

Statistical Time series Adeola et al (2014), Anwar et al (2016), Ebhuoma et al (2016), Hussien et al (2017), Karuri et 
al (2018), Kifle et al (2019), Kumar et al (2020), Mopuri et al (2023), Riaz et al (2023), Wang 
et al (2023), Zinszer et al (2023)

Statistical Time series, Multimodel Panzi et al (2022)

Statistical Time series, nonlinear YoonHee et al (2019)

Machine Learning General Machine Learning Mohapatra et al (2021)

Machine Learning Neural Networks Barboza et al (2016), Haddawy et al (2020), Kamana et al (2022), Santosh et al (2022)

Machine Learning Rule based Buczak et al (2015), Martineau et al (2022)

Machine Learning Supervised Learning Harvey et al (2021), Brown et al (2020)

Indigenous Knowledge Community EWS Macherera et al (2016)

https://doi.org/10.1371/journal.pgph.0003751.t002

https://doi.org/10.1371/journal.pgph.0003751.g003
https://doi.org/10.1371/journal.pgph.0003751.t002
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variations of ARIMA, such as the Seasonal AutoRegressive Integrated Moving Average (SARIMA) in four of the 20 studies 
(20%) [24,31,34,44] and Seasonal AutoRegressive Integrated Moving Average with Exogenous Regressors (SARIMAX) 
to account for seasonal adjustments and exogenous variables in one study [18]. Other studies integrated various statisti-
cal methods, as Panzi et al. (2022) demonstrated, who employed a multi-model approach to construct the malaria EWS 
model [45].

Other statistical approaches included using regression models in three of the twenty studies (15%) to quantify the rela-
tionship between variables [20,27,46]. In contrast, one study used a correlation model to identify the strength of associa-
tions [22]. One study applied dynamic systems theories, such as the theory of critical slowing down, to anticipate shifts in 
malaria transmission under varying conditions [47]. In comparison, process-based models were employed in one study 
to simulate the complex interactions between environmental factors and malaria dynamics, providing insights into how 
malaria may evolve [25].

Nine of the identified studies (30%) utilized machine learning models for EWS development, with two of the nine 
studies (22%) applying supervised learning methods, including Gaussian Processes and Random Forests, or a com-
bination of generalized linear models (GLM), ensemble methods (EM), and support vector machines for data-driven 
predictions in dense populations [29,36]. Neural networks were utilized in four of the nine studies (44%), with Bayesian 
networks used in one of the four studies [35]. In contrast, Long Short-Term Memory (LSTM) models were applied in 
three studies for their effectiveness in handling large datasets and complex patterns, such as climate change effects 
and city-specific malaria trends [26,40,48]. In two studies, additional machine learning approaches included using 
rule-based methods, including the fuzzy association rule mining classifier and machine learning classification mod-
els [33,39]. In contrast, one study used a general machine approach (Waikato environment for knowledge analysis - 
WEKA) for classifier selection [23].

One study, the Gwanda District study in Zimbabwe, utilized Indigenous Knowledge Systems for their malaria EWS [41].

Conveying uncertainty of predictions

Seven studies incorporated measures of uncertainty in their predictions, primarily using confidence intervals 
[18,21,25,30,34,38,45]. Anwar et al. (2016) predicted malaria cases in Afghanistan from January 2014 to September 2015, 
providing confidence intervals to express the uncertainty in their forecasts. Similarly, Roy et al. (2015), Karuri et al. (2016), 
Ebhuoma et al. (2018), and Zinszer et al. (2015) included confidence intervals in their predictions [21,25,34,38]. Panzi et 
al. (2022) used confidence intervals in forecasting malaria cases in the Democratic Republic of the Congo (DRC) from 
2020 to 2030, while Colborn et al. (2018) employed non-exceedance probabilities, an alternative method for representing 
predictive uncertainty [30,45]. This distinction highlights the different approaches to quantifying and communicating uncer-
tainty across these studies. The models that did not include uncertainty in their predictions mostly used machine-learning 
models.

Covariates and data sources

A range of covariates were used in the included studies (Table 3). Standard covariates across the studies included 
environmental factors such as rainfall, temperature, and humidity, alongside vegetation indices like normalized difference 
vegetation index (NDVI) that measures vegetation health and density and enhanced vegetation index (EVI), which is 
helpful in areas with dense vegetation. Out of the 30 included studies, 16 (53%) had rainfall or precipitation covariates, 14 
(47%) used temperature, and 5 (17%) included humidity variables (Table 3). One study considered climate indices like the 
Oceanic Niño Index (ONI) [22]. Two studies included demographic data [26,29]. Seven out of the 30 studies (23%) did not 
include covariates, relying solely on malaria case reports (Table 3). Additionally, the identified studies utilized various data 
sources, including public health reports, national disease control databases, health facility data, and satellite-derived data 
(Table 3).
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EWS model performance methodology

Table 4 below summarises the EWS assessment methods used. Commonly used metrics for assessing performance were 
the Root Mean Square Error (RMSE) [18,19,23,24,30,37,40,46], Mean Absolute Error (MAE) [24,29,40,46] and R Squared 
(R2) values [20,25,28], alongside more complex statistical tools like the Akaike Information Criterion (AIC)[18,19,24] and 
Bayesian Information Criterion (BIC) [44]. Some studies focused on precision measures such as accuracy, sensitivity, and 
specificity [25,26,33,36,39]. In contrast, three studies utilized correlation or auto functions and error estimation methods 
[18,27,45].

Overall, the models utilized in the included studies demonstrated strong predictive capabilities. This assessment was 
made by examining the authors’ comments on their metrics. Details of the final evaluations can be found in supplement 
document(S1 Table)For example, Yoon-Hee et al. (2019) distributed a lag non-linear time series malaria prediction model 
for cases in South Africa that showed good performance, particularly for short-term predictions of 1–2 weeks ahead, 
achieving correlation coefficients greater than 0.8 Although the accuracy of the predictions decreased with increased 
lead time, the model still performed well up to 16 weeks in advance [32]. In Kifle et al. ‘s (2019) SARIMA-based model 
in Eritrea, monthly malaria case predictions from 2012 to 2016 closely aligned with observed cases. Minor discrepan-
cies were, however, noted in the third quarter of the fourth year and the first quarter of the fifth year [44]. Martineau et al. 
(2022) machine learning forecasting models in South Africa achieved an accuracy rate of 80% for predictions extending 
up to three seasons (nine months) ahead [33].

Outbreak detection

Five studies (16.7%) utilized EWS for outbreak detection, employing varied methodologies [25,30,36,41,47]. Harvey et al. 
(2021) defined a malaria outbreak occurrence as the point at which the case rate surpassed the five-year mean for the 
same period plus two standard deviations, providing a statistically significant signal of an outbreak [36]. Roy et al. (2015) 
utilized a binary classifier to predict large outbreaks, defining an outbreak occurrence as the point when the probability 
exceeded a set threshold, which was then validated against actual data [25]. Harris et al. (2020) determined outbreaks 
by a substantial increase in cases, specifically when the count exceeded the previous months’ numbers by more than 
two and a half times. Lastly, Colborn et al. (2018) used exceedance probabilities (EPs) of relative risk to define outbreak 
thresholds, offering a probabilistic approach to outbreak detection [30].

Actions following early warning predictions and incorporation into routine practice

Two studies (6.7%) extended malaria EWS development beyond initial creation and included a report on incorporating 
the EWS into routine practice. In Burkina Faso, Harvey et al. (2021) successfully integrated their malaria EWS into the 
district-level routine practice, streamlining the outbreak detection and response process, including the distribution of 
bed nets, indoor residual spraying, and larviciding [36]. Similarly, the EWS approach by Macherera et al. (2016) at the 
ward level in Zimbabwe demonstrated the system’s adaptability and effectiveness in local settings, improving community 
awareness and facilitating education campaigns. The district health teams incorporated the ward health teams into the 
malaria control plans [41].

Discussion

The importance of malaria forecasting within the public health area cannot be overstated. The origins of malaria EWS can 
be traced to rudimentary forecasting methods pioneered by health practitioners in the 1900s who forecasted malaria using 
weather data [49]. These have evolved into more sophisticated models to support control and elimination efforts[8]. Our 
review identified 6,233 records published after January 2012. We included 30 studies that have enriched our understand-
ing of malaria early-warning systems. Through these findings, we lay the groundwork for assessing the current practices 
and gaps within malaria forecasting and EWS development.
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Table 3. The covariates included in the models and data sources.

Year Author Country Covariates Data Source (malaria incidence data)

2014 Kumar et al [29] India Rainfall, temperature, wind Speed, humidity Public Health Data (2006–2013)

2015 Roy et al [25] India Rainfall, population National Institute of Malaria Research 
Data

2015 Zinszer et al [38] South Korea Rainfall, temperature, vegetation, clinical 
data

Health Facility & Satellite-Derived Data

2015 Buczak et al[39] Uganda Rainfall, Temperature, social data, interven-
tion data

Korea Centers for Disease Control and 
Prevention website for the period from 
2004–2013.

2016 Anwar et al [18] Afghanistan Rainfall, NDVI, EVI, NDWI Ministry of Public Health Reports 
(2005–2015)

2016 Bouma et al [20] Ethiopia Sea surface temperature over the Pacific and 
Indian Oceans

Malaria Case Reports (1982–2005)

2016 Karuri et al [21] Kenya Rainfall Pediatric Malaria Admission Data 
(1990–2011)

2016 Haddaway et al[35] Thailand Environmental variables, time lagged effects Community Reports & Environmental 
Data

2016 Macherera et al[41] Zimbabwe Insects, plant phenology, animals, weather, 
cosmological indicators

Community Reports & Indigenous Envi-
ronmental Indicators

2017 Dhiman et al [18] India Monthly Oceanic Nino Index (ONI) CBHI & NVBDCP Data (1994–2015)

2017 Sewe et al  [46] Kenya LSTs (Day and night), precipitation Siaya District Hospital Admission Data 
(2003–2013)

2017 Hussien et al [43] Sudan None used Routine Incidence Data

2018 Verma et al  [27] India Not included Data obtained via Google Search

2018 Colborn et al  [30] Mozambique Not included NMCP Routine Data

2018 Ebhuoma et al [34] South Africa Rainfall, Temperature, Wind Speed, Humidity Health Facility & Satellite-Derived Data

2019 Wang et al  [37] China Temperature, humidity, air pressure,vapor 
pressure, moisture level, wind velocity, pre-
cipitation, sunshine duration, days with daily 
precipitation

Yunnan prProvince mMalaria dData 
(2011–2017)

2019 Kifle et al  [44] Eritrea Rainfall Malaria Incidence Data (2012–2016)

2019 Adeola et al  [31] South Africa Rainfall, NDVI, EVI, NDWI Malaria Case Observations (2013–2017)

2019 Kim YoonHee et al and 
Ratnam  [32]

South Africa Temperature, precipitation Malaria Case Data in Vhembe, Limpopo 
(1998–2015)

2020 Mopuri et al  [24] Nigeria Rainfall, temperature, NDVI NVBDCP, Visakhapatnam Data 
(2001–2016)

2020 Santosh et al[26] India Temperature, rainfall, age, sex, vegetation 
index

RoutineEpidemiological Data 
(1995–2018)

2020 Harris et al  [47] Kenya Not included Hospital Case Reports (1965–2002)

2020 Brown et al[29] India Demographics, temperature, rainfall Hospital Routine Data

2021 Harvey et al  [36] Burkina Faso Not included Integrated e-Diagnostic Approach (IeDA) 
Database

2021 Mohapatra et al [23] India Rainfall, temperature, humidity, topography Directorate of Public Health Services, 
Odisha Data (2002–2017)

2022 Kamana et al [40] Democratic Republic 
of Congo

Temperature Chinese Centre for Disease Control and 
Prevention

2022 Panzi et al[45] China Rainfall, temperature, humidity, wind speed DRC Epidemiological Surveillance Direc-
torate Database

2022 Martineau et al  [33] South Africa Sea surface temperature over the Pacific and 
Indian Oceans

Malaria Institute, Tzaneen Data 
(1998–2020)

(Continued)
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Forecasting methods should be scrutinized for their underlying assumptions, strengths, and weaknesses, with accu-
racy evaluations conducted on out-of-sample data. We acknowledge numerous forecasting methods, but it is of value to 
leverage standard forecasting measures to enable cross-study comparisons. Our review found that time series forecasting 
methods, especially regression-based approaches, are the most commonly used due to their flexibility and intuitive nature. 
However, these methods have limitations, such as overlooking serial autocorrelation in errors. This oversight can lead to 
biased estimates of predictor effects and underestimated standard errors. Therefore, it is essential to examine the resid-
uals of such models for autocorrelation [50] We also identified studies that use ARIMA models, which can manage serial 
autocorrelation in the data, with their extended variants like SARIMA and ARIMAX providing additional predictive and 
forecast capabilities. However, these models require a substantial amount of data and examination of residuals to avoid 
misleading cross-correlation functions, which still need to be manually done in some cases [51]. Other complex methods 
in the machine-learning space have also been used. Studies reviewing the use of machine learning models in malaria 
EWS show their versatility across various ecosystems and capability to achieve greater accuracy. However, they point to 
the need for standardization to allow for assessment across models [52].

The current landscape of malaria forecasting is quite strong, mainly due to a solid foundation in methodology. Looking 
ahead, the focus should shift towards enhancing the performance of these models, refining their user interface, and auto-
mating their functions to facilitate their adoption by stakeholders within malaria-affected countries. To this end, it is essential 
to prioritize the development of intuitive platforms that can be seamlessly integrated into existing health systems’ workflows. 
An example is the EPIDEMIA system used in the Amhara region of Ethiopia, which utilizes near-real-time environmental 
data and patient records to provide updated malaria risk maps and forecasts. Such systems allow health officials to make 
timely decisions and improve intervention strategies based on current data rather than historical trends [50,53].

There is also a clear need to streamline these models to operate with (near) real-time data, enabling dynamic 
responses to evolving malaria trends. This could include developing adaptive algorithms that learn and improve from 
each prediction cycle, thereby increasing the accuracy and reliability of the forecasts. We also think fostering open-source 
communities around these models can accelerate innovation, allowing for collective problem-solving and sharing of best 
practices [54].

Another critical area is customizing these models to account for local environmental variables, socio-economic factors, 
and intervention strategies, which are crucial determinants of malaria transmission. As we move forward, it is also essen-
tial to consider the scalability of these models, ensuring they can be deployed in various settings, from rural clinics to 
national public health centers.

Year Author Country Covariates Data Source (malaria incidence data)

2022 Barboza et al [48] Brazil Not included Not included

2023 Riaz et al[19] Pakistan Not included MOH Routine Data

NDVI: Normalized Difference Vegetation Index

EVI: Enhanced Vegetation Index

NDWI: Normalized Difference Water Index

IeDA: Integrated e-Diagnostic Approach

DRC: Democratic Republic of the Congo

LST: Land Surface Temperature

CBHI: Community-Based Health Insurance

NVBDCP: National Vector Borne Disease Control Programme

NMCP: National Malaria Control Program

MOH: Ministry of Health.

https://doi.org/10.1371/journal.pgph.0003751.t003

Table 3. (Continued)

https://doi.org/10.1371/journal.pgph.0003751.t003
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We must also invest in capacity building, providing training and support to local health practitioners and decision- 
makers so that they can effectively leverage these tools. This approach will increase the reach of malaria EWS and 
empower local actors to take charge of malaria mitigation efforts in their communities [55].

In addition to refining existing malaria forecasting models, there is an urgent need to expand the EWS scope to predict 
the incidence of malaria and critical outcomes like mortality rates and the emerging threats of antimalarial drug or insecti-
cide resistance [56]. We found this to be a crucial gap in our review. The capacity to forecast these outcomes would be a 
significant leap forward, enabling health systems to allocate resources for immediate case management and long-term stra-
tegic planning. Predictive models that can, for example, anticipate the spread of drug-resistant strains could inform more 
effective malaria treatment policy decisions and guide research into new treatments. This broadening of focus will ensure 
that forecasting models remain relevant and potent tools in the evolving landscape of malaria control and prevention efforts.

The review found few documented actions following early warning predictions for malaria. These actions could range 
from mobilizing public health resources and the preemptive distribution of anti-malarial medications and bed nets to 

Table 4. Assessing the performance of the EWS models.

Year Author Methods for Assessing Performance

2014 Kumar et al [28] R Squared (R2), ACF

2015 Roy et al [25] Accuracy, R Squared (R2)

2015 Buczak et al [39] Model Positive Predictive Value (PPV) and Sensitivity: 0.842 and 0.681

2015 Zinszer et al [38] Not specified

2016 Anwar et al [18] Autocorrelation function, Akaike Information Criterion (AIC), Root Mean Square Error (RMSE), Adjusted R2

2016 Bouma et al [18] R Squared (R2)

2016 Karuri et al[21] AIC, Root Mean Squared Error of Estimation (RESE), ACF

2016 Haddawy et al [35] Not specified

2016 Macherera et al [41] Not specified

2017 Dhiman et al [18] Not specified

2017 Sewe et al [46] RMSE, MAE

2017 Hussien et al [43] AIC, MAE

2018 Verma et al [27] Correlation

2018 Colborn et al [30] RMSE

2018 Ebhuoma et al [34] Standardized Mean Square Error (SMSE), Spearman’s correlation

2019 Wang et al [37] RMSE, Mean Absolute Scaled Error (MASE), Mean Absolute Deviation (MAD)

2019 Kifle et al [44] R Squared (R2), Bayesian Information Criterion (BIC)

2019 Adeola et al [31] Adjusted R2

2019 Kim YoonHee et al 
and Ratnam [32]

Specificity, Sensitivity, RMSE

2020 Mopuri et al [24] RMSE, Mean Absolute Percentage Error (MAPE), MAE, R2, AIC

2020 Santosh et al [26] Accuracy, Sensitivity, Precision

2020 Harris et al [47] Not specified

2020 Brown et al [29] MAE, Mean Squared Error (MSE)

2021 Harvey et al [36] Two-tailed precision

2021 Mohapatra et al [23] Root Mean Square Error (RMSE), Accuracy, Kappa, Receiver Operating Characteristics (ROC) Value

2022 Kamana et al [40] RMSE, Mean Absolute Error (MAE)

2022 Panzi et al [45] MASE, Autocorrelation Function (ACF), The Box-Pierce test

2022 Martineau et al [33] Accuracy, Specificity, Sensitivity, Precision

2022 Barboza et al [48] Not specified

2023 Riaz et al [19] RMSE, MAPE, MAE, R2, AIC

https://doi.org/10.1371/journal.pgph.0003751.t004

https://doi.org/10.1371/journal.pgph.0003751.t004
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targeted vector control measures such as indoor residual spraying and larviciding. Community awareness and education 
campaigns could also be often intensified to improve prevention and early treatment-seeking behaviors [36,41].

Despite the recognized importance of malaria EWS, the literature needs to be more extensive in terms of their eval-
uations of their performance, effect, and impact after implementation. Such evaluations are necessary to ascertain the 
true efficacy of these systems. With assessment protocols and outcome data, refining EWS, tailoring them to specific 
environments, and justifying their adoption within routine health practices becomes easier. It is also essential to establish 
a standardized operational definition of an outbreak [57]. The diverse definitions used across studies make it challeng-
ing to compare methods or determine which is more effective [58]. This variability arises from the different approaches 
to defining an outbreak, whether it be a specific threshold of cases, expert judgment, or complex data models. Without 
a standard definition, each study may define an outbreak differently, leading to inconsistencies in model evaluation and 
interpretation [60].

While this review provides the landscape of malaria EWS, several limitations must be acknowledged. First, our search 
was limited to studies published after January 2012, following a prior systematic review by Zinszer et al [14]. While this 
ensures an updated synthesis of EWS methodologies, it excludes earlier work that might provide additional context on 
the evolution of these systems. Future research could integrate pre-2012 studies to offer a more comprehensive historical 
perspective. Second, the review was limited to peer-reviewed studies and programmatic reports accessible in selected 
databases. There may be relevant unpublished or non-indexed reports that were not captured. Additionally, we did not 
perform a formal risk-of-bias assessment, which limits our ability to evaluate the methodological rigor of individual studies. 
Finally, while our synthesis identifies key challenges in malaria EWS, the heterogeneity in study designs, performance 
metrics, and data sources makes direct comparisons difficult. Standardized reporting and evaluation frameworks are 
needed to enhance the comparability of findings across studies.

This review builds on previous reviews of malaria forecasting models, each with distinct focuses and limitations. Zinszer 
et al. (2012) [14] primarily examined forecasting methodologies and predictor variables but did not comprehensively 
assess actions following early warnings or integration into routine surveillance systems. More recent reviews, such as 
Hussain-Alkhateeb et al. (2021) [8], explored EWS across multiple vector-borne diseases, including malaria, but did not 
focus specifically on malaria forecasting models. Baharom et al. (2022) examined climate-driven malaria projections but 
did not assess implementation challenges and operational utility[15]. Compared to these reviews, our study systematically 
evaluates malaria-specific EWS regarding methodologies, performance metrics, and response actions. Our findings high-
light the need for improved standardization in EWS assessment, better integration into health systems, and more substan-
tial evidence of their real-world impact.

A significant ongoing debate in the literature concerns the reliability of climate data and its role in malaria forecasting. 
While climate variables such as temperature, rainfall, and humidity are widely used in malaria EWS, data quality, reso-
lution, and availability inconsistencies can affect prediction accuracy. Satellite-derived climate data, for example, often 
require ground validation, and discrepancies in measurement techniques can lead to forecasting errors [44,53].

Additionally, while associations between climate covariates and malaria incidence are well-documented, establishing 
causality remains challenging. Many studies assume a direct link between climatic factors and malaria transmission, yet 
other factors such as intervention coverage, population movement, and socioeconomic conditions can modify these rela-
tionships[28,33]. Future work should integrate multi-factorial models that account for both climate and non-climate drivers 
of malaria transmission [23,45].

Malaria EWS must balance prediction accuracy with lead time. Exact models with short lead times may not allow 
timely responses, while models with longer lead times often carry more significant uncertainty[53,59]. Time series models, 
such as ARIMA and SARIMA, are widely used for short-term forecasting but struggle with long-term predictions in highly 
variable transmission settings[18,44]. Machine learning models offer improved accuracy but often lack interpretability and 
require substantial computational resources, limiting their practical application in low-resource settings [23,33]. Hybrid and 
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ensemble approaches may help optimize both lead time and certainty, enhancing the usability of EWS in malaria-endemic 
regions [36,45]

Conclusion

This review summarizes current evidence on malaria early warning systems, focusing on methodologies, performance 
metrics, and response actions. While time series and machine learning models are frequently used, challenges exist in 
balancing prediction accuracy with lead time and integrating these models into routine health systems. The lack of stan-
dardized frameworks to assess EWS effectiveness and concerns about climate data reliability further complicate the 
situation. For malaria forecasts to be actionable, they must be accurate, have proper spatial and temporal resolution, 
and consider the operational context, including data availability and technical skills. Different forecasting methods on the 
same datasets and expanding predictor variables will help refine these models. The future of malaria forecasting relies 
on improving model precision, usability, and automation while ensuring accessibility for health professionals in malaria- 
affected regions.
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