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A barcode of organellar genome polymorphisms
identifies the geographic origin of Plasmodium
falciparum strains
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Malaria is a major public health problem that is actively being addressed in a global

eradication campaign. Increased population mobility through international air travel has

elevated the risk of re-introducing parasites to elimination areas and dispersing drug-resistant

parasites to new regions. A simple genetic marker that quickly and accurately identifies the

geographic origin of infections would be a valuable public health tool for locating the source

of imported outbreaks. Here we analyse the mitochondrion and apicoplast genomes of

711 Plasmodium falciparum isolates from 14 countries, and find evidence that they are

non-recombining and co-inherited. The high degree of linkage produces a panel of relatively

few single-nucleotide polymorphisms (SNPs) that is geographically informative. We design

a 23-SNP barcode that is highly predictive (B92%) and easily adapted to aid case

management in the field and survey parasite migration worldwide.
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M
alaria threatens nearly half the world’s population, and
the deadliest form caused by Plasmodium falciparum
remains a leading cause of childhood mortality world-

wide1. As countries move closer to elimination and parasites
develop tolerance of artemisinins2,3, understanding the inter-
connectedness of parasite populations and tracing the source of
imported infections have become top priorities. Genetic markers
have proved extremely valuable in the eradication of other
diseases (for example, polio4). Analysis of nuclear genome
variation in P. falciparum (14 chromosomes, 23 Mbp, 19.1%
GC content) has been used to identify candidate artemisinin-
resistant loci3, and can be exploited to map the dispersion of
parasites worldwide and trace the migration of drug-resistant
parasites into new areas. Thus, a universal P. falciparum
genotyping tool able to interrogate geographically restricted
single-nucleotide polymorphisms (SNPs) would be of great value.
Current barcoding approaches5 based on nuclear SNPs are
constrained by a lack of geographic specificity and frequent
recombination, which disrupts multi-locus SNP associations in
each generation. To overcome these limitations, we explored the
usefulness of the extra-nuclear genomes of the mitochondrion
and apicoplast organelles. We postulated that strict maternal
inheritance might exclude recombination and so create a barcode
that is stable and geographically informative over time.

The mitochondrion genome (mt) of P. falciparum is a 6-kb
concatenated linear sequence, is transmitted in female gameto-
cytes and does not recombine among lineages6–8; thus, sequence
polymorphism in mt is attractive as a potential barcoding tool.
Analysis of global sequence variation in mt has revealed
geographic differentiation9–11, but the limited numbers of SNPs
restrict its capacity to resolve fine-scale population differentiation.
Apicoplasts are relict non-photosynthetic plastids found in most
protozoan parasites belonging to the phylum Apicomplexa,
including all Plasmodium species, and show phylogenetic
homology to the chloroplasts of plants and red algae12,13.
Although the apicoplast has lost any ancestral photosynthetic
ability, it retains a genome encoding lifecycle-specific, essential
metabolic and biosynthetic pathways that generate isoprenoids,
fatty acids and haem13. As these are distinct from homologous
human pathways, the apicoplast is an enticing target for
antimalarial drugs13–17. The apicoplast genome (apico) is a
35-kb circular sequence6 and is also maternally inherited.
Although polymorphism in apico (29.4 kb annotated core, 30
genes, 13.1% GC content) has not been well characterized, it is
potentially greater than that in mt (6 kb, 3 genes, 31.6% GC
content) owing to its larger size. To develop a robust mt/apico
barcode and improve our understanding of apico evolution,
a definitive analysis of apico SNP variation in multiple
P. falciparum populations is needed to determine the extent of
global diversity and existence of recombination.

Although there is good evidence that chloroplasts and
mitochondria are co-inherited in plants18, this is not a
hard-and-fast rule in other organisms19. Evidence from the
laboratory indicates that mt and apico are co-transmitted during
P. falciparum gametocytogenesis7, but evidence from the field is
lacking. Here, using sequence data from 711 parasite isolates in 14
countries across four continents, we catalogue 151 mt SNPs and
488 apico SNPs and use them to investigate organelle DNA
co-inheritance and geographic differentiation at the population
level. We find high linkage disequilibrium (LD) between mt and
apico SNPs within populations, providing strong evidence that
the organelles are indeed co-transmitted and non-recombining.
This finding represents a breakthrough in the genetic barcoding
of P. falciparum, as it reveals novel extended haplotypes specific
for different geographic settings. Using SNP variation of the
combined organelle genome (mt/apico) in an iterative haplotype-

based classification analysis, we construct a 23-SNP barcode that
identifies the region of sample origin with 92% predictive
accuracy.

Results
To the 3D7 reference genome we aligned high-quality raw
sequence data from 711 P. falciparum samples in five geographic
regions: West Africa (WAF: Burkina Faso, Gambia, Ghana and
Mali, N¼ 401), East Africa (EAF: Kenya, Malawi and Uganda,
N¼ 98), Southeast Asia (SEA: Cambodia, Thailand and Vietnam,
N¼ 164), Oceania (OCE: Papua New Guinea, N¼ 25) and South
America (SAM: Colombia and Peru, N¼ 23). The sequence
coverages of mt (B1,000-fold) and apico (B100-fold) are B22-
fold and Btwo-fold greater than the nuclear genome, respectively
(Fig. 1; Supplementary Fig. 1). These fold differences in coverage
are consistent with known organelle copy numbers in single
P. falciparum parasites20,21. Using all sample alignments, we
identified 151 high-quality SNPs in mt (25.3 SNPs per kilobase,
65.6% in coding regions) and 488 in apico (16.6 per kilobase,
77.5% in coding regions) (Supplementary Table 1). Of the
151 SNPs, only 20 (13.2%) were identified previously9,10. Across
all samples, 65.4% (418/639) of SNPs were singletons, 92.5%
(591/639) were rare (minor allele frequency, MAF o1%), 7.5%
(48/639) had a MAF 41% and 2.3% (15/639, 3 mt and 12 apico)
were common (MAF 45%) (Supplementary Table 1). Multi-
allelic SNPs were identified in both genomes (mt 4.0%, apico
5.1%); 29 were tri-allelic and two were quad-allelic
(Supplementary Table 1). Of the multi-allelic SNPs, only the
quad-allelic locus mt1692 described previously10 has a combined
MAF 45%.

Geographic patterns of diversity were investigated by linear
discriminant analysis of the combined mt and apico SNP data,
which revealed clustering by geographic origin of samples
(Supplementary Fig. 2). To determine the most significant drivers
of population differentiation, we analysed only non-rare SNPs.
We calculated population differentiation statistic Fst to identify
SNPs with inter-regional allele frequency differences, which range
from 0 to 1 with higher values signifying greater differentiation22

(Fig. 1). We found substantially lower population differentiation
between countries in the same region (mean 28.5 SNPs per region
with Fst 40.05) than between the five regions (mean 58 SNPs
with Fst 40.05). Forty-nine SNPs have MAF 41% in at least
one region (Supplementary Table 2), 17 (34.7%) of which have
Fst 40.1 (Supplementary Fig. 3). Of these 17 (4 mt and 13 apico),
14 are located in genes with 8 non-synonymous (NS) changes
(Supplementary Fig. 3; Supplementary Table 2). The two SNP loci
with highest Fst (B0.76), mt772 (cox3) and apico6762 (orf101),
are in perfect LD (r2¼ 1) and differentiate SEA from other
regions (MAFs: overall 16.5%, SAM 0%, WAF 0%, EAF 0%, SEA
69.0% and OCE 20.8%). A third SNP with high Fst (B0.88),
apico26659 (rpl23), differentiates Africa (WAF and EAF) and
SAM from other regions (Supplementary Fig. 3; Supplementary
Table 2).

To assess the extent of recombination between SNPs within
and between mt and apico, we carried out intra- and inter-region
analyses of LD. Using non-rare biallelic markers, there was near-
perfect LD between the combined mt and apico SNPs, within and
across geographic regions. This is strong evidence that there is no
recombination within or between organelles (mean pairwise
D0 ¼ 0.998 for all regions combined, Supplementary Fig. 4), the
latter implying potential co-transmission. To investigate this
possibility, we used 146 haplotypes (the observed combinations of
SNPs in individual parasite isolates) of mt and 271 haplotypes of
apico, respectively (Supplementary Table 1). By comparing the
joint mt/apico haplotype frequencies (Supplementary Table 3),
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we found that the dependence between mt and apico was highly
significant (w2¼ 64,921, d.f.¼ 39,566, Po10� 16), providing
strong evidence of co-inheritance of the two organelles. This
genetic evidence confirms the experimentally observed and
theoretically predicted processes involved in gametocytogenesis6,7.

The geographical pattern of mt haplotypes was previously
interpreted to reflect radiation of P. falciparum out of Africa into
SEA and SAM10. Consistent with this interpretation, our analysis
of 151 mt SNPs identifies a common haplotype in 30.0% (213/
711) of samples, which is represented in four of the five regions:
SAM 30.4%, WAF 37.2%, EAF 49.0%, SEA 0% and OCE 36%
(Supplementary Fig. 5). Since this compromises geographical
assignment, mt haplotypes alone cannot identify the geographic
origin of parasite strains. The addition of 488 apico SNPs to
generate 290 distinct compound (mt/apico) haplotypes greatly
increases the geographic resolution of samples (Supplementary

Fig. 5). Nearly all (282/290, 97.2%) compound haplotypes are
observed in one region only, and 66.8% of all parasite isolates
have a haplotype unique to their region of origin. Six of the eight
mt/apico haplotypes observed in multiple regions are most
common in Africa (WAF and EAF), consistent with an African
origin for this parasite species.

After discovering the existence of regional differentiation, we
sought to identify a minimal set of barcoding SNPs diagnostic for
the compound mt/apico haplotypes. Using the 221 SNP loci with
non-singleton alleles, we applied an iterative haplotype search
algorithm that maximized predictive accuracy, while accounting
for regional sample size differences and avoiding over-fitting. The
minimal barcode comprises 23 SNPs (5 mt, 18 apico, MAF 41%
in a single region, 3 tri-allelic), within 18 protein-coding genes
(13 NS), four non-translated RNA segments and one inter-genic
region (Supplementary Table 2; Fig. 1). The 23 SNPs form only
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Figure 1 | Plasmodium falciparum mitochondrion and apicoplast genomes. The nucleotide sequence landscape of the densely packed P. falciparum

mitochondrion (mt) and apicoplast (apico) genomes. Protein-coding (green) and non-translated RNA (blue) regions in the ‘annotation’ ring are transcribed

from either strand (inner, negative strand; outer, positive strand). The 20-fold difference in coverage between the genomes is visible (see also

Supplementary Fig. 1). All mutations within mt (151 SNPs, 5,967-bp linear) and apico core (488 SNPs, 29,430-bp circular, excluding an inverted repeat) are

shown relative to the P. falciparum 3D7 (version 3.0) reference genome coordinates. SNPs are densely packed throughout, with more non-synonymous

(NS) protein-coding changes (red) in apico than in mt. Synonymous, intronic, intra-genic (green) and RNA changes (blue) are also marked. The minor allele

frequency (MAF), Fst and barcode SNPs are marked in the outer three rings and are colour coded in the same way (the full catalogue is available online).

The 23 barcoding SNPs (5 mt, 4 NS; 18 apico, 9 NS) are marked in the outer ring.
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34 distinct haplotypes (Fig. 2), 26 of which are unique to one
region. The core 3D7 haplotype 10 occurs in 14 African isolates
(2.8%, 7 WAF and 7 EAF). Haplotypes 14 and 30 occur in three
regions and deviate from the core by single mutations.

The overall predictive accuracy of the minimal barcode is
92.1% (655/711, Supplementary Table 4), compared with 95.1%
(676/711) using all 639 mt and apico SNPs, and 82.1% using 24
nuclear SNPs5 (Supplementary Fig. 5). Across all regions except
EAF, the predictive accuracy using the barcode is at least 94%.
Almost half the discrepancies (24/56) arise from EAF samples
being assigned to WAF. The high diversity in EAF samples leads
to poor identification using the full and barcoding sets of SNPs,
highlighting the need for further characterization of sample
genomes from this region. The 23-SNP barcode was validated on
sequence data from 81 P. falciparum samples not used in its
construction, including five laboratory-adapted clones (3D7,
HB3, 7G8, DD2 and GB4 (ref. 23)), eight samples from
travellers returning to London from EAF or WAF24, 154
samples from Africa (Senegal, N¼ 12 (ref. 25); Ghana, N¼ 16;
Guinea, N¼ 106 (ref. 26); Malawi, N¼ 20 (ref. 27)) and 20

samples from SEA28. The geographic origins of 93.0% (174/187)
of isolates were correctly assigned; the origins of eight Malawian
(EAF) and five Guinean (WAF) parasites were unassigned as
their haplotypes are found in both East and West Africa
(haplotypes 8–14, see Fig. 2).

Discussion
Worldwide genetic variation in P. falciparum reflects population
history, demography and geographic distance; however, recom-
bination disrupts signals of differentiation in the nuclear genome,
and since organelle sequence is non-recombining it can be
uniquely informative when tracing patterns of dispersal. Mito-
chondrial and chloroplast sequences are commonly used in DNA
barcodes for animals and plants29 and have been used to explore
the origins of humans30 and wine grapevines31. Using genetic
variation in the multi-copy mt and apico genomes, we have
established a 23-SNP barcode that is geographically informative
and robust to the effects of recombination. Rapid sequencing and
genotyping technologies can be applied to small amounts of
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Figure 2 | SNP barcode across P. falciparum mitochondrion and apicoplast genomes. The 23 SNP loci form 34 distinct haplotypes that help

identify a parasite’s geographical origin: South America, SAM; West Africa, WAF; East Africa, EAF; Southeast Asia, SEA; and Oceania, OCE. Most

(76.5%, 26/34) haplotypes are unique to a single region. Haplotype 10 corresponds to the 3D7 reference strain, and its mitochondrion (mt) core

haplotype is observed in all five regions. Two haplotypes (14 and 30) are seen in three regions. The overall accuracy is 92.1% (655/711; SAM 100%,

WAF 94.5%, EAF 68.4%, SEA 98.8% and OCE 96.0%).
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relatively low-grade parasite material, such as that sourced from
finger-prick bloodspots. Exploiting uniqueness in the sequences
surrounding the informative SNPs supports highly specific
identification. The application of this tool has the potential to
improve the management of imported cases and reduce the risk
of local epidemics resulting from further transmission. Hence it
will be a valuable tool for local agencies in programmes of malaria
elimination and resistance containment.

The geographic differentiation seen in organelle genomes may
also be subject to evolutionary forces in addition to genetic drift
and migration. The presence of a core haplotype is consistent
with P. falciparum radiation from Africa in the recent past, while
sequence analysis using Tajima’s D metric32 supports population
expansion in Africa and Asia, and possibly Oceania, and suggests
a neutrally mutating population in South America
(Supplementary Fig. 6)—all consistent with previous studies of
mitochondrial genome diversity10. We explored the possibility
that selective forces are also influential. Drug pressure, for
example, is exerted regionally through sequential roll-outs of new
antimalarial treatments in response to emerging drug resistance.
The resulting selective sweeps identified in the nuclear genome
have regional dispersal patterns25,33–35. In the mitochondrial
genome, mutation in codon 268 of cytb occurred in vitro in the
presence of atovaquone-proguanil selection11. However, we
previously observed no naturally occurring polymorphisms in
codons 133, 268 or 280 of this gene25. Since the mitochondrion is
a putative target of the antimalarial action of artemisinins33, we
looked for association between non-rare mt/apico SNPs and
putative artemisinin-resistant loci (chromosome 13 region3 and
UBP1 (ref. 36)) but found weak correlation (mean r2¼ 0.00257,
maximum r2¼ 0.515). We also considered nuclear SNPs known
to be associated with resistance to chloroquine (crt, mdr1, mean
r2¼ 0.00454, maximum r2¼ 0.621) and antifolates (dhfr, dhps,
mean r2¼ 0.00837, maximum r2¼ 0.371), but again found only
weak correlation.

A striking observation is the high proportion of NS changes
among coding SNPs in apico (77.8%) compared with mt (31.3%)
and the nuclear (61.8%) genome27, which may suggest they are
subject to different selective pressures. While all mt genes have
low NS to S ratios, indicative of purifying selection and a
conserved functional role, apico genes generally have high NS to S
ratios indicative of divergence and directional selection37. Drugs
may exert selection; the highest NS ratios were in rp8, rps7 and
tufA (Supplementary Table 5), the latter encoding a target of the
antibiotic thiostrepton and its derivatives38. A more prosaic
explanation is nucleotide bias through the unusual apico DNA
replication machinery39. To explore this further, we compared NS
to S ratios among apico-encoded proteins and 545 nuclear-
encoded apicoplast proteins40. The high rate appears to be
confined to those apicoplast proteins encoded in apico itself
(77.8% NS) rather than the nuclear genome (60.6% NS), thus
supporting the DNA replication hypothesis. A similar analysis of
mt-encoded proteins and 381 nuclear-encoded mitochondrial
proteins41 found NS rates of 55.6% in the nuclear genome and
31.3% in mt. This points to a conservation mechanism that is
intrinsic to the mitochondrial sequence. It is also significant that
the absence of recombination introduces a constraint on the
selective removal of slightly deleterious mutations42, and it is
possible that mutations accumulate in sequences linked to genes
under strong directional selection. However, multi-copy states of
mt and apico within individual parasites may allow deleterious
copies to be jettisoned by intracellular selection.

The apicoplast shares evolutionary similarities with the
chloroplasts of photosynthetic eukaryotes and the prokaryotic
progenitors of all plastids, and is vital to the survival of
Plasmodium species13,17. The organelle thus encodes functions

absent from vertebrate hosts and presents an enticing target for
antimalarial drugs14–17, including novel applications of known
antibiotics and herbicides. By combining these insights with
reverse-genetic approaches, it may be possible to identify key
proteins and metabolic pathways as new candidate drug targets15

and to anticipate their effectiveness in geographically distinct
parasite populations.

An ability to determine the geographic origin of P. falciparum
isolates potentially has enormous practical utility in containing
drug resistance and eliminating malaria. One potential limitation
of the mt/apico barcode in its current form is the lack of
representation of the Indian sub-continent, Central America,
southern Africa and the Caribbean, owing to the scarcity of
sequence data from these regions. In addition, there is a need to
sample more intensively from EAF, a region of high genetic
diversity, high migration and poor predictive ability. Once these
data gaps are filled, the barcode can be re-calibrated to maximize
its accuracy in assigning sample origin. The 23 SNPs can be
modified in light of new sequence information to improve
barcode specificity, especially for discriminating malaria importa-
tion from one or two known regions, in which case a minimal set
can be applied. Adding genomic data from P. vivax and
P. knowlesi should help broaden the scope of the barcode for
pan-Plasmodium applications. Incorporating antimalarial drug-
resistant loci3 will further enhance the usefulness of the barcode
as an important tool for malaria control and elimination activities
worldwide.

The demonstration that mt and apico sequences are non-
recombining creates a new genotyping tool that is robust to the
diluting effects of recombination. Global movement of parasites
threatens elimination and treatment efficacy. By mapping
global patterns of organellar genome polymorphism, we will
gain new insights into the extent to which P. falciparum
populations worldwide are inter-connected by international
malaria migration.

Methods
Sequence data alignment and variant detection. Raw deep-sequence data
(minimum read length 54 base pairs (bp)) were available from P. falciparum
isolates sourced from Burkina Faso and Mali27,28,43–45, Ghana43, Gambia27,43,46,
Guinea26, Kenya28,36, Malawi27, Thailand and Cambodia27,28,43,45, Colombia47

and Vietnam43, as well as laboratory-adapted clones (DD2, HB3, 7G8 and GB4
(ref. 23)) (also see ref. 27). mt sequence data for 101 samples (SAM 26, WAF 20,
EAF 8, SEA 30, OCE 11 and other 6) were also available10.

All sequences were mapped uniquely onto the 3D7 reference genome
(14 chromosomes, 23 Mb; mitochondrion, 6 kb; apicoplast core, 30 kb; version 3.0)
using smalt alignment software (www.sanger.ac.uk/resources/software/smalt) with
default settings within an established pipeline24,27. The resulting alignments
enabled the identification of high-quality (Q30) SNPs and small insertions/
deletions (indels) using SAMtools and BCF/VCF tools (samtools.sourceforge.net).
Genotypes were called using coverage as described24,27, where a minimum of
10-reads support was required to call an allele.

Population genetics and statistical analysis. A linear discriminant analysis was
performed to cluster parasite isolates on the basis of genetic information, specifi-
cally using pairwise identity by state based on SNP allele differences. SNPs iden-
tified in the nuclear genome (B600 K SNPs, http://pathogenseq.lshtm.ac.uk/
plasmoview27) were used in a principal component analysis to identify potential
geographical outliers. Analyses of allele frequency distributions were performed
using within-population Tajima’s D indices32 and between-population Fst22.
Negative Tajima’s D values signify an excess of low-frequency polymorphisms
relative to expectation, indicating population size expansion (for example, after a
bottleneck or a selective sweep) and/or purifying selection. Positive Tajima’s
D values signify low levels of low- and high-frequency polymorphisms, indicating
a decrease in population size and/or balancing selection. Fst metric values range
from 0 (equivalent allele frequencies across populations) to 1 (complete
differentiation for at least one population). The Ka/Ks ratio was calculated as an
indicator of selective pressure acting on a protein-coding gene (Supplementary
Table 5). It is the ratio of the number of NS substitutions per NS site (Ka) to the
number of synonymous (S) substitutions per S site (Ks)48. Increasing values of
Ka/Ks from 1 imply positive selection, while values decreasing from 1 imply
purifying selection. LD was assessed using pairwise D’ and r2 methods49. The
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barcode was constructed using an iterative SNP algorithm that considers the
classification of regions using haplotypes, attempting to maximize predictive
accuracy (weighted or unweighted by regional sample size) without over-fitting.
The search strategy led to a more accurate barcode when compared with traditional
SNP (not haplotype)-based approaches, including the incremental addition of
SNPs with highest MAF or Fst, as well as classification and regression tree50 and
random forest algorithms51 (Supplementary Fig. 7). All statistical analyses were
performed using R software (www.r-project.org).
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