LSTM Home > LSTM Research > LSTM Online Archive

Genetic basis of pyrethroid resistance in a population of Anopheles arabiensis, the primary malaria vector in Lower Moshi, north-eastern Tanzania

Matowo, Johnson, Jones, Christopher ORCID: https://orcid.org/0000-0002-6504-6224, Kabula, Bilali, Ranson, Hilary ORCID: https://orcid.org/0000-0003-2332-8247, Steen, Keith ORCID: https://orcid.org/0000-0002-8933-8643, Mosha, Franklin, Rowland, Mark and Weetman, David ORCID: https://orcid.org/0000-0002-5820-1388 (2014) 'Genetic basis of pyrethroid resistance in a population of Anopheles arabiensis, the primary malaria vector in Lower Moshi, north-eastern Tanzania'. Parasites & Vectors, Vol 7, e274.

[img]
Preview
Text
Para_Vect_7_274.pdf - Published Version
Available under License Creative Commons Attribution.

Download (794kB)

Abstract

Background

Pyrethroid resistance has been slower to emerge in Anopheles arabiensis than in An. gambiae s.s and An. funestus and, consequently, studies are only just beginning to unravel the genes involved. Permethrin resistance in An. arabiensis in Lower Moshi, Tanzania has been linked to elevated levels of both P450 monooxygenases and β-esterases. We have conducted a gene expression study to identify specific genes linked with metabolic resistance in the Lower Moshi An. arabiensis population.

Methods

Microarray experiments employing an An. gambiae whole genome expression chip were performed on An. arabiensis, using interwoven loop designs. Permethrin-exposed survivors were compared to three separate unexposed mosquitoes from the same or a nearby population. A subsection of detoxification genes were chosen for subsequent quantitative real-time PCR (qRT-PCR).

Results

Microarray analysis revealed significant over expression of 87 probes and under expression of 85 probes (in pairwise comparisons between permethrin survivors and unexposed sympatric and allopatric samples from Dar es Salaam (controls). For qRT-PCR we targeted over expressed ABC transporter genes (ABC ‘2060’), a glutathione-S-transferase, P450s and esterases. Design of efficient, specific primers was successful for ABC ‘2060’and two P450s (CYP6P3, CYP6M2). For the CYP4G16 gene, we used the primers that were previously used in a microarray study of An. arabiensis from Zanzibar islands. Over expression of CYP4G16 and ABC ‘2060’ was detected though with contrasting patterns in pairwise comparisons between survivors and controls. CYP4G16 was only up regulated in survivors, whereas ABC ‘2060’ was similar in survivors and controls but over expressed in Lower Moshi samples compared to the Dar es Salaam samples. Increased transcription of CYP4G16 and ABC ‘2060’ are linked directly and indirectly respectively, with permethrin resistance in Lower Moshi An. arabiensis.

Conclusions

Increased transcription of a P450 (CYP4G16) and an ABC transporter (ABC 2060) are linked directly and indirectly respectively, with permethrin resistance in Lower Moshi An. arabiensis. Our study provides replication of CYP4G16 as a candidate gene for pyrethroid resistance in An. arabiensis, although its role may not be in detoxification, and requires further investigation.

Item Type: Article
Subjects: QU Biochemistry > Genetics > QU 500 Genetic phenomena
QX Parasitology > Insects. Other Parasites > QX 515 Anopheles
QX Parasitology > Insects. Other Parasites > QX 600 Insect control. Tick control
WA Public Health > Preventive Medicine > WA 110 Prevention and control of communicable diseases. Transmission of infectious diseases
WC Communicable Diseases > Tropical and Parasitic Diseases > WC 750 Malaria
Faculty: Department: Biological Sciences > Vector Biology Department
Digital Object Identifer (DOI): https://doi.org/10.1186/1756-3305-7-274
Depositing User: Lynn Roberts-Maloney
Date Deposited: 08 Apr 2015 09:04
Last Modified: 07 Jun 2022 11:10
URI: https://archive.lstmed.ac.uk/id/eprint/5064

Statistics

View details

Actions (login required)

Edit Item Edit Item