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SUMMARY

In most natural environments, the large majority of mammals
harbour parasitic helminths that often live as adults within the
intestine for prolonged periods (1–2 years) (1). Although
these organisms have been eradicated to a large extent within
westernized human populations, those living within rural areas
of developing countries continue to suffer from high infection
rates. Indeed, recent estimates indicate that approximately
2�5 billion people worldwide, mainly children, currently suffer
from infection with intestinal helminths (also known as
geohelminths and soil-transmitted helminths) (1, 2). Para-
doxically, the eradication of helminths is thought to contribute
to the increased incidence of autoimmune diseases and allergy
observed in developed countries. In this review, we will summa-
rize our current understanding of host–helminth interactions
at the mucosal surface that result in parasite expulsion or
permit the establishment of chronic infections with luminal
dwelling adult worms. We will also provide insight into the
adaptive immune mechanisms that provide immune protection
against re-infection with helminth larvae, a process that is
likely to be key to the future development of successful vacci-
nation strategies. Lastly, the contribution of helminths to
immune modulation and particularly to the treatment of
allergy and inflammatory bowel disease will be discussed.
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INTRODUCTION

Although they rarely kill, helminths often cause chronic
infections and impact on human health through effects on

nutrition leading to growth retardation, vitamin deficiencies
and poor cognitive function (3, 4). Hookworm infection is
a major cause of iron-deficiency anaemia in endemic areas
(5). While evidence is still limited to support important
effects of intestinal helminths on intestinal function and
immune responsiveness in humans, there is strong evidence
for such effects in natural and experimental infections in
animals including impaired immune responses to vaccines,
increased susceptibility to other infectious diseases and a
reduction in disease severity in experimental models of
allergic and autoimmune disorders (6–12). Children living
in poor regions of the rural tropics have a particularly
high risk of infections with intestinal helminths and may
harbour high parasite burdens with one or more of the
major parasites, namely hookworm (Anyclostoma duode-
nale and Necator americanus), roundworm (Ascaris lumb-
ricoides), whipworm (Trichuris trichiura) and threadworm
(Strongyloides stercoralis). The disability adjusted life years
(DALYs) lost each year as a result of intestinal helminth
infections is approximately 39 million and is greater than
that estimated for malaria and approaching that attributed
to tuberculosis (1).
In contrast to other pathogens, intestinal helminths,

with the exception of threadworms, are not able to repli-
cate within their mammalian hosts. Thus, worm burdens
tend to increase slowly over time as a result of constant
exposure to infection in a faecally contaminated environ-
ment and tend to reach a peak during childhood after
which infection intensities and prevalence may decline (1).
Exceptions are hookworm and S. stercoralis for which
peak prevalence tends to occur in adults. The convex
age-prevalence and age-intensity profiles for intestinal
helminths have been suggested to indicate the acquisition
of age-dependent protective immunity (13). Such protec-
tive immunity may be targeted primarily at larval stages of
intestinal helminths. Larvae that survive to mature into
adults may survive for periods of years, and it has been
suggested that the long-term survival of adults in the
intestinal tract can be explained by the modulation of host
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immune responses. The exact mechanisms by which such
modulation occurs remain poorly understood.

IMMUNE MECHANISMS LEADING TO EXPULSION
OR CHRONICITY OF ADULT WORMS

The majority of human helminths establish chronic infec-
tions in their host by subverting the host immune
response, an effect that is also beneficial to the host
because it minimizes the long-term harmful effects of
inflammatory responses directed against the parasites. A
better understanding of this complex relationship has been
the subject of great interest, and much of the past research
in the area of helminth immunobiology has focused on
host–parasite relationships following primary infection.
Much of our knowledge regarding host immunity has
been necessarily derived from experimental murine models.
Of these, three widely used models include Trichuris
muris, Nippostrongylus brasiliensis and Heligmosomoides

polygyrus bakeri (see Box 1 for detailed information on
similarities and differences between these species). Trichu-
ris muris is a murine pathogen closely related to T. trichu-
ria (whipworm), the causative agent of human trichuriasis.
Trichuris muris has been exploited in laboratory model
systems for over 60 years to determine many of the immu-
nological mechanisms associated with resistance and sus-
ceptibility. Nippostrongylus brasiliensis and H. p. bakeri
belong to the Strongylida order, which includes the human
hookworm parasites A. duodenale and N. americanus (14).
While N. brasiliensis provides a suitable model for the life-
cycle of human hookworm, infecting its host through the
skin and migrating to the lung prior to entering the intes-
tinal lumen, this parasite fails to persist and is instead
expelled from immune competent animals within several
weeks of infection. By contrast, primary infections with
H. p. bakeri can persist for many months in susceptible
strains of mice and thus represent a useful model for
chronic intestinal helminthiases.

Box 1: Model Murine Intestinal Helminths

Numerous rodent parasites are routinely used to investigate the immune parameters of intestinal helminth infection.
Although all of these helminths reside within the intestinal lumen in their adult form, many important differences exist in
terms of their life cycle and chronicity. Indeed, as a result of their unique life cycles, and the likely abundant genetic
differences, it is very likely that many features of the host immune response are species-specific and care needs be taken not
to make generalized conclusions based on the findings of experiments using individual species. Details of the lifecycles for
the three main murine nematode helminths discussed in this review are given below:

Heligmosomoides polygyrus bakeri: is a trichostrongylid nematode naturally infecting small rodents. It is ingested by the
host and penetrates the submucosa of the small intestine as an L3 stage. Here is matures to an L4 stage then exists the
mucosa to enter the intestinal lumen as an adult. Adults anchor themselves by coiling around intestinal villi and become
sexually mature resulting in the production of eggs that are secreted through the faeces. Excreted eggs hatch within the soil
where they develop over several weeks to the infective L3 stage and the life cycle continues. Adult worms form chronic
infections in susceptible strains of mice and posses potent immune modulatory potential.

Nippostrongylus brasiliensis: is natural parasite of rats that can be adapted to use in murine experiments. Infective larvae
enter their host through the skin, then enter the vasculature to be carried to the heart and lungs. Larvae exit the vasculature
through small capillaries within the lung and develop into the L4 stage. They then penetrate the alveoli, are coughed up and
swallowed, and migrate to the small intestine where they develop into sexually mature adults. Adults produce eggs, which
are passed out in faeces, but are typically expelled by the host within a few weeks in a process that is dependent on type 2
immunity. As for H. p. bakeri excreted eggs hatch within the soil where they develop over several weeks to the infective L3
stage allowing the lifecycle to continue.

Trichuris muris: the life cycle of T. muris is entirely enteric, with orally ingested embryonated eggs hatching in the distal
small intestine, releasing L1 larvae that migrate to the caecum and embed in the intestinal mucosa (55). Following four
moults to adulthood, male and female worms copulate leading to the production of thousands of eggs per day, which are
excreted in the faeces. Excreted embryonated eggs are not immediately infective, as they require approximately 3 weeks for
larvae to develop. Infective eggs present in the environment are then ingested and the life cycle continues. Genetically,
resistant strains of mice generate a strongly polarized type 2 immune response and reject larval stages of the parasite while
susceptible strains exhibit a type 1-dominated response and develop chronic infections with adult worms.
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Induction of type 2 immune responses

The majority of intestinal helminths elicit a strongly polar-
ized type 2 immune response, with the exception of
Trichuris spps that invoke a mixed type 2/type 1 response
in many genetic backgrounds. Type 2 immunity is gener-
ally associated with protection against intestinal helminths
and is characterized by a polarized cytokine response
involving the secretion of interleukin (IL)-4, IL-13 and IL-
5, B-cell isotype switching to IgG1 (mice), IgG4 (humans)
and IgE, eosinophil and basophil haematopoiesis, and the
expansion of alternatively activated macrophages, goblet
cells and mast cells [reviewed in (15)]. While type 2 cyto-
kines were originally identified as being produced by T
cells, an increasing number of studies have identified
innate cell populations that contribute to their secretion.
Of these, basophils (16) are a major source of IL-4 (17,
18) and a novel population of type 2 innate lymphoid cells
(ILC2), which lacks T- or B-cell markers and is expanded
by N. brasiliensis infection, represents an important early
source of IL-13 and IL-5 (19–22). Trichuris muris infection
results in the expansion of a population of multipotent
progenitor cells that produce IL-4 termed MPPtype 2 cells
(23). These cells express several haematopoietic stem cell
markers, but unlike ILC2, have the ability to differentiate
into several cellular lineages including mast cells and mac-
rophages (23). Expansion of ILC2 or MPPtype 2 cells fol-
lowing helminth infection represents one of the earliest
events, and these cells likely shape the nature of the ensu-
ing adaptive immune response. A better understanding of
the development and function of these cells will undoubt-
edly be critical to our understanding of immune responses
against intestinal helminths.
The mechanisms by which type 2 immunity is initiated

in response to helminth infection remain unclear. Most
host–pathogen interactions involve recognition of patho-
genic molecular patterns by host pattern recognition
receptors (PRR), yet the search for PRRs recognizing hel-
minth products has yielded few results. Intestinal epithelial
cells (IECs) have been identified as important in the initia-
tion of type 2 immune responses following intestinal
helminth infection (24). Mice with an IEC-specific defect
in NF-jB activation (IkkbDIEC mice) are susceptible to
T. muris infection and produce decreased levels of IL-4,
IL-5 and IL-13 and increased levels of IFN-c leading to a
failure to expel worms (24). IECs produce several cyto-
kines that are required for the development of polarized
type 2 immunity in response to T. muris including thymic
stromal lymphopoietin (TSLP), IL-25 and IL-33 (24–28).
IEC-intrinsic, NF-jB-dependent, production of TSLP is
critical for licensing dendritic cells (DCs) to allow the
development of adaptive CD4+ type 2 (Th2) cell responses

(24, 25, 28). Mice deficient in the receptor for TSLP
(TSLPR KO) are susceptible to T. muris infection (25),
and antibody blockade of IL-12p40 or IFN-c in either
IkkbDIEC mice or TSLPR KO mice following Trichuris
infection renders these susceptible strains resistant (24, 25,
28). However, the development of type 2 immunity
following infection with N. brasiliensis or H. p. bakeri does
not require TSLPR (28). Thus, it is likely that TSLP is
not required to directly promote protective immunity, but
instead limits the development of nonprotective type 1
responses by suppressing the production of IL-12p40.
IL-25 and IL-33 (a member of the IL-1 family) have

been shown to be produced by IEC rapidly following hel-
minth infection. These cytokines play a crucial role in the
regulation of type 2 cytokine production (26, 27) and pro-
tective immunity against multiple helminth parasites
including T. muris (27), N. brasilienis (29) and H. p. bakeri
(22). IL-25 can also be produced by Th2 cells (30) and
can act on a number of cell types including antigen-pre-
senting cells (31), airway smooth muscle cells (32) and
invariant natural killer T (iNKT) cells (33). Injection of
recombinant IL-25 into na€ıve mice stimulates the produc-
tion of type 2 cytokines by ILC2 (19, 29) or MPPtype 2

cells (23), induces IL-4 production by invariant iNKT cells
(33) and facilitates the differentiation of Th2 cells (34).
IL-25 has recently been shown to elicit both ILC2 and
MPPtype 2 simultaneously, although these cell populations
are distinct in their transcriptional profile, developmental
programs and pluripotency (35). IL-33 is able to induce
the secretion of type 2 cytokines (IL-4, IL-5 and IL-13) by
Th2 cells (36–38), basophils and mast cells (39, 40) and
ILC2 (29).
While ILC2 and MPPtype 2 cells are generally considered

to arise directly as a result of IL-25 and IL-33 production,
much controversy surrounds the issue of how Th2 cells are
activated. DCs are the primary antigen-presenting cell
(APC) of the immune system and are typically regarded as
necessary for the activation of na€ıve CD4+ T cells. Yet,
despite a clear increase in the frequency and number of
DC in the tissues and mesenteric lymph nodes (mLN) fol-
lowing T. muris infection, DCs do not appear to be the
primary APC required to promote Th2 differentiation.
Mice that express MHC class II solely on DC are suscepti-
ble to infection with T. muris (41), indicating the existence
of another APC population. Basophils, a rare granulocyte
population (<0�5% of circulating cells), are often associ-
ated with helminth infection and can produce the Th2-
polarizing cytokine IL-4 (42). Recent studies highlighted
this cell as playing a specific and critical role in antigen
presentation during T. muris infection (41). Infection
resulted in the transient appearance of these cells within
the mLN where they functioned as APCs (41). Moreover,
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antibody depletion of basophils rendered normally resis-
tant mice susceptible to T. muris infection. Interestingly,
however, expulsion of adult worms following primary
infection with N. brasiliensis (42, 43) or secondary infec-
tion with H. p. bakeri (44) does not require basophils.
Moreover, Th2 cell differentiation has been shown to be
entirely dependent on CD11c+ DCs following N. brasilien-
sis or H. p. bakeri infection (45, 46). Thus, depending on
the context of the infection, DC or basophils promote
Th2 cell differentiation by acting as APCs, with basophils
additionally providing a source of IL-4 to boost type 2
immunity. Like DC and basophils, mast cells form a
potent arm of the innate immune response and are capable
of responding to the presence of pathogens. Of particular
interest, mast cell degranulation following H. p. bakeri
infection was recently reported to be required for the
enhanced expression of IL-25, IL-33 and TSLP within the
gut indicating that these cells play a role in the early
response to helminth infection (47).

Immune mechanisms of worm expulsion

Resistance to infection with Trichuris spps in mice and
pigs is associated with the activation of Th2 cells that pro-
duce the cytokines IL-4 and IL-13 (48–51). As mentioned,
the differentiation of Th2 cells is driven by binding of the
type 2-associated cytokines IL-4 and IL-13 to IL-4Ra on
the T-cell surface, leading to activation of signalling inter-
mediates such as STAT6 and resulting in the activation of
the master transcriptional activator, GATA3 (52). Infec-
tion of humans also results in a Th2 cell-biased immune
response, with elevated levels of IL-4 and IL-13 (49, 50),
and immunoglobulin class-switching to IgG4 and IgA
(53). Th2 cells and activation of STAT6 signalling path-
ways are also essential for the expulsion of N. brasiliensis
and H. p. bakeri. Interestingly, transfer of ILC2 into wild
type, but not RAG deficient mice (lacking T and B cells),
promotes expulsion of N. brasiliensis (20, 29), indicating
that adaptive immune cells are necessary for the effector
function of ILC2. Th2 cells represent a potent source of
IL-25 and addition of exogenous IL-25 into RAG mice
lacking Th2 cells could restore worm expulsion (29), indi-
cating that the main role of Th2 cells in worm rejection
may be to maintain the expansion of ILC2. However,
other cells that are induced by IL-25 treatment may also
promote ILC2 expansion. The ability of ILC2 to directly
mediate worm expulsion likely results from the large
quantity of IL-13 produced by these cells because addi-
tion of an exogenous source of the related cytokine, IL-4,
in the form of immune complexes can also promote
worm expulsion in H. p. bakeri- or N. brasiliensis-infected
mice (54).

But what are the mechanisms by which IL-14/IL-13
mediate worm expulsion? These cytokines are well known
to activate IL-4Ra-dependent responses in numerous intes-
tinal cell types including epithelial cells (IEC), goblet cells,
smooth muscle cells and macrophages. IECs are in a state
of constant proliferation resulting in the regeneration of
the intestinal epithelium. Trichuris muris larvae live
embedded within IEC within the caecum (55), and
increased epithelial cell proliferation and turnover can
result in parasite expulsion. In susceptible strains of mice,
increased epithelial proliferation is observed, but IEC
turnover is limited, resulting in crypt elongation and a
failure to expel the parasite (56). Surprisingly, the control
of epithelial turnover during T. muris infection is con-
trolled by the IFN-c-dependent chemokine CXCL10.
Antibody blockade of CXCL10 is sufficient to render sus-
ceptible mice, including immunodeficient mice, resistant to
T. muris infection. Yet, signalling through IL-4Ra
expressed on IEC is also critical for immunity to T. muris
(57). Whether IL-4/IL-13 signalling in IEC promotes pro-
liferation has not been examined. However, these cyto-
kines promote intestinal permeability and increased fluid
section, which are likely to contribute to the expulsion of
luminal worms. Type 2 responses have also been shown to
stimulate Paneth-cell growth and secretion of antibacterial
products that may harm helminths (58, 59).
IL-4/13 also stimulate goblet cells, and the goblet cell

product resistin-like molecule (RELM) b plays an important
role in the expulsion of N. brasiliensis and H. p. bakeri,
presumably by interfering with their feeding upon host tis-
sues (57). RELMb is also highly induced during Trichuris
infection and has been shown to bind to secretory struc-
tures on adult Trichuris worms (60). Surprisingly, however,
RELMb is dispensable for resistance to T. muris (61).
Another major goblet cell product, mucin, has recently
been identified as playing a role in parasite expulsion. The
mucins Muc2 and Muc5ac are upregulated during worm
expulsion and are required for clearance of T. muris and
N. brasiliensis from the intestine (62, 63). In contrast to
the well-characterized intestinal mucin Muc2, Muc5ac is
primarily expressed in the airways and is specifically
induced in the intestine during helminth infection. In
keeping with its persistence within the intestinal lumen,
H. p. bakeri infection does not lead to increased Muc5ac
expression (63, 64). Additional goblet cell proteins includ-
ing intelectin (60, 65), chloride channel calcium-activated
3 (59, 66), pancreatic lipase-related protein 2 and pancre-
atic colipase (67) are upregulated during T. muris infec-
tion, but the roles of these proteins in parasite expulsion
remain unknown.
IL-4 and IL-13 also induce increased contractility of intes-

tinal longitudinal smooth muscle cells. However, deletion
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of the gene encoding the shared receptor subunit, IL-4Ra,
specifically on smooth muscle cells only contributes par-
tially to resistance against N. brasiliensis (68), indicating
that this response plays a secondary or minor role in
worm expulsion. Macrophages were recently identified as
contributing to expulsion of N. brasiliensis (69), although
their depletion with clodronate-loaded liposomes has no
effect on the expulsion of T. muris (41). These cells con-
tribute to smooth muscle hypercontractility following
N. brasiliensis infection (69); however, their impact on host
immunity and physiology may be much broader and
should be investigated in more detail.
In addition to the canonical Th2 cell-associated cyto-

kines IL-4 and IL-13, IL-9 has also been shown to be
induced by T. muris infection and to play an important
role in protective immunity (70–73). Transgenic over
expression of IL-9 in mice resulted in rapid worm expul-
sion (73). In contrast, immunization with IL-9-ovalbumin
complexes that led to a robust anti-IL-9 response (74), or
treatment with anti-IL-9 antibodies (75), in normally resis-
tant C57BL/6 mice rendered the animals susceptible to
T. muris infection. Functionally, IL-9 can stimulate
smooth muscle contractility (75), a potential mechanism
of worm expulsion (76) and can potentiate IL-4-dependent
immunoglobulin class-switching to IgE (73, 77–79). IL-9
also promotes mucosal mastocytosis (73), a typical feature
associated with type 2 immune responses and intestinal
helminth infection [reviewed in (80)]. Although mast cells
are not required for expulsion of T. muris (81), they con-
tribute to the development of type 2 immunity following
H. p. bakeri infection (47) and are essential mediators of
immune expulsion of Trichinella spiralis, a natural parasite
of mice (82–84). Mucosal mast cells express a variety of
effector molecules, including proteases that degrade tight
junctions allowing the influx of fluids into the intestinal
lumen, a process that likely contributes to their ability to
promote worm expulsion (85).
Overall, the literature to date indicates that a variety of

mechanisms contribute to the immune expulsion of adult
helminths from the intestinal lumen, with the exact means
of expulsion being highly dependent on the species pres-
ent. A generalized summary of possible expulsion mecha-
nisms is shown in Figure 1.
There are limited data on the mechanisms by which

lumen-dwelling intestinal helminths are expelled in
humans largely because of ethical and practical limitations
to the investigation of the human intestinal tract. Histo-
logical studies of intestinal biopsy samples from individu-
als infected with intestinal helminth parasites generally
show only mild alterations (86–88), indicating the close
adaptation of these parasites to humans. In the case of
trichuriasis, heavily infected children may develop colitis

(inflammation of the large intestine) (89) or rarely a dys-
entery-like syndrome (Trichuris dysentery syndrome or
TDS) (90). Children with TDS have greater numbers of
mucosal IgE+ mast cells that show prominent degranula-
tion by electron microscopy and high rates of spontaneous
histamine release ex vivo (90), indicating that immediate
hypersensitivity reactions per se may be ineffective in
expelling T. trichiura adult worms. New data, derived from
experimental infections of human volunteers with Necator
americanus, have shed light on the mechanisms by which
human hookworm may be expelled from the intestinal
tract. Interestingly, most experimentally infected larvae
reach the intestinal tract with little evidence of attrition
during systemic migration (91, 92). Experimentally
infected individuals develop enteritis (inflammation of
the small intestine) during primary infections (92), a
clinical picture that is typical of human infections with
the dog hookworm, Ancylostoma caninum (93). In the
case of human infections with N. americanus, the muco-
sal inflammatory response appears to be restricted
towards immature worms, characterized histologically by
an intense eosinophilic inflammation associated with a
shortened attachment time of the larvae and their pro-
gressive distal expulsion along the gut (92). The intensity
of eosinophilic inflammation in biopsy samples was posi-
tively associated with the rate of larval expulsion (94).
Immature worms are probably the primary target for
expulsion mechanisms because, during repeat infections,
mucosal histology is normal at sites adjacent to mature
worms (92).

Mechanisms of chronicity

Treatment of mice with IL-4 complexes or exogenous
recombinant IL-25 can promote worm expulsion in chron-
ically H. p. bakeri-infected animals indicating that inade-
quate type 2 immunity is responsible for the initial failure
of mice to expel these worms. This hypothesis is supported
by the recent findings that H. p. bakeri-infected mice
display little expansion of ILC2 (95) and that transfer of
IL-13-producing macrophages into mice harbouring a
chronic H. p. bakeri infection can promote worm expul-
sion (96). Why host immunity is inadequate in expelling
the worm is not clear, but it may be related the potent
ability of this parasite to elicit regulatory T-cell expansion
as depletion of these cells results in enhanced Th2 immu-
nity (97). Interestingly, a recent study identified the
existence of a TGF-b homologue within H. p. bakeri that
functioned to promote conversion of na€ıve T cells to
Foxp3+ regulatory T cells in vitro (98).
Genetics also plays a strong role in resistance or

susceptibility to infection with intestinal helminths. For

© 2013 The Authors. Parasite Immunology published by John Wiley & Sons Ltd., Parasite Immunology, 36, 439–452 443

Volume 36, Number 9, September 2014 Mucosal immunity and nematodes



H. p. bakeri, rapid rejection of adult worms or the estab-
lishment of chronicity differs for various mouse strains
with SJW and SJL mice expelling primary infection within
4–6 weeks, C57BL/6 and 129/J mice exhibiting an
intermediate phenotype and CBA, C3H, SL and AJ mice
exhibiting very little resistance to primary or challenge
infections [reviewed in (99)]. Infection of most strains of
mice including BALB/c, C57BL/6, 129/J and C3H with
T. muris results in worm expulsion between days 18 and
21. AKR/J mice are currently the only immunocompetent
strain that fails to clear T. muris infection. A recent study
has used F2 intercrosses between resistant BALB/c and
susceptible AKR/J mice to identify quantitative trait loci
(QTL) associated with chronic infection and inflammation
(100). Seven QTL on seven chromosomes were identified
(Tm1, Tm3, Tm4, Tm10, Tm11, Tm12 and Tm17). Consis-
tent with a role in helminth immunity, the Tm1 and
Tm17 loci have previously been identified in studies exam-
ining susceptibility to H. p. bakeri (101). Strikingly, one
QTL, Tm3, completely overlaps with a region termed

Cdcs1.1, previously identified in three unrelated spontane-
ous colitis models (102–104). Thus, genetic studies have
shown that there appear to be genomic sites associated with
both immunity to infection and regulation of intestinal
inflammation.
The epidemiologic patterns of nonrandom clustering of

infections and clustering at family and household levels
have been interpreted as evidence for genetic susceptibility
to ascariasis (105). Genome wide analyses for genes asso-
ciated with susceptibility to ascariasis identified as a can-
didate gene, TNFSF13B, a regulator of B-cell activation
and immunoglobulin secretion. Subsequent analyses have
suggested additional possible genes associated with
immune function (105), but these studies have shed little
light so far on the mechanisms of susceptibility and
establishment of chronic infections. Insights into the
immunological mechanisms associated with the establish-
ment of infections with mature adult hookworms have
been provided by experimental infections of individuals
with coeliac disease in remission (106). Comparisons of

Figure 1 Mechanisms of expulsion of intestinal worms. Although the initial interaction between helminths and the host are poorly defined,
infection results in the production of epithelial cell-derived cytokines such as thymic stromal lymphopoietin (TSLP), IL-33 and IL-25.
Resistance to some helminth infections is independent of TSLP. Induction of TSLP regulates dendritic cell (DC) production of IL-12 and
promotes basophilia (Baso), both leading to priming of type CD4+ T-cell responses (Th2). IL-33 is normally a nuclear protein that is
released upon cellular damage. IL-33 is a potent activator of type 2 innate lymphoid cells (ILCs) that occurs early after helminth infection.
IL-25 is induced in response to the microbiota and is increased following helminth infection. IL-25 induces a multipotent progenitor cell
(MPP) that can give rise to other innate cell lineages. The result of these pathways is to promote a TH2 cell response and high levels of
IL-4 and IL-13. These cytokines promote worm expulsion by inducing physiological changes in the intestinal epithelium. Some expulsion
mechanisms include goblet cell hyperplasia and mucus secretion, increased proliferation and turnover and smooth muscle contractility and
peristalsis. In addition, although they are not critical for resistance, other factors such as cells (neutrophils, macrophages and Th17 cells),
cytokines (IL-22) and the microbiota are dynamically regulated during infection and most likely play a regulatory role in the development
of protective immunity to helminth infection.
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duodenal mucosal biopsies from such individuals com-
pared with uninfected controls showed that the survival of
mature adults in the small intestine during primary infec-
tions was associated with an increased protein and/or
mRNA expression for Th2 (IL-4, IL-5, IL-9 and IL-13),
regulatory (IL-10 and TGF-b) and mucosal healing
(IL-22) cytokines (106). Comparison of pre- and post-
infection biopsies, also indicated evidence for suppression
of IL-23, a key cytokine involved in driving mucosal
inflammation (106).

PROTECTIVE IMMUNITY AGAINST RE-INFECTION

For the majority of experimental helminths, repeated
infection rounds of mice, of the appropriate genetic back-
ground, can elicit protective immunity if chemotherapy is
administered between infection rounds to eliminate exist-
ing adult worms. Where observed, this protective response
is normally targeted against the larval stages of the para-
site. There is little evidence, however, that repeated rounds
of chemotherapy, given to children living in endemic areas,
contribute to the development of protective immunity
against intestinal helminths.

Immune memory against intestinal helminths

Most experimental helminths can elicit the development of
memory T cells, as evidenced by the more rapid produc-
tion of IL-4 and IL-13 by CD4+ T cells following
re-infection (107). In mice, long-term mucosal immunity
against T. muris requires CD4+ Th2 cells and these cells per-
sist even in the absence of chronic infection (107, 108). Sec-
ondary infections are rapidly rejected (prior to day 12 post-
infection), suggesting that infection-induced immunity is
directed against larval stages. However, the mechanisms
associated with this rapid immunity against re-infection
with T. muris are unknown.
In humans, the magnitude of the Th2 cell response dur-

ing T. trichiura infection is correlated with the probability
of re-infection (49, 50, 109), indicating that protective
immunity is mediated by mechanisms requiring type 2
cytokine production. Similarly in a hookworm endemic
area of Papua New Guinea, resistance to re-infection
following chemotherapy was associated with elevated
production of IL-5 by PBMCs stimulated with parasite
antigen (110).
For N. brasiliensis, clear evidence indicates that protec-

tive immunity against challenge infections occurs against
larvae present in the lung (111). The development of
immunity is dependent on Th2 cells, and many cell types
increase in the lung following re-infection, including eosin-
ophils and alternatively activated macrophages. However,

again, the identity of the immune effectors that success-
fully target the helminth larvae has remained elusive. Anti-
bodies are not necessary for immune protection following
N. brasiliensis re-infection (112); however, passive transfer
of serum from immune mice can confer some degree of
resistance (113). More information is available for
H. p. bakeri where protective immunity is targeted at lar-
vae present within the intestinal submucosa. In this case,
Th2 cells mediate the development of a granuloma around
the larvae that is rich in eosinophils and alternatively acti-
vated macrophages, and protection is macrophage depen-
dent (114). Antibodies also form an important arm of
protective immunity in this model; however, the mecha-
nisms by which these target larvae are not clear.
By contrast, a role for antibodies in protective immu-

nity against intestinal helminths in humans is not estab-
lished. Infected individuals including those with ascariasis
have high circulating levels of specific antibodies of almost
all isotypes and subclasses and antibody levels are gener-
ally positively associated with parasite burdens (115).
However, levels of specific IgE against A. lumbricoides
(116, 117) and T. trichiura (118) and IgE reactive to larval
antigens against hookworm (119) have been associated
with resistance to infection with A. lumbricoides, T. trichi-
ura and hookworm, respectively. Additional evidence for a
possible protective role of IgE against intestinal helminth
infections came from a placebo-controlled randomized
trial of the use of anti-IgE therapy in asthma: in a region
of Brazil where intestinal helminths are present, anti-IgE
treatment was associated with a trend of increased risk of
geohelminth infection, primarily with A. lumbricoides
(120). It therefore seems reasonable to infer that specific
IgE has a role to play in protective immunity either
through the initiation of allergic-type responses to the par-
asites or in the amplification of other Th2-mediated mech-
anisms.

Vaccination

Vaccination relies on the development of immune memory
with successfully vaccinated individuals raising a rapid
and strong protective response following encounter with
the true pathogen. Yet, despite the increased knowledge of
the cellular and molecular requirements for protective
immunity to intestinal helminths, there are currently no
vaccines available against human species. In mice, subcuta-
neous vaccination with T. muris excretory/secretory (ES)
products or adult worm homogenate in the presence of
complete or incomplete Freunds adjuvant rendered suscep-
tible mice resistant to infection and was associated with an
increased Th2 cell response (121–126). In humans, an
interesting vaccine target was identified as a 47 kDa

© 2013 The Authors. Parasite Immunology published by John Wiley & Sons Ltd., Parasite Immunology, 36, 439–452 445

Volume 36, Number 9, September 2014 Mucosal immunity and nematodes



antigen present in adult T. trichuria (43 kDa in T. muris)
that is strongly recognized by human immune serum (127)
and which can form pores in cells (128).
There has been considerable investment into the

development of hookworm vaccines, and several promising
candidates have been identified (129). A safety and immu-
nogenicity study using Necator americanus Ancylostoma-
secreted protein 2 (Na-ASP-2) caused generalized urticar-
ial reactions in Brazilian adults previously infected with
hookworm (130) and was associated with the presence of
pre-existing specific IgE to this antigen. New vaccine can-
didates have targeted important parasite enzymes such as
Na-GST-1 and Na-APR-1 that are required by the para-
site for feeding on host blood (129). However, the need to
induce Th2 responses for a vaccine to be useful for protec-
tion while avoiding such adverse allergic responses poses a
major challenge for the development of vaccines against
intestinal helminth parasites and it remains to be seen if a
vaccine targeted against established adults in the intestine
can be safe and effective.

IMPACT ON INFLAMMATORY DISEASES

Evidence of heavy helminth burdens can be found in the
mummified remains of early hominids reflecting our long
co-evolution with these pathogens (131). Although hel-
minth infections still infect almost one-third of the human
population, the introduction of municipal sanitation has
largely resulted in their eradication from developed coun-
tries. The relatively recent absence of intestinal helminths
within developed societies has been hypothesized to be
associated with a possible increased incidence of immune-
mediated inflammatory diseases, including allergies,
autoimmunity and inflammatory bowel disease (IBD)
[reviewed in (132)]. In support of this concept, helminths
were recently described to represent the main selective
force for the selection of human genes associated with
autoimmunity and allergy (133).

Immunomodulation by intestinal helminths

There is growing interest in the potential effects of intesti-
nal helminths in modulating inflammatory diseases of the
mucosa. Modulatory effects of intestinal helminths have
been reported for inflammation in the intestine and in the
lungs, but the evidence for a clinically relevant role is still
much stronger in experimental murine models than in
humans.

Asthma
Temporal trends of increased asthma prevalence over
recent decades have been attributed to changes in the

living environment that includes declining exposures to
infectious diseases and microbial products (134, 135).
Helminth parasites have attracted considerable interest as
a potential exposure that might modify allergic inflamma-
tion and asthma. Murine models have shown clearly that
intestinal helminth infections can modulate airway inflam-
mation (7, 136). The intestinal helminth H. p. bakeri has
been shown to suppress allergen-induced airway eosino-
philia (9, 136) and bronchial hyper-reactivity (9) induced
by sensitization with ovalbumin (OVA) (9, 136) or Derma-
tophagoides pteronyssinus allergen p 1 (Der p 1) (136).
Suppression was transferable to uninfected animals by
splenocytes (9) or mesenteric lymph node cells (136) and
has been associated with regulatory T cells (136) and
regulatory B cells (137). Nippostrongylus brasiliensis can
induce alternatively activated macrophages during primary
infections (138), and infections are associated with a
protracted suppression of airway hyper-reactivity and
inflammation to D. pteronyssinus (139). Findings from
human studies have been less clear. In cross-sectional
studies, hookworm infection has been associated with a
reduced prevalence of wheeze or asthma (140), but
A. lumbricoides and T. trichiura, or markers of infection,
have been associated with an increased risk (140–143). So
far, no well-controlled trial has shown an effect of
periodic antihelminthic treatment on the prevalence of
asthma (144, 145). Randomized therapeutic studies using
small infective doses with hookworm larvae have not
shown clear clinical benefits of infection on symptoms of
asthma (146) or allergic rhinitis (146). Similarly, a
randomized controlled trial of the efficacy of the pig
whipworm, T. suis, in the treatment of allergic rhinitis
showed no demonstrable benefit (147). The ability to
show a clinical benefit in asthma likely requires very
marked effects on inflammation in the lungs, and it seems
unlikely that helminth treatment, at doses and infection
periods that are free of significant adverse effects, will be
a useful therapeutic approach. More useful, perhaps, will
be the isolation of helminth products that have specific
effects in distinct inflammatory pathways.

Inflammatory bowel disease
Inflammatory bowel diseases that include Crohns diseases
and ulcerative colitis are associated with impairments in
epithelial function and dysregulated immune responses to
commensal bacteria in the intestinal tract (148). Increases
in the prevalence of IBD over recent years have been
attributed to improved hygiene and the disappearance of
intestinal helminth infections (149). Experimental murine
models have shown that intestinal helminths can reduce
inflammation in chemical-induced colitis (8, 130), and the
Th2 response induced by H. p. bakeri infection can attenu-
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ate experimental gastritis caused by Helicobacter pylori
infection (150). The mechanisms by which helminths may
protect against colitis include the induction of a Th2 cyto-
kine environment in the mucosa (151, 152), downregulation
of Th1 (96) and Th17 mucosal responses (153), upregula-
tion of IL-10 and TGF-b by colonic regulatory T cells
(152, 154), the induction of regulatory DCs (155) or alter-
natively activated macrophages in the intestinal mucosa
(156), and by regulatory effects on mucosal innate immune
responses (157–159).
The usefulness of therapeutic infections with intestinal

helminths has been evaluated in patients with IBD. Treat-
ment with T. suis ova was associated with clinical improve-
ment in a randomized controlled trial of patients with
ulcerative colitis (160). Two other studies have reported
temporary improvements in symptoms of patients with
ulcerative colitis (161) and Crohns disease (160, 161) fol-
lowing T. suis therapy, but these studies are difficult to
evaluate because no comparison groups were included.
The use of N. americanus infections for the treatment of
IBD has been evaluated for Crohns (162) disease and for
coeliac disease (163): in the case of Crohns disease, a small
open trial provided some evidence for reductions in dis-
ease activity (162), but for coeliac disease, a small random-
ized controlled trial showed no demonstrable clinical
benefit of hookworm infection (163), although there was
evidence for reductions in Th1 and Th17 immune
responses in the duodenal mucosa of hookworm-treated
subjects (132). Therefore, as for asthma, the potential for
the clinical use of helminth therapy for the treatment of
IBD remains doubtful, and adequately powered, properly
controlled, randomized trails will be required to fully eval-
uate the therapeutic usefulness of such a strategy.

Interactions with the intestinal microbiota

As intestinal helminths and commensal bacteria inhabit
the same environmental niche, it is likely that these
organisms interact with, and impact on, each other.
Intestinal helminths are well known to alter intestinal
physiology, permeability, mucous secretion and the pro-
duction of antimicrobial peptides – all of which may
impact on bacterial survival and spatial organization.
Yet, despite rapid advances in our understanding of
host–intestinal bacteria interactions, the impact of helm-
inths on the relationship has remained largely unex-
plored. That such interactions do take place was
highlighted in a recent report (164), indicating that bacte-
rial interactions are essential for the hatching of embr-
onyated T. muris eggs. Such interactions are likely to also
be required in the intestine as active T. muris infection
was not observed in mice infected with embronyated eggs

and additionally treated with broad-spectrum antibiotics
to diminish the numbers of intestinal bacteria. It also
appears that the presence of helminths can alter the nat-
ure and complexity of intestinal bacterial communities as
H. p. bakeri infection of mice was observed to result in
an increase in abundance of Lactobacillaceae family
members at 14 days post-infection (165). However,
whether this bacterial dysbioses resulted from helminth
infection per se or from the introduction of bacteria
associated with the faecal-hatched larvae was not estab-
lished. Nevertheless, interactions of helminths with bacte-
rial communities may occur raising the possibility that
such interactions contribute to immune modulation and
to the general well-being of the host. Increasing evidence
suggests that alterations to intestinal bacterial communi-
ties (dysbioses) are associated with chronic inflammatory
diseases including obesity, IBD, diabetes and allergy
(166). Thus, the exact nature of helminth–bacterial inter-
actions – and the contribution of this to host immunity
and disease – will be an important topic for future stud-
ies in both man and mice.

CONCLUDING COMMENTS AND
PERSPECTIVES

The large majority of intestinal helminths elicit polarized
type 2 immune responses, and type 2 cytokine production
is essential for effective immune expulsion of adult worms
or protection against re-infection. The distinction between
innate and adaptive immunity has become increasingly
blurred, and type 2 immunity following helminth infection
is likely to involve important contributions first from
innate immune cells and later from T cells that act to both
amplify type 2 cytokine secretion and to sustain the activ-
ity of innate immune cells. Yet, despite the protective role
of type 2 immune responses in animal infections, most
human intestinal helminths remain chronically within their
host for years and children tend to suffer increasing
worms burdens acquired through constant re-infection.
These findings indicate that immunity is often inadequate
against these macro-parasites. Evidence in mouse models
indicates that the immune system can effectively target
helminths, but that the response must be both strong and
rapid. Helminths efficiently evade host immunity through
a number of mechanisms including but not limited to (i)
promoting a strong regulatory T-cell response that dimin-
ishes type 2 immunity, (ii) immune deviation towards type
1 cytokine production and (iii) production of molecules
with immune dampening properties.
Investigations of our relationship with intestinal helm-

inths can thus reveal fascinating information about immune
regulation. A better understanding of how intestinal
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helminths regulate mucosal inflammatory responses may
prove useful for the development of new treatments for
chronic inflammatory diseases of the mucosa that are
driven by over-exaggerated or inappropriate immune
stimulation. By contrast, an improved understanding of
protective immune mechanisms against intestinal helm-
inths will be key to the development of vaccines against
these important pathogens. Recent studies have also dem-
onstrated the importance of rapid wound healing for host
survival following helminth infection (167). Further stud-
ies investigating the impact of immune cells on this
response are likely to reveal novel insights into this fun-
damental process. Lastly, we can no longer consider the
host–helminth relationship in isolation. Helminths and
bacteria live alongside one another within the intestine
and both have been shown to have important impacts on

the host immune system. Future studies should consider
this m�enage �a trois situation, particularly when investigat-
ing the immunomodulatory potential of helminths
because bacterial dysbioses is linked to a variety of
inflammatory disease.
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