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BACKGROUND: Exposure to household air pollution from the combustion of solid fuels is a leading risk factor for death and disease in low- and
middle-income countries, where cleaner cooking and lighting options are often unavailable. Few studies have measured personal exposure during
pregnancy, a sensitive period of development, particularly in Africa.

OBJECTIVE: We aimed to characterize exposure during early to midpregnancy among women in Rwanda and to assess predictors of personal expo-
sure, including stove and fuel type, cooking behaviors, housing conditions, sociodemographic characteristics, and other potential sources of exposure.

METHODS: We assessed 24-h baseline personal exposure data among 798 pregnant women in the Household Air Pollution Intervention Network
(HAPIN) trial in Rwanda, including 717 with fine particulate matter (PM2:5), 569 with black carbon (BC), and 716 with carbon monoxide (CO) sam-
ples. Best subsets regression identified key predictors of personal PM2:5, BC, and CO exposure, defined by maximizing adjusted R2 values and mini-
mizing prediction errors (Mallow’s CP and the Bayesian information criterion).

RESULTS: The 24-h median concentrations at baseline were 88:9 lg=m3 [interquartile range ðIQRÞ=85:0], 10:9 lg =m3 (IQR=7.6), and 1:12 ppm
(IQR=1.9) for PM2:5, BC, and CO, respectively. Households using kerosene as a primary lighting source had higher PM2:5 levels
(median= 116 lg=m3, IQR=107) than those using electricity (64 lg=m3, IQR=69). Women in households with modified biomass stoves with a
chimney had lower median values (48 lg=m3, IQR=52) for PM2:5, compared with those in households using open fires (113 lg=m3, IQR=74) and
other traditional stove types (155 lg=m3, IQR=43) that yielded the highest values. Consensus models from the best subsets’ regression explained
26% of the variation in PM2:5, 36% in BC, and 31% in CO concentrations.
CONCLUSIONS: Based on a unique and large dataset describing personal exposure among pregnant women in rural Rwanda, lighting and cooking prac-
tices described some variability in household PM2:5 concentrations, but overall, substantial unexplained variability remained. https://doi.org/10.1289/
JHP1049

Introduction
More than 3 million people die prematurely yearly from illnesses
attributable to exposure to household air pollution from ineffi-
cient cooking using polluting stoves and kerosene.1,2 In addition,

exposure to household air pollution increases the risk of develop-
ing noncommunicable diseases, such as lung cancer, chronic
obstructive pulmonary disease, ischemic heart disease, and
stroke.3,4 The highest health risks associated with using polluting
fuels and technologies are borne by women and children, who are
often responsible for household tasks like cooking and collecting
firewood.2

The combustion of solid fuels emits many air pollutants of
health concern, including fine particulate matter (PM2:5; inhalable
particles with aerodynamic diameters that are ≤2:5 lm),5 carbon
monoxide (CO; an odorless, colorless gas6), and black carbon
(BC), which together compose a significant portion of the PM2:5
contributing to the ongoing climate change problem.7

At the household level, various fuel types are used for cooking,
including biomass such as wood, agricultural waste, and charcoal.
According to the National Survey on Cooking Fuel Energy and
Technologies in Households, as of May 2021, 80.4% of homes in
Rwanda used firewood for cooking, and 18% used charcoal.4

Households using crop residues and liquid propane gas (LPG)
accounted for 9.5% and 5.6%, respectively.3 The use of other sour-
ces of energy accounted for the remaining 5.9% of households. It is
expected that households mix fuel types rather than rely on one
fuel exclusively for cooking.3 Electricity is the main energy source
used for lighting by households, according to the Rwanda Energy
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Group (REG) (47%).3 Other prevalent sources of energy for light-
ing are phone flashlights (28%) and solar power (14%).8

Another study conducted in Rwanda in 2018 showed that the
24-h mean concentrations of PM2:5 and PM ≤10 lm in aerody-
namic diameter (PM10) were significantly higher in the dry sea-
son than in the wet season.9 Between March and July 2018,
results of a later study5 revealed that the ambient average PM2:5
in Kigali was 52lg=m3, significantly higher than World Health
Organization (WHO) annual interim target 1 (35lg=m3).

Understanding predictors of personal exposure to household
air pollution and identifying key sources is essential to designing
effective interventions to reduce exposures and associated health
effects.10 Given that air pollution has been shown to affect every
major organ system,11 mitigating key sources can help from the
exposure side. Studies conducted elsewhere have identified a
number of predictors of exposure to household air pollution,
including kitchen type and lighting source. For example, a study
in Mozambique found that, compared with women who had an
open-air kitchen or did not have a kitchen, those who used an
enclosed or partially enclosed kitchen had a 61% [95% confidence
interval (CI): 17%, 122%] higher BC exposure. Exposure to BC
was also higher in women using kerosene as a lighting source.12

However, these studies focused on a single type of exposure, not
a combination of exposures (i.e., PM2:5, BC, and CO).

To date, few studies have described important predictors of
household air pollution based on measured levels of exposure,
including stove type, housing characteristics, cooking behaviors,
and other sources of exposure, particularly in sub-Saharan settings.
To address this gap in the available evidence, our work explored
baseline data among pregnant women from Rwanda from the
Household Air Pollution Intervention Network (HAPIN) trial to
assess two aims: a) to characterize 24-h household air pollution
personal exposure of PM2:5, BC, and CO; and b) using a best sub-
sets modeling approach, to identify key baseline predictors of per-
sonal exposure to these three household air pollutants among
measured household variables. We hypothesized that a combina-
tion of stove, cooking, sociodemographic, and household factors
would be predictive of personal household air pollution exposures
among pregnant women at the HAPIN trial baseline visit in
Rwanda and that stove type and lighting sources would be primary
drivers of household air pollution.

Materials and Methods

Study Area and Population
The study was conducted in Kayonza District, one of the seven dis-
tricts constituting the Eastern Province of the Republic of Rwanda.
The district area comprises an estimated 1,954 km2.13 The land-
scape of the Kayonza District consists of hills and slopes whose alti-
tude varies between 1,400 and 1,600 m.14 The study region, situated
in a wet tropical climate area, alternates between two wet and two
dry seasons annually. The annual average rainfall varies between
1,000 and 1,200 mm; March and April typically receive the most
precipitation.15 The recorded annual average temperature lies
between 18�C and 26�C. According to the Integrated Household
Living Conditions Survey 4 (EICV4), the total population of the
Kayonza District is estimated at 375,846 inhabitants, which
accounts for 3.1%of thewhole population of Rwanda and has a den-
sity of 192 inhabitants=km2.16 Most households in the Kayonza
District (94%) use solid biomass fuels for cooking, primarily fire-
wood, charcoal, and crop residues. It is important to note that the
fuel types are not always exclusive, and households tend to combine
different types of energy for cooking. Cleaner energy types, such as
LPG and electricity, are still rarely used consistently in rural areas,
such as the study region of this research.1

Participant Recruitment and Inclusion/Exclusion Criteria
This studywas part of theHAPIN trial thatwas conducted in interna-
tional research centers (IRCs) in rural areas of Jalapa, Guatemala;
Tamil Nadu, India; Puno, Peru; and Eastern Province, Rwanda17;
however, our results focus onRwanda baseline data, which included
798 nonsmoking pregnant women 18 to <35 years of age [con-
firmed by government-issued identification (ID)whenever possible]
who had agreed to participate with informed consent and who
cooked primarily with biomass, lived in the Kayonza District, were
at 9 to <20 wk gestation at recruitment, and had a pregnancy
confirmed by ultrasound.18 A portable ultrasound [Edge (Edge
Ultrasound System), Sonosite/Fujifilm Edge (FUJIFILM SonoSite
Inc.)] was used by qualified individuals (who were also additionally
certified centrally) in a clinic or home environment to establish eligi-
bility. A potentially eligible pregnant woman was excluded from
recruitment if she reported currently smoking cigarettes or other
tobacco products, was planning to move permanently outside the
study area within the next 12 months, was primarily using a fuel
other than biomass, or was likely to primarily use LPG in the near
future.

Study Design
This study used a cross-sectional design based on the baseline data
from the Rwanda IRC; however, we will briefly describe the entire
HAPIN trial to give a fuller picture of the long-term study. Before
any intervention, the baseline data represented primarily biomass
fuel cooking for all study participants. The HAPIN study is a global
multicenter study (ClinicalTrials.gov identifier NCT02944682),
evaluating the health effects of an LPG cookstove and fuel interven-
tion in Guatemala, Peru, Rwanda, and India. The HAPIN trial
research design has been discussed in greater detail elsewhere.18

Briefly, 800 pregnant women from homes using biomass fuel were
identified and enrolled at each of the four IRCs. The intervention,
which included a free 18-month supply of LPG, was randomly
assigned to half of the homes. The remaining half, who featured as
controls, continued to use biomass-fueled traditional cookstoves.
Mothers and children in both control and intervention groups were
followed until the child turned 1 y old. The locationwas specifically
chosen to represent a variety of criteria likely to affect intervention
results, such as altitude, population density, cooking methods, base-
line pollution levels, and sources of pollution other than cooking, to
maximize generalizability. In addition, other variables, such as fuel
types, habitation characteristics, and socioeconomic situations, that
may affect the outcomes of interventions were measured and
recorded. In this paper,we report baseline exposure levels and investi-
gate predictors of 24-h personal exposure to PM2:5, BC, and CO
among pregnantwomen inRwanda.

The study protocol was reviewed and approved by institutional
review boards or ethics committees at Emory University (00089799),
Johns Hopkins University (00007403), Sri Ramachandra Institute of
Higher Education and Research (IEC N1/16/JUL/54/49) and the
Indian Council of Medical Research–Health Ministry Screening
Committee [5/8/4-30/(Env)/Indo-US/2016-NCD-I], Universidad del
Valle de Guatemala (146-08-2016/11-2016), Guatemalan Ministry of
Health National Ethics Committee (11-2016), Asociacion Benefica
PRISMA (CE2981.17), London School of Hygiene and Tropical
Medicine (11664-5), Rwandan National Ethics Committee (357/
RNEC/2018), and Washington University in St. Louis (201611159).
The studyhas been registeredwithClinicalTrials.gov (NCT02944682).

Exposure Measurement
Full details explaining the exposure measures for HAPIN have
been published previously.18,19 In brief, personal exposures
of pregnant women were measured with Enhanced MicroPEM
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(ECM) manufactured by RTI International for PM2:5 before ran-
domization. The ECM was used to collect PM2:5 gravimetrically
with a filter by drawing air through an impactor attached to a cas-
sette containing 15-mm Teflon filters (PT15-AN-PF02; MTL
Corporation). The ECM contained a calibrated mass–flow ele-
ment, a six-axis accelerometer (to log activity rate and to verify
the user complied with wearing the sampler), and measured real-
time PM2:5 levels with a nephelometer (light-scattering sensor). It
also logged temperature, relative humidity, and filter pressure
drop. CO was measured by Lascar CO loggers worn in a vest or
apron for a 24-h period during the pregnancy. BC was measured
on the PM2:5 filters collected via the ECM. BC was quantified on
the filters using a SootScan Model OT21 transmissometer
(Magee Scientific), often used for characterizing BC for personal
exposure and emissions studies. The instrument measured the
light attenuation through the filter at the 880-nm wavelength,
which was then converted into a BC surface deposition.

The women were asked to wear the vest or apron at all times
during the full 24-h measurement period except when sleeping,
bathing, or conducting other activities for which the equipment
could not be safely worn. The vests and aprons secured the
ECMs and CO loggers near the breathing zone, an approach simi-
lar to those used in other household air pollution exposure stud-
ies.18,20 Compliance was checked via the ECM’s accelerometer
data to detect motion during normal daily activities, and as part
of the survey, participants were also directly asked at the end of
each sampling duration about wearing the monitors.

Data Processing and Quality Assurance
Multiple trainings were conducted at each site to standardize and
implement the co-developed operating procedures. In collabora-
tion with the data management core, file naming, data uploading,
and data quality checking protocols and tools were developed to
ensure organization and timely resolution of issues. Exposure
instrument data were downloaded on local computers and backed
up on the cloud in secure folders. Multiple quality control (QC)
steps for each exposure data stream were taken to include only
valid household air pollution measures.17

Survey Variables
Qualified fieldworkers visited the households at the beginning of
the study to conduct baseline surveys and other assessments after
recruitment and informed consent. Research assistants conducted
interviews and surveys in the participant’s native language. The
baseline visit included a survey covering a range of topics cover-
ing cooking behaviors, household composition, and socioeco-
nomic and demographic information like age in years that was
confirmed by national ID card, education that was self-reported
and split into no formal education, primary or secondary incom-
plete, and secondary, college, or university categories. Other
self-reported variables included housing characteristics, cooking
behaviors, socioeconomic variables, exposure to secondhand
tobacco, and dietary diversity. Dietary diversity was measured
using the minimum diet diversity (0 to 10) scale adapted from
the Food and Agriculture Organization of the United Nations
Minimum Diet Diversity for Women (FAO 2016).32 Variables
recorded by field workers included ventilation, electricity, light-
ing source, fuel type, stove type, and stove location. Material
items were selected as useful indicators of socioeconomic status
(SES) by other HAPIN investigators to be used across all publi-
cations. Because SES and other social determinants of health
might influence individual interactions with household exposures,
the study included such measures at all study sites. Pregnant
women were surveyed by a trained fieldworker or nurse who

measured resting blood pressure (model HEM-907XL; Omron)
in triplicate and maternal weight (seca 876/874 scales; Seca) and
height (seca 213 stadiometer; Seca) in duplicate. Separate ques-
tionnaires assessed physical activity, dietary diversity, household
food insecurity, and household expenditures. Detailed categories
for each variable are shown in Table 1.

Statistical Analysis
Data were cleaned and analyzed using R (version 4.2.2; R
Development Core Team) and RStudio (version 4.2.2; RStudio
Team), primarily relying on the “tidyverse,” “leaps,” and “ggplot2”
packages. The initial raw dataset included 798 observations of
Rwandan pregnantwomen at baseline (2womenwere deemed ineli-
gible after recruitment). For analysis, we included only valid expo-
sure data among pregnant women as identified by the HAPIN
Exposure Core, for a total of N =717 PM2:5 observations, N =569
BC observations, and N =716 CO observations. Exposures were
removed when they did not pass quality assurance (QA) and QC
tests. For example, BC was measured on the same type of filter as
used for gravimetric PM2:5 analysis. Given that any filter data that
did not pass QA/QC for gravimetric analysis would not have been
valid for BC either, that led to fewer valid BC samples than PM2:5
because we also used the light-scattering (nephelometer) datawhen-
ever possible to estimate PM2:5 in case of an invalid filter. In that
case, we would have a PM2:5 estimate, but not a valid BC estimate.
The second cause for the discrepancy was that any filter that had a
>100-lg equivalent deposition of BC was out of the range of the
instrument.

Detailed exploratory data analysis was carried out by remov-
ing missing or invalid data and assessing frequencies and means
[standard deviation (SD), median, minimum–maximum, and 25th
and 75th quartiles] of 24-h exposures and all covariates. We pro-
vided descriptive summaries in tables and figures (e.g., histo-
grams, box-and-whisker plots) formats. We assessed Spearman
correlations of exposure variables and distributions of raw vs.
natural log-transformed exposures. After assessing how well the
observed and transformed exposure measurements met the
assumptions of linear regression, we decided to use the trans-
formed versions. We created a cooking frequency summary vari-
able to simplify the analysis of raw data capturing women’s
behaviors around the amount of cooking each week, calculated as
the product of the number of days she cooked per week and the
number of times she cooked per day, to give us a self-reported
estimate of the number of times she cooked in a week (i.e., cook-
ing hours per week = cook days=week× cook hours=day).

We highlighted covariates with variation in responses (e.g.,
categories of responses included at least 5% of the sample for cat-
egorical variables). We assessed covariates’ associations with
household air pollution exposures in the crude variable (i.e.,
unadjusted) linear regression models. We explored how these
covariates correlated with one another to assess potentially strong
correlations. We examined contingency tables for categorical var-
iables to see if any had responses overloaded in just a few cells.

We ran the best subsets of linear regression using the R pack-
age “leaps” to identify those measured covariates that might be
predictive of natural log-transformed personal PM2:5, BC, and
CO concentrations using the exhaustive selection algorithm. In
categorical responses, the first response category was defined as
the reference category; for example, for “no/yes” variables, “no”
was the reference, or for “0/1” variables, “0” was the reference
category. Variables were included in the best subsets approach if
they were associated with an air pollutant in crude univariable
models (p≤ 0:20), and no variables were forced in or out in the
final best subsets’ regressions. No limit was set on the number of
variables to be maintained in the best model. The “best” model
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was defined as the one that maximized the adjusted R2 value
and minimized the prediction errors of Mallow’s CP and
Bayesian information criterion (BIC).33 Statistical significance was
set ata=0:05.

Results

Participant and Household Characteristics
Table 1 displays the characteristics of the full study sample of the
participants and their households. These characteristics (N =798)
were similar within each subset sample with valid exposure
measures. The mean ±SD age of the participating women was
27:3±4:4 y, and they were all currently nonsmokers (as per

Table 1. Baseline characteristics of pregnant women at the Household Air
Pollution Intervention Network (HAPIN) Rwanda site (N =798).

Variable Missing

Mean±SD;
minimum–maximum;

or n (%)

Mother: highest level of education
completed

0

1: no formal education or primary
school incomplete

338 (42)

2: primary school complete or second-
ary school incomplete

318 (40)

3: secondary school complete or voca-
tional or some college or university

142 (18)

Maternal age at baseline (y) 0 27:3± 4:4; 18.0–34.9
Mother: occupation outside the home
Agriculture/farming 0
Yes 591 (74)
No 207 (26)

Service/commercial 0
Yes 136 (17)
No 662 (83)

No work outside the home 0
Yes 59 (7)
No 739 (93)

Other 0
Yes 62 (8)
No 736 (92)

Mother cooking times (number of
times a mother cooks per week)

0 13:0± 5:0; 1–49

Electricity as a primary or secondary
lighting source (presence of electric-
ity in the home)

Yes 260 (35)
No 538 (65)
Primary fuel type 2
Cow dung 0 (0)
Wood 580 (73)
Charcoal 197 (25)
Other 19 (2)
Primary lighting source 2
Torch (battery) 173 (22)
Kerosene lamp 59 (7)
Solar light 257 (32)
Electricity 226 (28)
Other 81 (10)
Secondary lighting source 5
None 193 (24.3)
Candles 153 (19.2)
Torch (battery) 127 (16)
Kerosene lamp 35 (4.4)
Other: solar light, electricity,
traditional stove

34 (4.3)

Cell phone 251 (31.7)
Primary stove type 61
Open/3 stone fire, mud/metal chula 329 (41.3)
Biomass stove/plancha with chimney,
Imbabura

201 (25.2)

Rondereza 205 (25.7)
Other 2 (0.25)
Primary stove location 2
In participant’s bedroom, room adja-
cent to bedroom, or separated from
bedroom but still inside

69 (8.7)

Outside the house 248 (31.2)
In separate building 479 (60.2)
Mother: smoke tobacco 1
No 795 (99.7)
Previous smoker 2 (0.2)
Current smoker 0 (0)
Secondhand smoke tobacco (smoke

from someone else in the house)
0

Yes 30 (4)
No 768 (96)

Table 1. (Continued.)

Variable Missing

Mean± SD;
minimum–maximum;

or n (%)

Household construction materials 0
Floor concrete
Yes 522 (65)
No 276 (35)
Floor mud 0
Yes 526 (66)
No 276 (35)
Wall mud 0
Yes 421 (53)
No 377 (47)
Wall concrete 0
Yes 188 (24)
No 610 (76)
Wall wood 0
Yes 263 (33)
No 535 (67)
Wall firebrick 0
Yes 758 (95)
No 40 (5)
Wall mudbrick 0
Yes 516 (65)
No 282 (35)
Wall wattle 0
Yes 750 (94)
No 48 (6)

Household material items owned 0
Cable TV
Yes 71 (9)
No 727 (91)
Radio 0
Yes 449 (56)
No 349 (44)
Cell phone 0
Yes 631 (79)
No 167 (21)
Watch 0
Yes 220 (28)
No 578 (72)
Bank account 0
Yes 232 (29)
No 566 (71)
Curtains or blinds 0
Yes 339 (42)
No 459 (58)

Maternal dietary diversity (score of
0–10)

1

Minimum diet diversity <5 689 (86)
Minimum diet diversity ≥5 108 (14)

Food insecurity 20
None 296 (38)
Mild 221 (28)
Moderate/severe 261 (34)

Note: —, not applicable; SD, standard deviation.
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HAPIN study inclusion criteria). Approximately 42% of the
women had either no formal education or an incomplete primary
school education. Most of the women participated in agricultural
(74%) and commercial activities (17%) for employment, with
“commercial activities” referring to any income-generating activ-
ities other than farming. Almost all participating women used
biomass (wood 73%, charcoal 25%) for cooking. Primary sources
of lighting were mixed as follows: torch (battery) (22%), electric-
ity (28%), kerosene lamp (7%), solar power (32%), and other
(10%). Most (94%) of the walls of the study households were
built with wattle, and most floors were constructed of mud (66%).
A large percentage (31.2%) of participating women reported that
their primary stove was located outside their households, and
60.2% cooked in a separate building (Table 1).

Personal Exposure to Household Air Pollution
Table 2 summarizes baseline exposures of measured pollutants
as raw (untransformed) concentrations. The median PM2:5 con-
centration (n=717) was 88:9 lg=m3 (IQR=85.0, range: 14.2–
1,089:8 lg=m3), the BC median (n=569) was 10:9 lg=m3 (IQR=
7.6, range: 2.7–76:9lg=m3), and the CO median (n=716) was
1:1 ppm (IQR=1.9, range: 0.0–44:4 lg=m3) (Table 2). The
Spearman correlation coefficients of the raw exposure concen-
trations were as follows: 0.83 for PM2:5 and BC, 0.25 for PM2:5
and CO, and 0.11 for BC and CO.

Characterizing Personal Exposures to Air Pollutants
Box plots characterizing personal exposure concentrations and
selected household conditions and practices appear in Figure 1.
For primary lighting sources, electricity users had the lowest me-
dian of PM2:5 exposure (63:7lg=m3, IQR=69.0) compared with
those using other sources, and kerosene users had the highest me-
dian PM2:5 (115:5lg=m3, IQR=106.6) (Figure 1A). For primary
stove type, as expected, participants who used improved biomass
stoves with a chimney had the lowest median PM2:5 exposure
levels (47:5 lg=m3, IQR=52.4) compared with open fire and
other traditional stove types, which had median PM2:5 exposures
ranging from 91.6 to 155lg=m3 (IQRs ranged from 73.8 to 42.8;
Figure 1B). For primary fuel type, charcoal users had almost
half the median PM2:5 exposure levels (47lg=m3, IQR= 51.0)
compared with wood fuel users (104lg=m3, IQR= 91.1)
(Figure 1C). Numeric data used to generate box plot figures can
be found in Tables S3–S5.

Results from Best Subsets Regression Models
Best subsets regression model selections result in a model that
maximizes the adjusted R2 and minimizes the prediction error [as
measured by residual sum of squares (RSS), CP, and BIC] to
determine the predictors of exposure. The adjusted R2 represents
the proportion of variation in the outcome that is explained by the
predictor variables, where the higher the adjusted R2, the better
the model fit. Tables S1 and S2 display all individual adjusted R2

values for every variable assessed in the model selection process,
even for those not retained in the final consensus models, and
final consensus model results.

Table 3 presents the consensus PM2:5 model that had an
adjusted R2 = 0:264, Mallow’s CP = 5:813, and BIC= − 86:486.
The following variables were retained in the final consensus model
for PM2:5 with their individual adjusted R2 values and effect esti-
mates respectively shown in parentheses: maternal age (adjusted
R2 = 0:15), (−0:01); maternal education (adjusted R2 = 0:21–0:22);
employment status (adjusted R2 = 0:24–0:25); material wealth
items (i.e., cable TV, watch, bank account; adjusted R2 = 0:26);
housing materials (i.e., wood for walls; adjusted R2 = 0:26); pri-
mary lighting sources (i.e., kerosene; adjusted R2 = 0:26); solar
(adjusted R2 = 0:26); electricity (adjusted R2 = 0:26); secondary
lighting source (torch battery and other sources; adjusted
R2 = 0:26); stove type (i.e., biomass with chimney, Rondereza;
adjusted R2 = 0:25); cooking location (i.e., cooking outside or in
a separate building; adjusted R2 = 0:25); and cooking frequency
(adjusted R2 = 0:25).

Table S1 highlights the results of the consensus BCmodelwith an
adjusted R2 = 0:357, Mallow’s CP = 2:269, and BIC= − 146:822.
The variables retained in the final consensus model for BC
(adjusted R2 values) included; maternal age (adjusted R2 = 0:21),
food insecurity as a socioeconomic indicator (adjusted R2 = 0:28),
maternal education (adjusted R2 = 0:33), employment status
(adjusted R2 = 0:35), material wealth items (i.e., cable TV, watch,
bank account; adjusted R2 = 0:36), housing materials (i.e., wood
and mud for walls; adjusted R2 = 0:36), secondary tobacco expo-
sure (adjusted R2 = 0:36), primary lighting sources (i.e., kero-
sene; adjusted R2 = 0:36), secondary lighting source (other
sources; adjusted R2 = 0:35), fuel types (i.e., charcoal and other;
adjusted R2 = 0:35), stove type (i.e., other; adjusted R2 = 0:34),
and cooking frequency (days per week; adjusted R2 = 0:34).

The results of the consensus CO model are presented in Table
S2 and had an adjusted R2 = 0:311, Mallow’s CP = 7:1, and
BIC= − 118:551. The variables retained in the final consensus
model for CO (adjusted R2 values) included employment status
(adjusted R2 = 0:28–0:29), material wealth items (i.e., cable TV,
bank account; adjusted R2 = 0:29–0:31), housing materials (i.e.,
mud floor and wall types; adjusted R2 = 0:31), secondary tobacco
exposure (0.31), primary lighting sources (i.e., electricity;
adjusted R2 = 0:31), secondary lighting source (torch, other sour-
ces; adjusted R2 = 0:31), fuel types (i.e., charcoal; adjusted
R2 = 0:30), stove type (i.e., Rondereza; adjusted R2 = 0:30), cook-
ing location (i.e., cooking outside or in a separate building;
adjusted R2 = 0:30), and cooking frequency (adjusted R2 = 0:29).

Discussion

Overview of Main Findings
Among the factors that influenced the concentration of PM2:5,
electricity as the primary lighting source at baseline was associ-
ated with the lowest median (64lg=m3) PM2:5 exposure, and ker-
osene was associated with the highest exposure concentrations
(116lg=m3). For primary stove types, the biomass/improved
stove-with-chimney yielded the lowest median (47:5 lg=m3) for
PM2:5, and PM2:5 from other stove types, such as open fire,
Rondereza, and other biomass stoves, ranged from 92 to
155lg=m3. Participants who cooked outside their rooms had the

Table 2. Baseline personal exposure to 24-h PM2:5, BC, and CO among pregnant women at the HAPIN Rwanda site.

Exposure N Mean±SD (lg=m3) Median 25th percentile 75th percentile Min Max

PM2:5 (lg=m3) 717 111:9± 97:8 88.9 54.1 139.08 14.2 1,089.9
BC (lg=m3) 569 12:2± 8:5 10.9 7.3 14.9 2.7 76.9
CO (ppm) 716 2:5± 4:2 1.1 0.51 2.42 0.0 44.4

Note: Exposure data are shown as raw (untransformed) values. BC, black carbon; CO, carbon monoxide; HAPIN, Household Air Pollution Intervention Network; max, maximum;
min, minimum; PM2:5, particulate matter ≤2:5 lm in aerodynamic diameter (measured in lg=m3); SD, standard deviation.
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highest observed PM2:5 exposures (102 lg=m3). For primary fuel
type, charcoal stoves were associated with median PM2:5 expo-
sures, about half of those associated with wood fuel stove

exposures (47lg=m3 vs. 104lg=m3, respectively). Overall, the
lighting sources, stove types, and fuel, which are indicators of
SES, housing materials, cooking frequency, and kitchen location,

Figure 1. Concentrations of household fine particulate matter (PM2:5) in lg=m3 by (A) primary lighting source, (B) primary stove type, (C) and primary fuel
type based on personal monitoring in women enrolled in the HAPIN trial in Rwanda. Count represents the number of samples. The blue dashed line represents
the World Health Organization (WHO) 24-h interim target 1 at 75 lg=m3, and the red dashed line is the annual interim target 1 at 35 lg=m3. Numeric data can
be found in Tables S3–S5. Note: HAPIN, Household Air Pollution Intervention Network.
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were retained as important predictors of personal exposure to
PM2:5, BC, and CO. The consensus model adjusted R2 values
showed the combination of these variables explained between
26%, 36%, and 31% of the observed variation in PM2:5, BC, and
CO concentrations, respectively.

Personal PM2:5 BC, and CO Levels
Most previous studies assessing predictors of personal exposure
to PM2:5, BC, and CO have been conducted in developed coun-
tries in urban areas and have focused on a single type of expo-
sure.12 In contrast, assessments of directly measured personal
exposure to PM2:5, BC, and CO are rare in rural or peri-urban
settings in low- and middle-income countries, where PM2:5,
BC, and CO exposures are largely due to household fuel com-
bustion. The daily median PM2:5 personal levels we observed in
pregnant women from Rwanda (88:9 lg=m3) were many times
higher than those reported in adults and children from European
cities (<2:8 lg=m3), in children from rural Italy (5lg=m3),21

and in women from rural Ghana (9lg=m3).22 Our PM2:5, BC,
and CO 24-h personal levels were more comparable to levels of
personal exposures to PM2:5, BC, and CO among pregnant
women using biomass at the HAPIN India IRC (75:5 lg=m3,
9:6 lg=m3, 0:8 ppm, respectively).23 They can also be compared
with results from other locations within the HAPIN trial that
showed that the PM2:5 median was 84:9 lg=m3 for the control
arm and 82:7 lg=m3 for the intervention arm, the median for
BC was 11lg=m3 for the control arm and 10:6 lg=m3 for the
intervention arm, and the median for CO was 1:2 lg=m3 for the
control arm and 1:3 lg=m3 for the intervention arm.24 A study
conducted in Rwanda in 2018 showed that outdoor 24-h mean
PM2:5 and PM10 concentrations were significantly higher in the
dry season than in the wet season.25 Another study conducted
between March and July 2018 revealed that the ambient average
PM2:5 in Kigali was 52 lg=m3, significantly higher than WHO
interim target 1 (35 lg=m3). The PM2:5 level in the dry seasons
was ∼ 2 times the PM2:5 level during the following wet seasons,
whereas the BC level was 40%–60% higher in dry seasons than
in wet seasons.9 The results of both studies were a bit lower
than what we observed; however, all study results show that the
concentrations of PM2:5 and BC are higher than the WHO in-
terim annual target 1, which is in agreement with a study
conducted in Peru that found strong associations between
household air pollution and rainy seasons.7 Those studies also
measured ambient concentrations, and the instruments used
were different from our personal exposure monitoring devices.

Cooking-Related Predictors
Existing literature indicates that relevant determinants of personal
exposure to household air pollution from household fuels are the
type of cooking fuel, the type of stove, the time spent cooking,
and the role of ventilation.26,27 In our study, personal mean expo-
sures to PM2:5, BC, and CO were similarly predicted by this com-
bination of factors, as also were lighting sources and indicators of
SES. In contrast to our findings, another study discovered that
among pregnant women from metropolitan Tanzania, outside
cooking was associated with a 14:5-lg=m3 lower median PM2:5
personal exposure than indoor cooking, and the highest measured
personal exposure (i.e., CO) was 25:2 ppm.28 The inconsistency
in definitions of kitchen type; however, complicates comparisons
between the different research studies. Our study provides results
similar to those of the study of Curto et al.12 conducted in rural
Mozambique, who reported that after the stepwise selection,
kerosene-based lighting’s partial contribution to the BC mean
was 8.2% (adjusted total R2 of 21.6%) and 7.3% to the BC peak
(adjusted total R2 of 20.1%).12 It is unclear if partially covered
kitchens should be considered indoor or outdoor cooking,29 or if
the absence of a kitchen indicates that cooking is done with com-
munity members or in agricultural plots, as has previously been
observed in rural Ghana.22

Table 3. Best subsets regression and model selection for PM2:5 exposure
among pregnant women at the HAPIN Rwanda site, n=717.

Variable name R2 values Adjusted R2 values

Maternal age at baseline 0.1517778 0.150
Food insecurity score 0.1885398 0.186
Dietary diversity
0: minimum diet diversity <5 Ref Ref
1: minimum diet diversity ≥5 0.204594 0.201
Education
None, primary incomplete (Ref) Ref Ref
Primary/secondary incomplete 0.2168798 0.212
Secondary complete, some college 0.2282409 0.222
Electricity
No Ref Ref
Yes 0.238486 0.231
Occupation: agriculture
No Ref Ref
Yes 0.2473567 0.239
Occupation: commercial
No Ref Ref
Yes 0.2548806 0.245
Occupation: household
No Ref Ref
Yes 0.261321 0.251
Cable TV
No Ref Ref
Yes 0.2671408 0.256
Radio
No Ref Ref
Yes 0.2712954 0.259
Blinds
No Ref Ref
Yes 0.2751215 0.261
Cell phone
No Ref Ref
Yes 0.2774866 0.263
Watch
No Ref Ref
Yes 0.2790741 0.263
Bank account
No Ref Ref
Yes 0.2802177 0.263
Mud floor
No Ref Ref
Yes 0.2816841 0.263
Concrete floor
No Ref Ref
Yes 0.2830152 0.263
Wattle wall
No Ref Ref
Yes 0.2842587 0.264
Mud wall
No Ref Ref
Yes 0.2854504 0.264

Note: Variables retained in the final best subsets consensus models (n=19). Adjusted
R2 = 0:264. Mallow’s CP = 5:813. BIC= − 86:486. Adjusted R2 (or adjusted coefficient
of determination) is a modified version of the R2 statistic that adjusts for the number of
predictors in a regression model. It addresses the issue of R2 potentially misleadingly
increasing as more predictors are added to the model even if those predictors do not sig-
nificantly improve the model’s explanatory power. BIC, Bayesian information criterion
(a criterion for model selection among a finite set of models; balances the goodness of
fit of a model with the complexity of the model, penalizing models that are more com-
plex); HAPIN, Household Air Pollution Intervention Network; MALLOW’s Cp,
Mallow’s Cp [pronounced “C-p”; a criterion used in model selection for regression
models; particularly useful in the context of selecting among models with different num-
bers of predictors (variables)]; PM2:5, particulate matter ≤2:5 lm in aerodynamic diam-
eter (measured in lg=m3); R2, or the coefficient of determination, is a statistical
measure representing the proportion of the variance for a dependent variable that is
explained by an independent variable or variables in a regression model; Ref, reference.
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Role of Access to Electricity in Reducing Kerosene
Utilization
The government of Rwanda put in place an electrification program
aimed at connecting households to both grid and off-grid energy
sources. Between July 2021 and May 2022, 104,227 households
were connected to the grid, and 101,711 households were con-
nected using off-grid options (Standalone Solar Home Systems
and Mini-grids), bringing the total number of households linked to
the grid up to 1,375,192 from the 1,270,965 connected as of the
end of June 2021 and 578,895 households connected to the off-grid
network, up from 477,184. The Development Bank of Rwanda
(BRD) in 2018 launched nationwide awareness and promotion ini-
tiatives for off-grid solar systems in collaboration with REG-
Energy Development Corporation Limited and other stakeholders.
There were 205,938 more connections made between July 2021
andMay 2022, bringing the total number of houses connected to ei-
ther the grid and off-grid supply up from 1,748,149 connections the
year before to 1,954,087. Between July 2021 and May 2022, 376
social and economic productive use areas (PUAs), as opposed to
the intended 360 PUAs, received energy connections. These con-
sist of, among other things, shopping malls, coffee shops, milk col-
lection facilities, water pumping stations, schools, and medical
facilities. The nationwide electrical grid has built high-voltage
transmission lines for regional interconnection and power evacua-
tion, in addition to extending distribution lines across the nation.
This provides context for our findings indicating that the percen-
tages of households in Rwanda using kerosene lamps or solar
energy for light were 7% and 28%, respectively.30,31

Strengths
Key strengths of this study include the collection of directly meas-
ured personal 24-h maternal PM2:5 valid measures from high-
quality monitors with a large sample size (n=798 initial observa-
tions). Furthermore, the fact that local, Rwanda-based researchers
were responsible for data collection helped minimize any informa-
tion that was left out, given that data collectors spoke the same lan-
guage as the participants and understood local norms and values.
Last, this baseline analysis came from the HAPIN study, a rigor-
ously designed and implemented study of high-quality data collec-
tion and ongoingQA.

Limitations
There was potential for missing important variables to help predict
more of the variation in household air pollution concentrations.
Ambient air pollution data were not available for analysis that
could have added a useful comparison to personal exposures from
household air pollution; survey data did not use any variables that
could have indicated other sources of air pollution, such as traffic
or neighbors.17 In addition, the study was a cross-sectional analy-
sis, which limited exploring variation by seasons and other time
trends. We used baseline data for pregnant women from the
HAPIN trial, and future studies should consider the full trial data to
includemultiple time points, as well as any impacts of the interven-
tion [for example, how participant behavior (e.g., cooking times,
fuel types)may have changed during themeasurement period].

Conclusions
In Rwanda, where access to clean household energy is scarce for
cooking, we found that pregnant women who used cooking
stoves with biomass fuels had high levels of personal PM2:5, BC,
and CO exposure. Although most people have access to electric-
ity for lighting in their households, the small number of partici-
pants using kerosene-based lighting had the highest median

concentrations. These findings support the necessity of making
clean energy sources more widely available to reduce personal
household air pollution exposures to levels closer to the WHO air
quality guidelines, given that most median values for PM2:5 were
greater than the WHO interim target 1 annual and 24-h guide-
lines. This is especially important among this study population of
pregnant women, who represent a potentially sensitive period of
exposure. Therefore, this can serve as a benchmark for policy-
makers to develop relevant policies and strategies to address
clean energy challenges in Rwanda.
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