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Abstract

Infectious challenge of the human nasal mucosa elicits immune responses that determine the fate of the host-bacterial
interaction; leading either to clearance, colonisation and/or disease. Persistent antigenic exposure from pneumococcal
colonisation can induce both humoral and cellular defences that are protective against carriage and disease. We challenged
healthy adults intra-nasally with live 23F or 6B Streptococcus pneumoniae in two sequential cohorts and collected nasal
wash, bronchoalveolar lavage (BAL) and blood before and 6 weeks after challenge. We hypothesised that both cohorts
would successfully become colonised but this did not occur except for one volunteer. The effect of bacterial challenge
without colonisation in healthy adults has not been previously assessed. We measured the antigen-specific humoral and
cellular immune responses in challenged but not colonised volunteers by ELISA and Flow Cytometry. Antigen-specific
responses were seen in each compartment both before and after bacterial challenge for both cohorts. Antigen-specific IgG
and IgA levels were significantly elevated in nasal wash 6 weeks after challenge compared to baseline. Immunoglobulin
responses to pneumococci were directed towards various protein targets but not capsular polysaccharide. 23F but not 6B
challenge elevated IgG anti-PspA in BAL. Serum immunoglobulins did not increase in response to challenge. In neither
challenge cohort was there any alteration in the frequencies of TNF, IL-17 or IFNc producing CD4 T cells before or after
challenge in BAL or blood. We show that simple, low dose mucosal exposure with pneumococci may immunise mucosal
surfaces by augmenting anti-protein immunoglobulin responses; but not capsular or cellular responses. We hypothesise
that mucosal exposure alone may not replicate the systemic immunising effect of experimental or natural carriage in
humans.
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Introduction

The human nasal mucosa forms the first line of defence against

challenge with inhaled bacteria, viruses and non-infectious

particles. The highly vascularised mucosa is an attractive niche

which permits a large and diverse community of bacterial species

to asymptomatically colonise the upper respiratory tract [1].

Invasion of the mucosa by colonising flora is prevented by innate

defence mechanisms supported by an interacting sub-mucosal

network of antigen presenting cells (macrophages and dendritic

cells) [2] with effector T and B lymphocytes [3,4]. The balance

between mucosal immune responses and the expression and

immunogenicity of bacterial virulence factors influence both

colonisation success and occurrence of invasive disease. Streptococcus

pneumoniae (pneumococcus) is a common nasal coloniser capable of

causing life threatening human disease worldwide [5]. Capsular

polysaccharide is a critical virulence factor but anti-capsular

antibodies alone do not account for the age related drop observed

in the rates of colonisation [6] or invasive disease [7]. An array of

additional virulence factors including pneumococcal surface

proteins A (PspA) and C (PspC) that mediate attachment to

epithelial cells and the pore forming toxin pneumolysin have been

shown to be critical for bacterial evasion of host defence [8]. These

pneumococcal proteins are immunogenic during colonisation

and/or disease [9] and are therefore of interest as vaccine

candidates. Mucosal vaccination with non-encapsulated whole

bacterial cells [10] or pneumococcal proteins [11,12] are attractive

strategies to elicit capsule independent immunity against pneu-

mococcal colonisation and/or disease.

Pneumococcal carriage is common in infants, particularly

among crowded, impoverished communities worldwide where

carriage rates range between 20 and 95% [5]. Infants serve as the

source of transmission to other children and adults [13] but

carriage rates decrease with increasing age as specific immunity

develops [14,15]. The pneumococcal specific immune responses

that develop during carriage and protect against subsequent

colonisation have been documented in mice and involve both

antigen specific T cells and specific antibody [14,16–19]. There

are reports in humans correlating T cell [20] and antibody [21,22]

responses to carriage. Pneumococcal carriage in infants [23,24]
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and adults [22,25] in the absence of clinical invasive infection has

been associated with increases in the serum levels of immuno-

globulin against pneumococcal proteins and capsular polysaccha-

ride. Responses to pneumococcal proteins and to some extent

capsular polysaccharides [26] depend on support from antigen-

specific T cells to generate optimum levels of specific immuno-

globulin. Carriage is known to be an immunising event [25] but it

is likely that exposure without carriage also boosts levels of existing

immunity in healthy adults [27]. The end result is that in

European adults in contrast to infants, the rate of pneumococcal

carriage is very low despite frequent exposures.

We measured mucosal humoral and cellular immune responses

before and after intra-nasal live pneumococcal challenge in human

volunteers. We anticipated that pneumococcal intra-nasal chal-

lenge would lead to nasopharyngeal colonisation in our volunteers.

Our hypothesis was therefore that challenge would lead to

colonisation which would in turn elicit a humoral and cellular

mucosal response. Our hypothesis also included the converse

argument - that acute pneumococcal exposure (without colonisa-

tion) would not elicit a humoral and cellular mucosal response.

Systemic immunisation requires efficient targeting and retention of

antigen at inductive sites such as M cells or dendritic cells for

priming in naso-associated lymphoid tissue (NALT) [28] and we

did not know if this would occur or not following an acute

exposure to pneumococcus. Our results showed that we did not

achieve colonisation with 23F or 6B serotypes in 19 healthy adults.

The pneumococcal exposure alone increased mucosal but not

systemic pneumococcal specific immunoglobulin responses. Cel-

lular immunity in mucosal and systemic compartments was

unaltered by pneumococcal challenge.

Materials and Methods

Recruitment and ethics
Healthy adult volunteers were enrolled with written informed

consent to a study involving inoculation of either Streptococcus

pneumoniae type 23F or 6B, the two studies performed consecutively.

We recruited non-smoking adults aged between 18 and 60 years

with no history or signs of systemic or respiratory disease.

Individuals who were already naturally colonised with pneumococ-

cus or had regular contact with at risk individuals, such as young

children, were excluded from the study. Ethical approval was

obtained from the National Health Service Research Ethics

Committee, Sefton, Liverpool (08/H1001/52) and the study was

sponsored by the Royal Liverpool and Broadgreen University

Hospitals Trust.

Study design
Samples of blood, serum, nasal wash (NW) and bronchoalveolar

lavage (BAL) were obtained before and after bacterial challenge

according to two different sampling protocols (Figure 1). Volun-

teers in our first study were intra-nasally challenged with two doses

of 23F (Figure 1A) and in the second study a single dose of 6B

(Figure 1B) S. pneumoniae was used. In the 23F challenge cohort

NW samples were collected 2 weeks and 1 week before inoculation

and on days 2, 4, and 7 after each inoculation. In the 6B challenge

cohort (Figure 1B) NWs were collected 2 weeks before challenge

and 2 and 7 days following inoculation. NWs were then collected

once per week for 5 consecutive weeks. A final set of post-challenge

samples (blood, serum, NW and BAL) were then collected at 6

weeks.

23F and 6B preparation and volunteer inoculation
Clinical isolates of S. pneumoniae serotype 23F (P833 a gift of Prof.

JN Weiser, University of Pennsylvania) and 6B (BHN418 a gift of

Prof. P Hermans, University of Nijmegen) were used for

inoculation. Bacterial stocks were grown to mid-log phase in

Vegitone broth (Oxoid) [29] in order to avoid volunteer exposure

to animal products and stored in 1 ml aliquots of Vegitone with

10% glycerol (Sigma-Aldrich) at 280uC. Serotype confirmation

was performed using latex agglutination (Statens Serum Institute,

Copenhagen) and was confirmed by an independent reference

laboratory (Health Protection Agency, Colindale, UK).

On each day of inoculation two aliquots were thawed,

centrifuged and bacterial pellets were washed once before being

re-suspended and diluted in sterile 0.9% saline to reach the desired

concentration of bacteria. For the 23F cohort 9,000 CFU/naris in

100 ml saline were used for the first inoculation. If colonisation was

not established following this inoculation we performed a second

inoculation with 20,000 CFU/naris in 100 ml saline. For the 6B

cohort 40,000CFU/100 ml/naris was administered. Volunteers

tilted their head slightly back and 100 ml of bacterial suspension

was dropped onto each naris using a P200 pipette taking care not

to touch the mucosa. Serial dilutions of the original inocula were

plated onto blood agar for dose confirmation (Table 1).

Nasal washing and determination of carriage
NW samples were collected before and after challenge and

processed as previously described [30]. Briefly, a single aliquot of

5 ml normal saline was instilled into each naris with the subject

seated leaning back supported at 45u to the horizontal. At

instillation, the subject was invited to hold their breath and push

gently on the back of the upper teeth with their tongue. Saline was

held in the nasopharynx for 5 seconds and then poured out by

gently tipping the head forward while holding a Petri dish under

the nose. The samples collected from each naris were pooled. This

process was performed once for the 6B cohort but 3 times for the

23F cohort. Samples were transferred immediately to the

laboratory for processing. The first pooled aliquot obtained from

each NW visit in both cohorts was used to determine carriage

status (all negative except for one volunteer) and pneumococcal

Author Summary

Exposure to respiratory pathogens such as Streptococcus
pneumoniae (pneumococcus) is a frequent event that can
result in immediate clearance, nasal colonisation or disease
for the host. Human and mouse studies have shown that
natural colonisation is an immunising event. Colonisation
is prevalent in children but rare in human adults (,10%),
suggesting that despite high pneumococcal exposure
adult mucosal defences are sufficient to prevent colonisa-
tion. We exposed healthy adults to pneumococci in the
nose in order to achieve colonisation and mimic a natural
colonisation event. In most volunteers, however, we were
not able to obtain colonisation using this protocol. In
exposed but not colonised volunteers we measured
antibody and cellular responses in nose, lung and blood
samples. The mucosal defences elicited during acute
pneumococcal exposure are poorly described but these
data will shed light on the mechanisms that prevent
colonisation in healthy adults and inform future vaccine
design. Live bacterial exposure increases specific antibody
and innate responses at mucosal surfaces such as the nose
and lung. Systemic responses were not increased. These
data suggest that acute bacterial exposure per se
augments mucosal but not systemic defences. Natural or
experimental colonisation may be required for systemic
immunisation.
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specific immunoglobulin analysis. NW samples were spun at

3345 g for 10 minutes and the supernatant stored at 280uC. The

pellet was re-suspended in 100 ml of skim milk tryptone glucose

glycerol (STGG) preservative medium prior to plating. 25 ml was

plated onto Columbia Horse Blood Agar (Oxoid) with gentamicin

(Sigma) and the remainder diluted to 1 ml with STGG and plated

(50 ml) on blood and chocolate agar (Oxoid) for determination of

co-colonising flora. Remaining STGG samples were stored at

280u for long term storage [31] and confirmation if needed. Plates

were inspected after 24 hours incubation at 37uC, 5% CO2 and

alpha haemolytic, draughtsman-like colonies were sub-cultured to

determine pneumococcal phenotype. Optochin sensitivity, bile

solubility and latex agglutination testing were performed to

confirm pneumococcal phenotype. Subjects in whom pneumo-

cocci were not detected from NW samples collected on at least

2 consecutive visits were defined as non-colonised. Colonised

subjects are defined as subjects in whom pneumococci was

recovered from any nasal wash.

The numbers of lymphocytes in NW were too few for analysis of

cognate antigen specific T cell responses using flow cytometry. We

measured the NW total cell count and also examined stained

cytospin slides for increased numbers of cellular effectors and

mucus deposits. Total cell counts in NW were determined from

pooled aliquots 2 and 3 from the 23F cohort. Cells were pelleted at

400 g and resuspended in PBS. Cell counts were performed using

10 ml of cell suspension and a haemocytometer, with the final

count given per ml of NW fluid returned. The remainder was

pelleted as above and re-suspended in 50 ml of PBS and

centrifuged onto a microscope slide using a cytocentrifuge

(ThermoFisher Scientific) for 5 mins at 450 rpm. For the 6B

cohort a representative sample of 10 ml was taken from STGG

preparations (described above). These samples were made up to

50 ml with PBS and cytospins were prepared as described.

Microscope slides were allowed to air dry before staining with

Hemacolor rapid staining set (Merck, Germany) according to the

manufacturer’s instructions. An arbitrary semi-quantitative scoring

system was used to assign whether an increase, decrease or no

change had occurred.

Blood processing
Peripheral blood mononuclear cells (PBMCs) were isolated from

volunteer samples using Lymphoprep (Axis Shield, UK) according

to the manufacturer’s instructions. PBMCs were incubated at

37uC, 5% CO2 at a concentration of 56105 cells per ml/well in a

48-well plate in RPMI 1640 media with 2 mM L-glutamine (both

Sigma-Aldrich) and 10% human AB serum (Invitrogen, UK). Cells

were stimulated on the same day as collection.

Serum was obtained from clotted whole blood collected into

serum monovettes (Sarstedt, UK). Samples were centrifuged at

Figure 1. Experimental human intra-nasal 23F and 6B pneumococcal challenge study design. (A) 23F challenge and (B) 6B challenge. NW,
blood and BAL were obtained from each volunteer prior to (open symbols) and following (closed symbols) challenge with 23F (Arrows in upper panel
n = 8) or 6B (Arrow in lower panel n = 11).
doi:10.1371/journal.ppat.1002622.g001

Table 1. 23F and 6B cohort study details.

23F 6B

Total number of volunteers 8 11

Gender (M:F) 4:4 4:7

Age (mean6SD) 31616 2566

1st challenge dose (per naris) (mean6SD) 8,79161,935 44,576612,815

2nd challenge dose (per naris) (mean6SD) 13,83064,504 n/a

doi:10.1371/journal.ppat.1002622.t001
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2560 g for 7 minutes. Serum was taken and stored at 280uC for

immunoglobulin analysis.

BAL processing
Bronchoscopy was performed using topical local anaesthesia

with minimal sedation and BAL collected as described previously

[32]. Briefly, four aliquots, totalling 200 mls, of warm 0.9% saline

was instilled and gently retrieved from a sub-segmental bronchus

of the right middle lobe by gentle hand suction and the BAL

placed into sterile pots on ice. BAL was processed as previously

described [33]. Briefly, whole BAL was filtered through muslin to

remove mucus and 3 ml of unprocessed BAL was stored at

280uC. The whole sample was centrifuged at 470 g for

10 minutes. BAL supernatant was stored at 280uC for immuno-

globulin analysis. BAL cells were re-suspended in RPMI 1640

media as described for PBMCs with the addition of antibiotics

(penicillin 40 U/ml, streptomycin 40 mg/ml, neomycin 80 mg/ml

(all P4083, Sigma-Aldrich) and 0.5 mg/ml of amphotericin B

(A2942, Sigma-Aldrich). Total BAL macrophages and lympho-

cytes were counted and 56104 cells were centrifuged onto cytospin

slides for differential staining as described. Remaining cells were

then plated out into standard tissue culture plates to allow

macrophages to adhere for 3 hours at 37uC, 5% CO2. Non-

adherent cells were collected, washed and the pellet re-suspended

in media as described for PBMCs. These BAL cells were then

placed in 48-well plates at 37uC, 5% CO2 and stimulated on the

same day as collection as described below for PBMC and BAL

cells. For each volunteer we ensured that paired BAL cells

collected at each bronchoscopy were processed and incubated

using the same serum lot number and lymphocyte count/well

during stimulation.

Pneumococcal whole cell ELISA
Whole 23F (P833) and 6B (BHN418) strains were used as the

capture antigen to determine the antibody titer to the pneumo-

coccus in collected NW, BAL and serum. The whole cell ELISA

assay was performed as previously described [34]. Briefly, bacteria

stocks were grown in Todd Hewitt broth containing 0.5% yeast

extract (THY) to an optical density (OD600 nm) of 0.5. The

bacterial pellet collected after centrifugation was then re-

suspended in carbonate-bicarbonate buffer to an OD600 nm of 1.

This bacterial suspension was added to 96-well Maxisorp plates

(Nunc) (50 ml per well) and the plates were incubated overnight at

room temperature. After washing with PBS containing 0.05%

Tween 20 (PBS-T), wells were blocked with PBS containing 1%

bovine serum albumin (BSA). Eight-fold serial dilutions of samples

in 0.1% BSA were added and incubated for 2 hours at room

temperature in triplicate. Antigen-specific IgG and IgA antibodies

were detected using alkaline-phosphatase conjugated goat anti-

human IgG (Sigma) and biotin conjugated goat anti-human IgA

(AbD serotec, UK), respectively, followed by streptavidin-alkaline

phosphatase (AbD serotec, UK). 0.5 mg/ml of p-nitrophenyl

phosphate (PNPP) was added as a substrate. The OD was

measured at 405 nm using a FLUOstar Omega (BMG Labtech,

UK). The assigned titer value was determined as the last dilution

in which OD is above 0.1.

Measurement of anti-pneumococcal polysaccharide
antibodies by ELISA

Anti-pneumococcal capsular polysaccharide antibodies were

determined using the internationally standardised method and

reagents [35]. Briefly, 96-well ELISA plates were coated using

5 mg/ml of purified polysaccharides 6B or 23F (Statens Serum

Institute) for 5 hours at 37uC. Wells were blocked with 10% fetal

bovine serum in PBS (PBS-F) for 1 hour at 37uC. Plates were

washed 3 times with PBS-T between each step. Samples were

diluted in PBS-F containing 10 mg/ml cell wall polysaccharide

mixture (CWPS Multi, Statens Serum Institute) and incubated for

30 minutes at 37uC. When CWPS Multi is used, separate

adsorption with the 22F capsule, is not required. 89-SF5 reference

serum received from U.S. Food and Drug Administration was

used as a standard. Diluted/adsorbed samples were then

transferred to pre-coated plates and incubated overnight at 4uC.

Bound antibodies were detected using alkaline phosphatase

conjugated goat anti-human IgG (Sigma) for 2 hours at room

temperature. 0.5 mg/ml of p-nitrophenyl phosphate (PNPP) was

added as a substrate. Optical densities were measured at 405 nm

using a FLUOstar Omega microplate reader (BMG Labtech, UK).

All samples were run in triplicate in four dilutions. Results are

expressed as mg/ml calculated using the assigned IgG concentra-

tions in reference serum 89-SF5.

Measurement of anti-pneumococcal protein antibodies
The recombinant proteins PspA (clade1) [36] and PspC (group

5) [37] (GenBank accession numbers AY082387 and EF424119.1)

were kindly provided by Dr Eliane Miyaji (Butantan Institute,

Brazil). Pneumolysin toxoid (PdB) was provided by Prof. Aras

Kadioglu (University of Leicester, UK) and PsaA by Dr Eddie

Ades (CDC Atlanta, GA). Purified proteins were used to coat

ELISA plates at 1 mg/ml overnight. The assay was then performed

as described above for the pneumococcal whole cell ELISA. Anti-

PspA and anti-PspC concentrations were calculated using

reference serum samples with known concentrations assigned in

the laboratory of Prof. David Briles and Prof. Susan Hollingshead

for PspA, (both University of Alabama, USA) and Prof. Helena

Käyhty for PspC, (National Institute for Health and Welfare,

Helsinki, Finland). All samples were run in triplicate in four

dilutions. Anti-PdB and anti-PsaA concentrations are expressed in

arbitrary units per ml calculated using a standard serum sample.

Western blot analysis
We prepared whole cell extracts (WCE) and choline chloride

extracts (CCE) from the inoculated 23F pneumococcal strain

grown in THY to 0.6 OD600 nm. The cell pellet from 50 ml culture

was lysed in a solution containing 0.01% sodium dodecyl sulfate,

0.1% sodium desoxycholate, 0.15 M sodium citrate [38] or 2%

choline chloride [39], respectively. Choline chloride extraction is

more effective at releasing the choline binding proteins on the

pneumococcal surface. Protein extracts (5 mg of WCE and 3 mg of

CCE) were separated in SDS-PAGE and transferred to a

nitrocellulose membrane. Individual lanes were incubated at

25uC for 6 h with matched pre- and post-challenge NW samples

(1:25 diluted) from inoculated volunteers. Protein-specific anti-

bodies were detected using goat anti-human IgG-HRP (Sigma-

Aldrich). Detection was performed using an enhanced chemilu-

minescence (ECL) kit (GE Healthcare). Comparisons were only

made between experiments in which the antibody incubation and

development of membranes were performed at the same time to

control for assay variation.

Preparation of pneumococci for cell stimulation
experiments

Serotype 23F and 6B S. pneumoniae were grown to mid-log phase

in Vegitone broth (Oxoid) at 37uC, 5% CO2. To obtain

pneumococcal culture supernatant, broth cultures were centri-

fuged and the supernatant was filtered first through 0.45 mm pore

Pneumococcal Nasal Challenge Is Immunising
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size and then 0.2 mm filters to remove remaining bacteria. Filtrate

was then concentrated 10-fold by adding to pre-sterilised 10 K

molecular weight cut-off Vivaspin concentrators (VWR) and

centrifuging at 836 g for 25 mins at room temperature. This

processed cell supernatant from culture broth defined here as ‘23F

c/s’ or ‘6B c/s’ was stored at 220uC. Sterile Vegitone broth was

processed under the same conditions and used as a control for

stimulation experiments (‘vehicle’). Mid-log phase 6B pellet was

killed by heat treatment for 30 minutes at 56uC and kept at

220uC in single use aliquots in PBS. The protein content of 23F

c/s, 6B c/s, 6B pellet and vehicle was determined by Bradford

assay. In addition, ethanol-killed acapsulate derived type 2 S.

pneumoniae (gift of Prof. R Malley, Boston, USA) at a concentration

of 16106 cells/ml was used as an in vitro pneumococcal challenge,

relevant to the development of that product as a novel vaccine

[10].

PBMC and BAL cell stimulation
We collected PBMC and BAL samples from 19 volunteers

before and after challenge with 23F or 6B to determine whether

nasal challenge with pneumococcus was associated with alteration

in pneumococcal antigen-specific memory CD4 T cell responses in

either compartment. PBMC and BAL cells from volunteers

challenged with 23F were stimulated in vitro with the following

antigens: 23F c/s (0.395 mg/ml), vehicle (0.26 mg/ml), 106/ml

whole pneumococcal cells (acapsulate derived type 2 donated and

prepared [33] by Prof. Malley), 0.45 mg/ml heat-inactivated

influenza vaccine (Split Virion, Sanofi Pasteur 2009/2010 strains)

or left untreated (‘NS’). All experiments were performed in a

volume of 1 ml in 48-well plates. PBMC and BAL cells from

volunteers challenged with 6B were similarly stimulated in vitro

with the following antigens: heat killed 6B whole cells (1.0 mg/ml),

6B c/s (13 mg/ml of which 4.2 mg/ml was pneumococcal protein),

vehicle (13 mg/ml), 106/ml whole pneumococcal cells (acapsulate

derived type 2 donated by Prof. Malley), 0.45 mg/ml heat-

inactivated influenza (Split Virion, Sanofi Pasteur 2010/2011

strains) or left untreated (‘NS’). Staphylococcal enterotoxin B

(Sigma-Aldrich) was used at 0.5 mg/ml (final concentration) as a

positive control. Antigen titration experiments were performed to

determine the optimum concentration required for stimulation.

Cells were incubated for 2 hours at 37uC, 5% CO2. After 2 hours,

1 ml Brefeldin A (BD Biosciences, UK) was added and incubated

for a further 16 hours before harvesting and staining for the

presence of intracellular cytokines by flow cytometry.

Intracellular cytokine staining and flow cytometry
analysis

Cells challenged with antigen as above were spun to a pellet,

supernatant discarded and the cells stained for flow cytometry.

Cells were stained with Vivid according to the manufacturer’s

instructions (Invitrogen) to allow discrimination between viable

and non-viable cells. Cells were then stained for CD3, CD4 and

CD45RO using the following mouse anti-human monoclonal

antibodies, APC conjugated CD3, APC-H7 conjugated CD4, PE-

Cy7 conjugated CD45RO (all Becton Dickinson) on ice. Cells

were fixed and permeabilised (Cytofix/Perm) according to the

manufacturer’s instructions (BD Biosciences) then stained for

intracellular IFNc, TNF and IL-17 using mouse anti-human

antibodies: AF700 conjugated IFN-c, AF488 conjugated TNF, PE

conjugated IL-17 (all BD Biosciences, UK). Cells were fixed prior

to acquisition on a BD LSR2 flow cytometer (Becton Dickinson,

UK). We gated viable, memory CD4 T cells (CD4+CD45RO+)

and performed a Boolean gating strategy (data not shown) to

identify the proportion of TNF, IFNc and IL-17 producing cells

(or combinations thereof) following in vitro stimulation with

Influenza (positive control), whole pneumococci or pneumococcal

culture supernatant from the respective challenge strain. In order

to correct for inter-subject variation in the response to the

Vegitone broth, all culture supernatant stimulated data were

corrected by subtracting the percentage of CD4+CD45RO+ cells

producing cytokine when cultured with Vegitone media alone

(‘‘vehicle’’) from the pneumococcal antigen stimulated response.

Responses to media alone were subtracted from Influenza or

whole cell stimulated cells to determine specific responses.

Statistical analysis
Immunoglobulin and flow cytometry data were tested to

determine the distribution of the data. Data with a normal

distribution (Shapiro Wilks) were compared with parametric tests

(paired students’ t-test for before vs after inoculation) and for data

not following a normal distribution; the Wilcoxon-matched pairs

test was used. Flow cytometry data were analysed using FlowJo

software version 7.6 (Treestar Oregon, USA). Graph and statistical

analysis was performed using GraphPad prism version 5.0

(California, USA). Differences were considered significant if

p#0.05.

Results

Recruitment and human pneumococcal challenge
Twenty volunteers were recruited and inoculated per protocol

as shown in Figure 1 with no adverse effects. One subject in the

23F cohort established experimental colonisation as a result of the

inoculation and is excluded from further description in this study.

In the first cohort 8 subjects received two doses of 23F mean dose

8,791 cfu/naris (SD61,935 cfu/naris) and 13,830 cfu/naris

(SD64,504 cfu/naris), given 2 weeks apart (Figure 1 A and

Table 1). In our second cohort we challenged 11 volunteers with a

single, mean dose of 44,576 6B cfu/naris (SD612,815 cfu/naris)

(Figure 1 B and Table 1). These remaining nineteen study

volunteers did not establish colonisation following pneumococcal

challenge, contrary to our initial expectations. We did not detect

pneumococci in any nasal washes obtained from these nineteen

volunteers. Details of the study participants who were challenged

with pneumococci are given in Table 1 for both 23F and 6B

cohorts.

Nasal wash volumes recovered were a mean of 5.9 ml (range 2.3

to 8.5 ml) for the 23F cohort and 6.5 ml for the 6B cohort (range 4

to 8.1 ml). BAL volumes with cell counts are shown in Table S1.

Intra-nasal pneumococcal challenge increases mucosal
pneumococcal specific IgG and IgA

Pneumococcal whole cell ELISA data were compared before

and after pneumococcal challenge in 3 compartments (NW, BAL

and serum) using samples from the first 7 volunteers for the 23F

cohort and 8 volunteers in the 6B cohort as shown in Figure 2.

Three volunteers were excluded from the 6B cohort as a full set of

paired samples were not obtained. In each cohort, the relevant

challenge pneumococcal strain was used as the ELISA target

antigen. Whole cell ELISA using 23F and 6B pneumococcus

detected antigen-specific IgG and IgA in all NW, BAL and serum

samples both before and after inoculating challenge. Antigen-

specific titers of pneumococcal specific IgG were much higher in

serum than in NW (200-fold) or BAL (1000-fold). Similarly, serum

levels of pneumococcal specific IgA were much higher than in NW

(10-fold for 6B and 100-fold for 23F) and BAL (100-fold for 6B

and 1000-fold for 23F). There was no association between volume

Pneumococcal Nasal Challenge Is Immunising
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of fluid returned and immunoglobulin titer for either NW or BAL

samples.

Comparisons before and after nasal inoculation with bacteria

showed that there was no change in pneumococcus-specific IgG or

IgA in serum following inoculation with either 23F or 6B as shown

in Figures 2A and 2B. There was a significant increase in both IgG

(pre 25.467.5 vs post 52.567.5, p = 0.05) and IgA titers (pre

47.5617.9 vs post 122657.6, p = 0.03) in NW following 23F

inoculation, and a significant increase in IgA in NW following 6B

inoculation (pre 36614.4 vs post 58615.9, p = 0.03) as shown in

Figures 2C and 2D. BAL data showed a significant increase in

anti-pneumococcal IgG titer following 23F (pre 662.5 vs post

16.268.6, p = 0.03) but not 6B challenge (Figure 2E). Anti-

pneumococcal IgA responses in BAL before and after 23F or 6B

challenge were unaltered (Figure 2F). In summary, intranasal

inoculation of bacteria was associated with increased NW (IgG

and IgA) and BAL (IgG only) immunoglobulin responses but no

change in serum levels. These observations were dependent on

Figure 2. IgG and IgA responses to whole cell 23F or 6B pneumococci following 23F or 6B challenge, respectively. ELISAs were
performed using 23F or 6B pneumococci as targets to measure specific IgG (A, C and E) and IgA (B, D and F) titers in serum (A and B), NW (C and D)
and BAL (E and F). Values shown are the mean antibody titers (of triplicates), pre and post 23F (n = 7) or 6B (n = 8) challenge (x-axis). *represents
statistical significance between pre- and post-inoculation antibody titers.
doi:10.1371/journal.ppat.1002622.g002
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whether the challenge was with 23F (NW and BAL) or 6B (NW

IgA only) pneumococcal serotype.

Increased pneumococcal specific IgG and IgA responses
are directed towards pneumococcal proteins and not
capsular polysaccharide

We next determined which pneumococcal antigenic targets

were responsible for the increased antibody responses. We

measured anti-23F or 6B capsular polysaccharide responses before

and after challenge with the respective challenge strain in NW,

BAL and serum. There were no significant differences in 23F or

6B anti-capsular polysaccharide responses before and after

challenge in either cohort (Figure S1 A–C).

We followed up our observations in Figure 2, showing a

significant difference in IgG titer before and after 23F but not 6B

challenge, by performing Western blots to compare IgG responses

to 23F pneumococcal proteins on the same NW sample set.

Figure 3 shows results from NW taken from 8 subjects before

(Figure 3 Pre) and after (Figure 3 Post) nasal challenge with 23F.

There was more antigenic protein in each gel following CCE

compared to WCE. The dominant protein antigen seen in all NW

samples before challenge was a CCE band migrating to 110–

150 kDa. Following challenge with 23F (Figure 3 Post) there was a

general increase in the overall level of NW antibody binding in

both WCE and CCE lanes in all NW samples. There was

particularly increased reactivity towards the 110–150 kDa band in

all but one subjects and a new band slightly above 60 kDa in 5/8

donors (Figure 3 Post). These data indicate an increase in IgG

response towards pneumococcal proteins following 23F exposure.

Pneumococcal protein specific IgG is increased in NW
following 6B but not 23F challenge

We next used purified proteins in an ELISA to quantitatively

determine the specific pneumococcal proteins which elicited

increased total pneumococcal specific IgG responses in NW

following bacterial challenge. We measured anti-PspA, PspC, PdB

and PsaA IgG (Figure 4) levels in both 23F and 6B pneumococcal

challenge cohorts before and after challenge. In the 23F challenge

cohort we did not detect any difference in the concentration of

anti-PspA (Figure 4A), PspC (Figure 4B), PdB (Figure 4C) or PsaA

(Figure 4D) IgG before and after challenge. In the 6B challenge

cohort, we detected a significant rise in the mean concentration of

anti-PspA (pre 49.2612.7 vs post 301.56196.5, p = 0.05)

(Figure 4A). The mean concentration of anti-PspC (pre

28.267.3 vs post 93.8655.5, p = 0.07) (Figure 4B), anti-PdB (pre

2.360.8 vs post 21.4615.12, p = 0.06) (Figure 4C) and anti-PsaA

(Figure 4D) (pre 2.861.2 vs post 22.5616.6, p = 0.1) antibody

were all higher post 6B challenge compared to pre-challenge

samples but these differences were not statistically significant. The

Western blot and these ELISA data suggest that the antibody

response to whole pneumococci extends beyond these 4 studied

antigenic proteins.

Intra-nasal 23F pneumococcal challenge increases anti-
PspA IgG in BAL

Bacterial challenge with type 23F pneumococcus was associated

with increased BAL IgG titer in pneumococcal whole cell ELISA

but not with increased anti-capsular BAL IgG. We therefore

measured anti-pneumococcal protein IgG levels in BAL samples

Figure 3. Nasal wash IgG binding to pneumococcal proteins before and after 23F pneumococcal challenge by Western blot. Pre- and
post- 23F challenge NW samples from 8 volunteers were used to detect pneumococcal proteins present in whole cell (WCE) and choline chloride
extracts (CCE) of the challenge strain.
doi:10.1371/journal.ppat.1002622.g003
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following 23F challenge. We measured anti-PspA, PspC, PdB and

PsaA IgG responses in BAL (Figure 5) for both challenge cohorts.

There was a significant increase in the concentration of anti-PspA

specific IgG in BAL following challenge with 23F (pre 96.4632.2

vs post 161.7657, p = 0.03) but not 6B (Figure 5A). A higher

concentration of anti-PspC IgG in BAL following challenge with

23F (pre 37.9610.7 vs post 90.2632.3, p = 0.07) was observed

(Figure 5B) but was not statistically significant. There were no

differences in the concentration of anti-PdB (Figure 5C) and PsaA

(Figure 5D) IgG in BAL before and after challenge with 23F.

There were no differences in protein specific responses in BAL

before and after 6B challenge (Figure 5A–D).

Pneumococcal 23F challenge decreases serum anti-PspA
Although there were no changes in serum observed following

bacterial challenge using either whole cell ELISA or capsular

polysaccharide ELISA, we measured anti-PspA, PspC, PdB and

PsaA IgG in serum before and after challenge with 23F or 6B

(Figure 6). In contrast to the increased anti-PspA measured in BAL

following 23F challenge there was a significant decrease in the

concentration of serum anti-PspA following challenge with 23F

(serum pre 125.6642 vs serum post 76.9614, p = 0.03) but not 6B

(Figure 6A). The concentration of anti-PspC (Figure 6B), PdB

(Figure 6C) and PsaA (Figure 6D) were similar before and after

challenge for both 23F and 6B cohorts.

Pneumococcal challenge shows evidence of mild
inflammation

We next compared the cellularity and cellular responses in NW

samples obtained from subjects before and after pneumococcal

challenge from both 23F (first dose only) and 6B cohorts.

NW sample cellularity was low and variable (range 0–9300 total

cells) in samples collected. There was no difference in total cell

yield before and after challenge for the 23F cohort (Figure S2).

Increased levels of cellular effectors (neutrophils and mononuclear

cells) and/or granular mucus deposits (evidence of inflammation)

compared to baseline were seen on cytospins of NW preparations

in 4/8 volunteers 2 days after 23F challenge and in 2/8 volunteers

at 4 days. IL-17 ELISA (eBioscience, UK, Catalogue 88-7176-22)

performed according to the manufacturer’s instructions on NW

samples from 4 volunteers showed no detectable cytokine before

and after 23F challenge. In the 6B cohort 5/7 samples showed

Figure 4. Nasal wash IgG response to pneumococcal purified protein antigens. ELISAs were performed using pneumococcal antigens PspA
(A), PspC (B), PdB (C) and PsaA (D) to determine specific IgG in subject’s pre and post 23F (n = 7) or 6B (n = 8) pneumococcal challenge (x-axis). Values
shown are the mean antibody concentration (of triplicates). Antibodies to PspA and PspC are expressed in mg/ml and antibodies to PdB and PsaA are
expressed in arbitrary units/ml (y-axis). *represents statistical significance between pre- and post-challenge antibody levels.
doi:10.1371/journal.ppat.1002622.g004
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increased cellular effectors and/or granular mucus deposits in

samples taken immediately after 6B challenge compared with

before challenge.

Pneumococcal challenge is associated with altered
mucosal T cell memory in BAL but no increase in antigen-
specific T cell responses before and after challenge

There were no differences in BAL volume and total cell yield

before and after 23F or 6B challenge (Table S1). In the cohort

challenged with 23F, there was a significantly higher total

lymphocyte count (mean6SD Pre 1.960.756106 vs post

3.261.26106 p = 0.006) after challenge compared to before in

BAL. The percentage of total T cells that were of the memory

CD4 phenotype was also significantly higher after challenge

compared to before (mean%6SD, Pre 40.05620.6 vs post

48.47614.7, p = 0.048). Total BAL lymphocyte counts showed

correlation with the BAL anti-23F whole cell antibody titre

(p = 0.01, Pearson correlation) and anti-PspA concentration

(p = 0.03, Pearson correlation) for the 23F but not the 6B cohort

(Figure S3). In the cohort challenged with 6B, there was no

increase in total lymphocyte count, no increase in % memory CD4

T cells and no association of lymphocyte numbers with anti-

pneumococcal IgG by whole cell ELISA (Figure S3).

The data for antigen-specific T cell responses (baseline corrected)

are shown in Figure 7 as the percentage of memory CD4 T cells

producing at least one cytokine (of IFN-c, TNF or IL-17) before and

after the subject was intra-nasally inoculated with pneumococci.

Antigen-specific responses, to influenza and pneumococcal

preparations, compared to non-stimulated cells, were seen to a

varying degree in blood and BAL from both cohorts before

challenge. In the 23F cohort, significant antigen-specific responses

(compared with non-stimulated control) were seen to influenza in

BAL (mean%6SD, 0.8560.66 vs non-stimulated 0.4260.36

p = 0.03, n = 7) and blood (0.1560.05 vs control 0.0560.07,

p = 0.03, n = 8). There were no significant responses to pneumo-

coccal antigens before inoculation in blood or BAL but there were

significant responses to 23 c/s after inoculation in BAL (0.5560.28

vs vehicle 0.3560.16, p = 0.032, n = 8).

Figure 5. Bronchoalveolar lavage IgG response to pneumococcal antigens. ELISAs were performed using pneumococcal antigens PspA (A),
PspC (B), PdB (C) and PsaA (D) to determine specific IgG in subjects pre and post 23F (n = 7) or 6B (n = 8) pneumococcal challenge (x-axis). Values
shown are the mean antibody concentration (of triplicates). Antibodies to PspA and PspC are expressed in mg/ml and antibodies to PdB and PsaA are
expressed in arbitrary units/ml (y-axis). *represents statistical significance between pre- and post-challenge antibody levels.
doi:10.1371/journal.ppat.1002622.g005

Pneumococcal Nasal Challenge Is Immunising

PLoS Pathogens | www.plospathogens.org 9 April 2012 | Volume 8 | Issue 4 | e1002622



In the 6B cohort, significant antigen-specific responses (com-

pared to non-stimulated control) were seen to influenza in BAL

(0.560.29 vs non-stimulated 0.1960.09, p = 0.02) but not blood.

We also detected significant responses to 6B whole pneumococci

but not 6B culture supernatant in BAL (0.4060.26 vs control

0.1860.09 p = 0.05) before pneumococcal challenge. In blood we

detected significant responses to 6B c/s (0.6260.26 vs vehicle

0.2460.09, p = 0.0020) but not 6B whole pneumococci before

challenge.

Paired comparisons, before and after challenge, did not show

any significant differences in the proportion of pneumococcal

specific cytokine producing memory CD4 T cells before and after

challenge with 23F (Figure 7A blood and 7B BAL) or 6B

(Figure 7C blood and 7D BAL) in blood or BAL.

Discussion

We anticipated that a low dose of live pneumococci delivered

intra-nasally would lead to colonisation and thus augmented

mucosal and systemic responses to pneumococci. Colonisation was

not achieved in this study but we have shown that human

inoculation with a low dose of live pneumococci elicits specific

mucosal responses in the absence of carriage. Healthy adult

volunteers with detectable humoral and cellular immunity to

pneumococci prior to inoculation showed increased immunoglob-

ulin responses in NW and BAL but not blood 6 weeks after

experimental bacterial inoculation. In particular, concentrations of

IgG measured following inoculation with 23F were increased

compared to baseline observations in NW and BAL but not in

serum using a whole bacteria ELISA. Concentrations of IgA

measured following inoculation with 23F or 6B were increased

compared to baseline observations in NW but not in BAL or

serum. These responses did not include IgG or IgA to

pneumococcal capsule. We measured IgG responses in NW,

BAL and serum towards four pneumococcal proteins. We found

that IgG anti-PspA was significantly elevated in NW (following 6B

challenge) and BAL (following 23F challenge) and accounted in

part to the elevated responses seen towards whole pneumococci.

Inoculation was associated with an increase in the absolute count

and percentage of mucosal memory CD4 T cells for the 23F

cohort but not with an increase in paired antigen-specific cellular

responses in either group.

Figure 6. Serum IgG response to pneumococcal antigens. ELISAs were performed using pneumococcal antigens PspA (A), PspC (B), PdB (C)
and PsaA (D) to determine specific IgG in subjects pre and post 23F (n = 7) or 6B (n = 8) pneumococcal challenge (x-axis). Values shown are the mean
antibody concentration (of triplicates). Antibodies to PspA and PspC are expressed in mg/ml and antibodies to PdB and PsaA are expressed in arbitrary
units/ml (y-axis). *represents statistical significance between pre- and post-challenge antibody levels.
doi:10.1371/journal.ppat.1002622.g006
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Nasopharyngeal carriage of pneumococci occurs early in life,

frequently in infancy [5] and less commonly in adult life [40]. The

most dramatic reduction in carriage and also disease rate occurs in

the second year of life [41] independent of capsular serotype [7].

Humoral and cellular responses to pneumococcal capsular

polysaccharide and protein antigens develop during this time.

These immunological developments contribute towards a much

lower incidence of pneumococcal mucosal and invasive disease in

older children and young adults than in infants [41,42]. Repeated

episodes of carriage and possibly pneumococcal exposure [13] are

thought to boost these important defences.

Experimental human pneumococcal carriage (EHPC) in adults

offers the platform to measure these responses [43]. EHPC in

immune adults has been previously reported [25,44] but there has

been no previous quantitative report of the mucosal humoral and

cellular immune response to challenge not resulting in carriage.

Most adult exposures to pneumococcus do not result in carriage

and indeed in our experimental pneumococcal inoculations, only

one healthy adult progressed to carriage. This result is surprising

given that the inoculated dose per naris for both cohorts in our

study (Table 1) is similar (23F) or higher (6B) than the CFU dose

described by McCool and Weiser [25] for their colonised

(12,00065,477/naris) and uncolonised (7,25064,062/naris)

groups. Colonisation success rate will depend on challenge dose

but also on the sensitivity of detection, exposure to other non-/

infectious agents, presence of co-morbidities, genetic factors,

opacity (i.e. capsule expression) of the challenge strain [45] and

study design.

The usefulness of the EHPC model depends on the sensitivity of

assays for detection of carriage. Sample collection by nasal swab

followed by enrichment for pneumococci using STGG medium

and subsequent bacterial culture is the current gold standard

method [46]. A previous EHPC model used throat and nasal swab

or wash with standard bacteriological culture media [25]. We

demonstrated that a NW sample is not only more comfortable for

the volunteer but better than swabs for detecting upper respiratory

flora [30] including pneumococcus [47]. We employed a method

combining NW collection and direct plating followed by storage

in STGG broth at 280uC [30]. A molecular approach to

pneumococcal identification may yield greater sensitivity com-

pared to culture [48,49], but it does not distinguish between

carriage, which implies the presence of viable pneumococci, and

retention of bacterial antigen from non-viable cells. A sophisticated

molecular approach [48] will resolve these issues in the future but

Figure 7. Frequency of antigen specific CD4 T cell responses before and after 23F or 6B challenge. Blood (A and C) and BAL (B and D)
responses are shown pre and post 23F (A and B) or 6B (C and D) challenge. The proportion of flu and pneumococcal specific (x-axis) CD4+CD45RO+ T
cells producing either TNF 6 IFNc 6 IL-17 (or combinations thereof) (y-axis) were analysed by multi-parameter flow cytometry. Shown are mean
values 6 SD of at least 6 paired samples.
doi:10.1371/journal.ppat.1002622.g007
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we cannot rule out that some volunteers described here were

colonised below the detection limit of the current gold standard

method. The major strength of this study, however, is that it

focused on the immunological impact of a potentially infecting

dose of pneumococcus [25] on healthy adults with proven previous

natural pneumococcal exposure. We have been able to describe

responses in the inoculated site (nasopharynx), distal airway and

circulating blood.

The onset of carriage and acquisition of immunity in infants has

been successfully modelled using mice. These models have shown

that intra-nasal inoculation using live [14,16,17,50] or ethanol

killed [10] pneumococci or recombinant proteins [37,51–54]

(some with adjuvant) can elicit humoral and cellular immune

responses that protect against subsequent colonisation [14,16–18]

and/or disease [16,17]. Murine models can dissect the relative

contribution of humoral and cellular defence [55] but are a better

model of infancy (naive response) than of adults with pre-existing

memory responses. We have shown for the first time that levels of

anti-protein IgG and IgA against pneumococus were boosted in

both NW and BAL following intranasal challenge with pneumo-

cocci, though this depends on the serotype used. The implication

of this finding is that exposure to low doses of pneumococcus is

potentially immunising at the mucosal surface. A limitation of this

study, however, is that the samples collected from the nasopharynx

and lung are so dilute that functional measurement of the

opsonophagocytic effect of the observed increase in immunoglob-

ulin concentration is not currently possible. Previous studies in

several laboratories including ours [56] have attempted to

concentrate BAL in order to measure opsonic function. Concen-

tration in this way allows binding to be determined but enhanced

phagocytosis following immunisation has not been demonstrated.

It is interesting that there was no significant change in IgG or

IgA to polysaccharide capsule following inoculation. This

somewhat counter-intuitive observation is consistent with previous

data showing a lack of BAL response to inhaled polysaccharide

[57]. Human experimental colonisation however enhanced serum

polysaccharide responses in 5/6 volunteers [25] suggesting

colonisation has a greater systemic immunising effect compared

to challenge. Polysaccharide responses are initiated in the spleen

and plasma cells are found in very low numbers in BAL. In the

current study we know that bacterial clearance from the

nasopharynx was achieved in less than 2 days (probably more

rapidly) and it is therefore reasonable to suggest that polysaccha-

ride and bacterial protein were not presented to critical sites or

cells to enhance systemic immunity. IgG to polysaccharide capsule

is a critical defence mechanism against invasive pneumococcal

disease but is less important in defence against carriage [18]. Our

data suggest that experimental pneumococcal exposure without

carriage does not augment this limb of systemic defence.

We showed altered mucosal responses to protein antigens,

particularly choline bound proteins such as PspA. Using Western

blot and whole cell ELISA, more IgG to pneumococcal protein

was found after inoculation than before in both NW and BAL in

the 23F cohort. The Western blots show a greater effect of

inoculation on the choline binding proteins than on proteins

extracted without choline chloride. Specific anti-protein ELISA

was only able to detect a statistically significant difference in one of

the 4 proteins tested (PspA) although NW IgG levels to the other

three were all increased in the 6B challenged cohort. There are

many pneumococcal surface-proteins that function as virulence

factors and are sufficiently surface exposed to have vaccine

potential. Some of these pneumococcal surface proteins, including

PspA, PspC and PsaA, have been shown to have roles in adhesion

and carriage and may vary in expression between pneumococcal

isolates. Human anti-PspA responses elicited by intra-muscular

vaccination with rPspA are protective against subsequent lethal

challenge with heterologous pneumococci when passively trans-

ferred in murine models [12] and therefore the response seen in

our 6B (NW) and 23F (BAL) cohort may be of functional

significance. Both strains used in our study express PspA clade 1

similar to the PspA used for the ELISA. The absence of a NW

response in the 23F cohort could be due to low PspA expression by

the inoculated strain or adsorption of nasal antibodies to the

inoculated bacteria. The concentration of IgG to PspA in mucosal

samples is so diluted that direct functional assays or passive

transfer experiments are unlikely to succeed. Alternatively,

increased protection due to immunoglobulin responses in NW

could be tested by repeated pneumococcal challenge of subjects

with heterologous or homologous serotypes who develop exper-

imental carriage and/or enhanced immunoglobulin responses on

the first inoculation. This study is planned in our laboratory.

Murine models have demonstrated that pneumococcal coloni-

sation or vaccination results in the generation of memory CD4 T

and B cells in both the circulation and at the mucosa. The effector

CD4 T cell phenotype is mixed but includes IL-17 [14,37,58]

and/or IFNc [37,51] secreting T cells (Th-17/Th-1). NW samples

from healthy adults had very low cell counts in this study which is

not surprising given that mucosal immune cells are found in

specialised sub-mucosal lymphoid aggregates, best investigated in

humans by using surgical explants [59]. We were, however, able to

demonstrate antigen-specific T cells producing cytokine in

response to specific stimuli in BAL both before and after nasal

inoculation. Pneumococcal challenge, however, did not alter the

frequency of pneumococcal specific, cytokine secreting, CD4 T

cells in BAL. The dose of pneumococci delivered to the lung in our

non-colonised subjects is likely to have been very small and

therefore the antigenic stimulus to lung during the inoculation

period in our subjects will have been minimal. The lymphatic

drainage of the nasopharynx is to the cervical lymph nodes whilst

the lungs drain to the hilar nodes; we would therefore expect that

antigen challenge of the nasopharynx would have limited impact

on BAL lymphocytes. A recent murine model, however, has shown

that viral upper respiratory tract infections lead to the migration of

clonally-related populations of activated T cells to both upper and

lower respiratory mucosal sites [60]. These data suggests that

measuring the proportion and phenotype of antigen specific T

cells in the BAL mucosal compartment in humans may be similar

to the proportion and phenotype of effector T cell populations

present in the sub-mucosa of the nasopharynx. In this study, we

observed an increased absolute count of BAL lymphocytes and

increased percentage of CD4 memory cells in BAL at second

examination in the 23F cohort. This may reflect a response of the

respiratory tract to antigen challenge as it only occurred in the 23F

cohort and this cohort also had significant immunoglobulin anti-

pneumococcal protein responses following challenge. It is also

possible that the altered CD4 profile seen in 5/6 subjects in that

cohort resulted from the non-specific activation caused by a

previous BAL but this effect was not seen in the 6B cohort.

Alternatively, the proportion of memory CD4 T cells in the 23F

cohort (pre challenge) is lower than that in the 6B cohort (pre

challenge) and therefore the increased recruitment and proportion

of memory CD4 T cells may reflect a return to homeostatic levels

with concomitant recruitment of antibody secreting plasma cells.

There were no increases in antigen-specific CD4 T cell functional

assays to suggest specific pneumococcal activation. Current studies

in our laboratory aim to characterise the BAL lymphocyte

response to experimental human pneumococcal carriage which

will provide a more sustained antigen challenge to the lung.
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We used two different pneumococcal strains and two different

protocols in the experimental inoculations of two consecutive

cohorts of volunteers. The results in each cohort were similar in

that capsular responses were not detected in any compartment and

enhanced immunoglobulin responses were not observed in blood.

The study design was modified between 23F and 6B cohorts in an

attempt to obtain colonisation and is different from that published

previously by McCool and Weiser [25] likely influencing the

results observed. In our study whole cell ELISA data showed

significant changes only in the 23F cohort and changes in anti-

PspA response were only seen in the 23F cohort when comparing

before and after inoculation. This is most likely due to the double

dose challenge procedure employed in the 23F cohort compared

to the 6B cohort. Two doses are employed to first prime the

immune system to vaccine and then second to boost specific

responses. This has been performed successfully using rPspA (with

alum as adjuvant) in humans leading to 100 fold increases of serum

anti-PspA IgG in volunteers immunized with 125 mg of rPspA

[12]. The rPspA given in this study, however, was intra-muscular

and a larger dose. Mucosal sites were not examined for cellular or

humoral responses. Differences between the 23F and 6B cohort

described here in NW, BAL and serum cannot be ascribed to

other confounding variables such as the after effects of BAL

collection since this was obtained from both groups and non-

specific activation would have to be maintained for at least 10

weeks before being detected in post samples. BAL collection before

nasal exposure is a limitation of this study and is an important

difference between our 23F challenge model and the model

described by McCool and Weiser [25]. BAL collection may cause

systemic [61] and local [62] side effects but these are usually short

term (1–2 days) rather than long term (weeks) effects. We

attempted to minimise the pro-inflammatory effect of BAL

collection by maintaining a 2 week gap between sample collection

and challenge. We cannot rule out the possibility that BAL

collection approximately 2 weeks before challenge may have

impaired our ability to obtain colonisation following challenge

with 23F and 6B compared to the success rate of McCool and

Weiser [25].

The different results obtained from our 23F and 6B cohorts may

also be due to different antigenicity of the PspA found in the two

inoculated strains; although both strains used for inoculation

express similar PspA as that used for ELISA (all clade 1). We are

now manufacturing the PspA from each strain in order to improve

detection sensitivity but the implication of this pattern of findings is

that immunogenicity varies between natural exposures indepen-

dent of capsular type. In addition, the concentration of specific

antibody required for mucosal protection may differ between

natural and experimental exposure.

These data suggest that a mean dose of S. pneumoniae of

approximately 8,791 cfu/naris (1st dose), and 13,830 cfu/naris

(second dose) of 23F or 44,576 cfu/naris of type 6B is sufficient to

activate mucosal defence causing a sustained increase in pneumo-

coccal specific IgG and IgA antibody to be detected in mucosal

washes 6 weeks after challenge. Pneumococcal colonisation or

higher doses of an attenuated strain may be required to elicit T cell

and immunoglobulin mediated systemic immunity.

Supporting Information

Figure S1 Capsular polysaccharide IgG responses to
23F or 6B pneumococci following 23F or 6B challenge,
respectively. ELISAs were performed using 23F or 6B capsule

as targets to measure specific IgG levels in serum (A), NW (B) and

BAL (C). Values shown are the mean antibody concentration of

triplicates in mg/ml or ng/ml as shown, pre and post 23F (n = 7) or

6B (n = 8) challenge (x-axis).

(TIF)

Figure S2 Nasal wash total cell counts following 23F
challenge. NW total cell counts from subjects (n = 8) who were

challenged with 23F pneumococcus (A, first dose and B, second

dose). NW were collected before challenge (Pre) and on days 2 (A2

and B2), 4 (A4 and B4) and 7 (A7 and B7) post challenge (x-axis). y

axis = cell count/ml on a log10 scale (bar indicates Geometric

Mean). Samples with no cells were given a value of 0.1.

(TIF)

Figure S3 Correlation between BAL anti-pneumococcal
IgG levels and anti-PspA IgG concentration with total
lymphocyte cell count. Pre- and post-challenge data was

pooled for correlation analyses between total lymphocyte count

and anti-pneumococcal (PNC) IgG titer (A and B) or Anti-PspA

IgG concentration (C and D). A significant positive correlation was

observed for the 23F cohort (A and C) but not for the 6B cohort (B

and D). Statistical significance was determined using a Pearson

correlation test. Pearson r values and P values are indicated for

each graph.

(TIF)

Table S1 BAL differential counts (mean ± SD).
(DOC)
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