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Molecular tools for studying the major
malaria vector Anopheles funestus:
improving the utility of the genome using
a comparative poly(A) and Ribo-Zero
RNAseq analysis
Gareth D. Weedall1*, Helen Irving1, Margaret A. Hughes2 and Charles S. Wondji1*

Abstract

Background: Next-generation sequencing (NGS) offers great opportunities for studying the biology of insect vectors
of disease. Prerequisites for successful analyses include high quality annotated genome assemblies and that techniques
designed for use with model organisms be tested and optimised for use with these insects. We aimed to test and
improve genomic tools for studying the major malaria vector Anopheles funestus.

Results: To guide future RNAseq transcriptomic studies of An. funestus, we compared two methods for enrichment of
non-ribosomal RNA for analysis: enrichment of polyadenylated RNA and ribosomal RNA depletion using a kit designed
to deplete human/rat/mouse rRNA. We found large differences between the two methods in the resulting
transcriptomes, some of which is due to differential representation of polyadenylated and non-polyadenylated
transcripts. We used the RNAseq data for validation and targeted manual editing of the draft An. funestus
genome annotation, validating 62 % of annotated introns, manually improving the annotation of seven gene
families involved in the detoxification of xenobiotics and integrated two published transcriptomic datasets
with the recently published genome assembly.

Conclusions: The mRNA enrichment method makes a substantial, replicable difference to the transcriptome
composition, at least partly due to the representation of non-polyadenylated transcripts in the final transcriptome.
Therefore, great care should be taken in comparing gene expression data among studies. Ribosomal RNA depletion of
total RNA using a kit designed to deplete human/rat/mouse rRNA works in mosquitoes and, we argue, results in a truer
representation of the transcriptome than poly(A) selection. The An. funestus genome annotation can be considerably
improved with the help of these new RNAseq data and further guided manual gene editing efforts will be of great
benefit to the Anopheles research community for studies of this insect’s genome and transcriptome.
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Background
Anopheles funestus is a major vector species of malaria
in sub-Saharan Africa [1]. Similar to the more extensively
studied vector species Anopheles gambiae, resistance to
commonly used insecticides is a growing problem in An.
funestus [2–9]. Efforts to improve the design and imple-
mentation of resistance management strategies require a
good understanding of the molecular basis of resistance.
Use of genomic tools is paramount to achieve this goal. In
contrast to An. gambiae, for which significant progress
has been made in its genomics since its genome was se-
quenced more than a decade ago [10], An. funestus has re-
ceived much less attention. However, progress is being
made as the genome of Anopheles funestus was recently
sequenced as part of a program to sequence a number of
Anopheles species genomes [11]. The draft genome as-
sembly, in the form of unplaced scaffolds not assembled
into chromosome sequences, is publicly available via
the VectorBase web resource [12, 13]. The draft gen-
ome assembly has been annotated, using the genome
annotation pipeline MAKER [14, 15]. However, this an-
notation has not been extensively manually curated and
is inaccurate for a number of known genes of interest
such as cytochrome P450 monooxygenase and glutathi-
one S-trasferase (GST) genes. Thus, more efforts are cur-
rently needed to maximise the usefulness of the An.
funestus genome and allow more studies to be performed
such as transcriptome profiling or genome-wide associ-
ation studies. One approach to optimise the quality of this
genome is to use RNAseq to improve genome annotation.
RNAseq is a powerful method to study the transcrip-

tomes of organisms, providing a rich dataset allowing
transcriptional profiling as well as the identification of novel
transcripts, alternative splicing and detection of expressed
sequence polymorphisms [16, 17]. However in the case
of Anopheles mosquitoes, limited information have been
generated to determine the best methodology for library
preparation to ensure an accurate profiling of transcrip-
tomes, notably between the enrichment of polyadenylated
(poly(A)) RNA transcripts and the alternative method of
ribosomal RNA (rRNA) depletion. Methods of mRNA
enrichment have been shown to have an effect on the
observed transcriptome [18–21]. Comparisons of poly(A)
mRNA enrichment with rRNA depletion methods report
that the depletion methods result in more reads aligned
outside of annotated gene coding regions [18, 20]. This
may be due to the presence of novel transcripts and/or a
greater proportion of genomic DNA in the library. Also,
the greater number of reads aligned within introns in
depletion libraries could be derived from immature tran-
scripts [21]. Depletion libraries show more even read dis-
tribution less 3′ bias than poly-A libraries [18].
In malaria-transmitting mosquitoes, insecticide resistance

is often due to ‘metabolic resistance’: up-regulation of genes

involved in detoxification, such as cytochrome P450 and
GST genes. This is particularly the case in An. funestus,
for which pyrethroid resistance is caused by metabolic
resistance and not by target site resistance, such as mu-
tations in the voltage gated sodium channel gene. As
there are no known genomic biomarkers to detect
metabolic resistance, transcriptomic analyses are neces-
sary. These analyses have commonly used microarrays
to detect up-regulated genes [4–6, 8]. RNAseq may
offer advantages over microarrays in that unannotated,
or poorly annotated, transcripts can be defined and cor-
rected using the sequence alignment, which is more
data-rich than the results of microarray analysis. This
data richness includes information on alternative splicing,
as well as non-protein-coding RNA transcripts (ncRNA)
that may play a role in differential gene expression.
Here, we perform an RNAseq experiment on Anopheles

funestus (FANG strain), primarily to compare two methods
to enrich messenger RNA (mRNA) relative to ribosomal
RNA (rRNA): ribosomal depletion and poly(A) selection.
We compare the results of both methods applied to total
RNA from the same individual mosquitoes and identify
the most differentially represented transcripts between
the methods to identify non-polyadenylated transcripts.
We use the RNAseq data along with published de novo
assemblies of Anopheles funestus transcripts [22, 23] to
improve the genome annotation for selected genes, fo-
cusing on detoxification associated gene families.

Results and discussion
Preparation of transcriptome sequencing libraries
Total RNA was extracted from pools of whole mosqui-
toes of the An. funestus FANG colony. Extracts showed
a pink colouration, probably due to eye pigments. It was
not known if this would affect the sequencing library
quality, so one sample was split and bead clean-up car-
ried out on one of the sub-samples, to compare results
with its uncleaned counterpart and assess whether this
discolouration had any effect on the sequencing results.
BioAnalyzer traces of total RNA (Additional file 1) showed
evidence of the ‘hidden break’ reported in other insect
total RNA samples [24]: two peaks of approximately
2000 bp representing 18S rRNA and the 28S rRNA sub-
units alpha and beta. The total RNA traces also showed
some ‘spikiness’ the cause of which was unclear. The pro-
file of degraded RNA tends to look smoother, with a broad
peak extending left of the major 18S/28S rRNA peaks.
Whether this spikiness would affect the sequencing results
was not known at this stage.
After Ribo-Zero rRNA depletion or poly(A) mRNA en-

richment, BioAnalyzer traces suggested that all samples
were of sufficient quality for RNAseq library preparation,
with no obvious quality differences among samples within
each method (Additional file 1). The amount of rRNA
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remaining in the samples appeared to be much lower for
Ribo-Zero depleted samples than for poly(A) enriched
samples, where even after 3 rounds of poly(A) selec-
tion, samples displayed a large peak near 2000 bp
(Additional file 1). Later analysis indicated that this
peak may represent mitochondrial 16S rRNA.
Initial quality checking of the sequence read data

showed that the 8 libraries were evenly represented in
the sequenced pool (median 61,229,870 reads per library;
range 44,384,316 to 68,640,804 reads) and of good qual-
ity, with little read trimming due to sequenced adapters
or low quality base calls (full details in Additional file 1).

Alignment of sequence reads to reference genome
All read libraries were aligned to a reference consisting
of 1392 scaffolds derived from the Anopheles funestus
FUMOZ colony with the An. funestus mitochondrial
genome sequence added. Broad alignment metrics are
shown in Table 1. Overall, a median of 35,309,124 (range
21,002,025 to 38,878,773), or 57 % (range 35 % to 59 %)
of the reads to be aligned could be aligned. Alignment of
spliced reads is more difficult than for unspliced reads
and leads to lower proportions of the starting libraries
being aligned, but this alone is unlikely to account for
the relatively low alignment rate. The incompleteness of
the reference genome sequence and high levels of se-
quence polymorphism and genetic divergence between
laboratory colonies FANG (derived from Angola) and
FUMOZ (from Mozambique, used for sequencing the
reference genome) may also contribute to it. A greater
proportion of the poly(A) than the Ribo-Zero libraries
tended to be aligned (mean difference 11 %, median 8 %).
For the sample where an initial bead clean-up was applied
(“F1_XP”), the proportion of reads aligned for the Ribo-
Zero library (“F1_XP_RZ”; 55 %) was greater than for the
uncleaned sample (“F1_RZ”; 35 %). This difference was
not seen for poly(A) libraries (59 % for both “F1_XP_PA”
and “F1_PA”). This suggests that the purity of the sample

may affect the efficacy of the rRNA depletion reaction,
which is supported by the ribosomal RNA mapping re-
sults shown in Table 2.

Tag counting for annotated genomic features and
analysis of the ribosomal RNA content of libraries
Tag counting means quantifying read pairs or singletons
(representatives of a single fragment of transcript) aligned
in genomic regions annotated as genome features (e.g.
protein coding genes or ncRNAs). As the RNAseq
protocol used is strand-specific, tags can be aligned sense
or antisense to a feature, which mean different things: i.e.
that antisense tags come from an antisense transcript,
rather than from the primary annotated transcript. Sense
and antisense tag counting was performed for each se-
quence alignment.
To assess how much ribosomal RNA was represented

in each sequence library (i.e. the success of the mRNA
enrichment procedure) gene features annotated as rRNAs
were extracted from the genome annotation. There were
ten of these features (Table 2): 8 resulting from automated
annotation of the genome assembly and 2 annotated on
the mitochondrial genome. For putative nuclear 28S and
18S rRNA genes, poly(A) mRNA enrichment almost al-
ways (except for the F1_XP sample pair) resulted in fewer
tags from these genes than Ribo-Zero rRNA depletion.
Putative 5.8S rRNA genes rarely showed any tags (possibly
due to ambiguous read alignment arising from non-
uniqueness among multiple 5.8S rRNA copies in the
reference genome or to their small size). The mitochon-
drial 12S rRNA gene showed the same trend as for nuclear
28S and 18S rRNA genes. However, the mitochondrial 16S
rRNA gene showed the opposite trend, with more tags
in the poly(A) mRNA enriched libraries than in the
Ribo-Zero depleted libraries.
Tag counting is summarised in Table 3. As counting

used annotated genomic features, antisense counts should
be much lower than sense counts. This was the case, with

Table 1 Metrics describing the transcriptome alignments

Sample ID Reads to align
(R1 + R2)

Aligned reads (%)a Aligned R1 (%)b Aligned R2 (%)b Aligned in pair (%)b Properly paired (%)b,c Singleton (%)b

F1_XP_RZ 67,895,442 37,480,868 (55 %) 20,409,963 (54 %) 17,070,905 (46 %) 28,766,542 (77 %) 26,655,176 (71 %) 8,714,326 (23 %)

F1_XP_PA 65,605,318 38,878,773 (59 %) 21,731,643 (56 %) 17,147,130 (44 %) 29,122,168 (75 %) 27,271,540 (70 %) 9,756,605 (25 %)

F1_RZ 60,479,632 21,002,025 (35 %) 11,311,755 (54 %) 9,690,270 (46 %) 15,677,600 (75 %) 14,192,682 (68 %) 5,324,425 (25 %)

F1_PA 63,555,450 37,671,216 (59 %) 20,881,499 (55 %) 16,789,717 (45 %) 28,690,598 (76 %) 26,499,330 (70 %) 8,980,618 (24 %)

F2_RZ 43,733,908 24,067,157 (55 %) 13,121,886 (55 %) 10,945,271 (45 %) 18,560,162 (77 %) 17,136,240 (71 %) 5,506,995 (23 %)

F2_PA 60,656,692 35,610,912 (59 %) 19,661,565 (55 %) 15,949,347 (45 %) 27,281,408 (77 %) 25,371,888 (71 %) 8,329,504 (23 %)

F3_RZ 54,693,906 25,673,135 (47 %) 13,831,002 (54 %) 11,842,133 (46 %) 19,086,154 (74 %) 17,431,254 (68 %) 6,586,981 (26 %)

F3_PA 60,211,066 35,007,336 (58 %) 19,424,414 (55 %) 15,582,922 (45 %) 26,507,306 (76 %) 24,701,646 (71 %) 8,500,030 (24 %)
a% of reads to align
b% of aligned reads
cProperly paired means both read and its mate are mapped to opposing strands of the reference sequence, with 3′ ends innermost and within the allowed
distance from each other (mean 0 bp, standard deviation 100 bp)
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a ten-fold greater assignment of tags to features in the
sense orientation than antisense. The count data gener-
ated for each genomic feature is the data analysed in dif-
ferential gene expression (DGE) analysis. Therefore, in
general, the more sense tag-count data available, the
greater the power of DGE analysis to detect differential
gene expression. Overall, the poly(A) mRNA-enriched
libraries produced more “on target” sense tags, as a
proportion of all aligned tags (between 7.5 and 9.2 %
more than Ribo-Zero), as might be expected given en-
richment on the poly(A) tails of mRNA transcripts
(Table 3 and Fig. 1). However, after excluding tag counts
from 10 putative rRNA genes, the differences between
Ribo-Zero and poly(A) samples were less marked and for
all samples (between 1.3 and 2.7 % more on-target tags for
poly(A) ). Overall, “on target” sense tag counts (excluding
rRNA genes) comprised around 47.9 to 56.4 % of the total
aligned tags. This relatively low proportion probably re-
flects the fact that 5′ and 3′ un-translated regions (UTRs)
are rarely predicted by automated annotation pipelines, so

a large proportion of tags from mRNA transcripts are not
counted as such when using gene models mostly com-
prising protein coding regions. Overall (excluding rRNA
genes), our differential “gene expression” analysis would
be based on between 6.6 and 13.4 million tags per sample.

Comparison of poly(A) mRNA-enriched and Ribo-Zero
rRNA-depleted samples
Usually, the variation between samples within a sample
group (within-group variation) is smaller than that between
samples from different sample groups (overall variation)
because the former consists of technical and biological
variation only, while the latter also contains variation
due to the treatment effect. When the treatment effect
is the dominant term of variation, the sample groups can
be clearly separated by statistical tools. If the treatment ef-
fect is weak compared to the technical and biological vari-
ation the samples will be difficult to discriminate based on
the data. Here, the treatment effect is the difference be-
tween poly(A) and Ribo-Zero mRNA enrichment methods

Table 2 Tag counts for ten putative rRNA genes

GeneID Description Tag count,
F1_XP_RZ

Tag count,
F1_XP_PA

Tag count,
F1_RZ

Tag count,
F1_PA

Tag count,
F2_RZ

Tag count,
F2_PA

Tag count,
F3_RZ

Tag count,
F3_PA

AFUN015486 28S 20,426 10,311 120,345 16,664 19,706 28,057 95,593 20,651

AFUN015548 28S 47,771 21,402 154,805 31,516 48,525 54,305 145,807 41,643

AFUN015372 18S 3,064 4,289 24,027 4,787 6,759 8,400 17,239 6,504

AFUN015629 5.8S 0 0 0 0 1 0 0 0

AFUN015410 5.8S 13 6 6 1 0 3 4 5

AFUN015687 5.8S 0 0 0 0 0 0 0 0

AFUN015706 5.8S 0 0 0 0 0 0 0 0

AFUN015471 5.8S 1 0 0 0 0 0 0 0

16S-rRNA 16S (mito.) 768,823 2,673,376 402,555 2,351,745 272,148 1,927,215 491,163 2,382,882

12S-rRNA 12S (mito.) 51,260 6,613 20,543 7,110 10,995 3,066 21,513 3,032

Total (%)a 891,358
(3.86 %)

2,715,997
(11.17 %)

722,281
(5.49 %)

2,411,823
(10.34 %)

358,134
(2.42 %)

2,021,046
(9.20 %)

771,319
(4.78 %)

2,454,717
(11.28 %)

aTotal rRNA gene tag counts as a % of total aligned tags for each sample

Table 3 Summary of sense tag counting

Sample Total tagsa Assigned to features,
sense orientation (%)b

Assigned to non-rRNA features,
sense orientation (%)b,c

Assigned to features,
antisense orientation (%)b

Assigned to non-rRNA features,
antisense orientation (%)b,c

F1_XP_RZ 23,097,597 13,325,951 (57.69 %) 12,434,593 (53.84 %) 1,293,286 (5.60 %) 1,286,090 (5.57 %)

F1_XP_PA 24,317,689 16,120,214 (66.29 %) 13,404,217 (55.12 %) 1,234,142 (5.08 %) 1,216,317 (5.00 %)

F1_RZ 13,163,225 7,379,904 (56.06 %) 6,657,623 (50.58 %) 836,937 (6.36 %) 814,750 (6.19 %)

F1_PA 23,325,917 14,816,364 (63.52 %) 12,404,541 (53.18 %) 1,355,508 (5.81 %) 1,320,535 (5.66 %)

F2_RZ 14,787,076 8,421,844 (56.95 %) 8,063,710 (54.53 %) 1,006,847 (6.81 %) 1,001,013 (6.77 %)

F2_PA 21,970,208 14,411,931 (65.60 %) 12,390,885 (56.40 %) 1,237,662 (5.63 %) 1,218,099 (5.54 %)

F3_RZ 16,130,058 8,495,428 (52.67 %) 7,724,109 (47.89 %) 997,369 (6.18 %) 984,961 (6.11 %)

F3_PA 21,753,683 13,447,922 (61.82 %) 10,993,205 (50.53 %) 1,126,921 (5.18 %) 1,112,413 (5.11 %)
aA tag is a read pair or a single, un-paired read
b% of “Total tags”
cTags assigned to features after subtracting tags assigned to 10 putative rRNA features
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and a large treatment effect indicates that the mRNA en-
richment/rRNA depletion method greatly affects the com-
position of the transcriptome. We assessed these effects.
Initial visual inspection of sequence alignments indicated

that the Ribo-Zero libraries showed more ‘background’
alignments (reads aligned in intergenic and intronic re-
gions) than the poly(A) datasets. It is not certain whether
this represents real, un-polyadenylated transcripts or pos-
sible erroneous sequencing of DNA. However, as samples
came from the same pool and were DNase treated prior
to being split, any difference in the amount of DNA being
sequenced should be due to specific differences in the
enrichment/depletion process.
As an initial gene-wise analysis of gene expression levels,

reads or read pairs (“tags”) mapped in the sense orienta-
tion to annotated gene models were counted for each
sample. One caveat to this analysis is that the gene models
used to generate tag counts were from a draft genome an-
notation and therefore were likely to contain errors. 257
of the 13,793 annotated features had sense tag counts of
zero in all eight samples and were not analysed. To assess
variation in the data, log2 sense tag counts per gene were
plotted among sample pairs (Additional file 1). These give
an indication of how similar are samples belonging to the
same group and how different are samples from different
sample groups. The associated correlation coefficients
are displayed as a correlation heatmap (Additional file 1).
Principal component analysis (PCA), using log2 sense tag
counts per gene, was used to plot each sample relative to
all others (Additional file 1). These analyses showed very

low technical variation between the cleaned and uncleaned
FANG-1 samples and greater biological variation among
FANG-1, FANG-2 and FANG-3 samples. Ribo-Zero
samples showed more biological variation than poly(A)
samples, though this was mainly due to the FANG-2 Ribo-
Zero sample, which was a clear outlier (Additional file 1).
FANG-2 Ribo-Zero was the smallest sample library, with
around 44 million reads compared to around 55–62 million
reads for the other samples, which may be associated with
this result. Together, these assessments indicate that the
mRNA enrichment method has a large effect on the se-
quenced transcriptomes of the samples.

Analysis of differential transcriptome composition between
mRNA enrichment methods
To assess differences between the transcriptomes due to
the mRNA enrichment method applied, differential gene
expression (DGE) analysis was carried out to identify sig-
nificantly differentially represented annotated genome fea-
tures. First, as technical variation due to pre-enrichment
sample cleaning of FANG-1 was low and to make full
use of the data, the mean tag counts for cleaned and
uncleaned samples were calculated and used in the DGE
analysis. The data were modelled using a generalized lin-
ear model in a one-factor (mRNA enrichment method)
experiment with two levels (“Ribo-Zero” and “poly(A)”).
Full results of the analysis are shown in Additional file 2.
Figure 2 shows the relationship between log2 fold change
in expression between Ribo-Zero and poly(A) and mean
expression level across all samples. The power in the data
to discriminate between Ribo-Zero and poly(A) samples
(clearly shown by PCA) is reflected in the large number of
significantly differentially represented transcripts among
the two transcriptomes. This analysis indicates that results
based on Ribo-Zero and poly(A) mRNA enrichment may
be very different from one another. Great care must there-
fore be taken when comparing results derived using the
different methods.
In order to assess why the composition of Ribo-Zero

and poly(A) transcriptomes differ so much, we looked at
the 20 most differentially represented genome features
in each group (ordered by FDR-adjusted P-value). Table 4
lists the 20 features most over- or under-represented in
the Ribo-Zero transcriptome relative to poly(A). The two
most over-represented features in the Ribo-Zero tran-
scriptomes were ncRNAs, suggesting a large population of
non-polyadenylated transcripts, including many ncRNAs,
may exist in the cells and be under-represented in poly(A)
transcriptomes. Two histone genes (histone H2A and H3)
were over-represented in the Ribo-Zero transcriptome,
consistent with the occurrence of replication-dependent,
unpolyadenylated and replication-independent, polya-
denylated histone forms [19, 25]. Also, three genes with
Cadherin domains were over-represented in the Ribo-Zero
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transcriptome. In other systems, Cadherin is among a set
of genes controlled at the translational level by cytoplasmic
polyadenylation [26]. If this were occurring in An. funestus,
we would expect transcript forms with short poly(A) tails
to be over-represented in the Ribo-Zero transcriptome.
Further investigation would be needed to confirm if this is
the case. Among the genes over-represented in the poly(A)
transcriptome were a number of putative core metabolic
genes such as transcription-associated proteins and riboso-
mal proteins. A study of poly(A) tail length in yeast showed
that ribosomal proteins had long poly(A) tails [27]. We
speculate that preferential enrichment of transcripts with
longer poly(A) tails may affect the resulting transcriptome
composition.
A broader analysis of functional categories and gene

ontologies represented in the gene sets showed differences
between poly(A) and Ribo-Zero libraries. The broad func-
tional categories (as defined in the KEGG databases) of
genes over-represented in the Ribo-Zero or poly(A) librar-
ies were quite different. 28 % (516/1,841) of genes were
annotated for the Ribo-Zero set, compared to 51 %
(643/1,250) for the poly(A) set and 36 % (3702/10,253)
for genes not differentially represented among treat-
ments. The largest category (after “unclassified”) for the

Ribo-Zero set was “environmental information process-
ing”, while for the poly(A) set it was “genetic informa-
tion processing” (Fig. 3). Many of these “genetic
information processing”-associated genes in the poly(A)
set were ribosomal proteins, as indicated by gene ontol-
ogy analysis (summarised in Table 5), where ribosome-
associated terms were enriched in this set (Fig. 4 and
Additional file 1). In contrast, many of the “environmental
information processing”-associated genes in the Ribo-Zero
set may be membrane and/or nuclear proteins involved in
signal transduction or transcriptional regulation (Fig. 4 and
Additional file 1).

Detection of un-annotated transcripts
To further compare the transcriptomes, transcripts were
annotated from aligned data from each method. 11,395
genes (15,605 transcripts) were predicted using the poly(A)
data and 15,914 genes (20,317 transcripts) using the Ribo-
Zero data (Table 6). After removing transcripts that over-
lapped those predicted in the AfunF1.2 annotation, more
remained in the Ribo-Zero transcriptome (nearly 5,000)
that in the poly(A) transcriptome (around 1,000), suggest-
ing the presence of transcripts not detected in the poly(A)
transcriptome. Some of this difference could be due to an

Fig. 2 Plot of differential transcript abundance in Ribo-Zero and poly(A) transcriptomes. The y-axis shows log2 fold-change of transcript abundance
between Ribo-Zero and poly(A) samples. Greater than 0 indicates that a transcript is more abundant in Ribo-Zero samples than in poly(A) samples and
vice versa, as indicated on the plot. Green lines indicate 1.5-fold change. Red points are significantly differentially represented among treatments
(FDR-adjusted P-values < 0.05). Orange points are transcripts represented in only one sample, so fold-change could not be calculated. The x-axis shows
the log2 average abundance of the transcripts in both Ribo-Zero and poly(A) transcriptomes. The shape of the plot and distribution of significantly
differentially represented transcripts indicates that low abundance transcripts show more variation among Ribo-Zero and poly(A) transcriptomes due
to sampling effects than do higher abundance transcripts
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Table 4 The most significantly differentially represented genome features between Ribo-Zero and poly(A) transcriptomes

Gene ID logFC (Ribo-Zero/poly(A))a logCPMb Adjusted P-valuec Description

AFUN015353 6.73 7.69 1.31E-89 Signal recognition particle (ncRNA)

AFUN015615 7.08 5.27 2.65E-75 Signal recognition particle (ncRNA)

AFUN010049 5.05 5.25 3.80E-71 Histone H3

AFUN015157 4.18 6.81 5.86E-62 -

AFUN009381 4.64 5.73 7.90E-58 -

AFUN008241 4.17 8.62 2.49E-47 -

AFUN003688 4.43 7.35 1.91E-46 -

AFUN014500 3.78 7.48 7.14E-44 -

AFUN014369 3.71 5.84 1.51E-41 -

AFUN015010 4.84 5.04 9.84E-41 -

AFUN002493 3.46 7.32 3.88E-40 Unknown, contains cadherin domains

AFUN000145 3.49 4.93 2.31E-39 -

AFUN008247 4.98 3.75 4.38E-37 -

AFUN005891 5.19 3.75 7.85E-37 -

AFUN011958 4.05 4.83 2.41E-36 Retrotransposon, putative

AFUN011227 3.50 5.80 1.43E-35 Unknown, contains cadherin domains

AFUN008652 3.03 5.65 3.24E-34 Histone H2A

AFUN011228 3.62 5.06 3.96E-33 Unknown, contains cadherin domains

AFUN000984 2.81 6.53 2.55E-32 Unknown, contains PH-domain

AFUN002265 2.94 5.61 4.67E-32 odz/ten-m gene, putative

AFUN010223 −2.72 6.94 5.66E-26 60S ribosomal protein L39

AFUN004938 −2.45 5.25 4.22E-25 Small nuclear ribonucleoprotein D3

nad3 −4.18 8.12 1.15E-22 Nad3

AFUN005575 −2.96 4.91 1.03E-21 Estrogen receptor binding site associated antigen 9 variant 1

AFUN008128 −2.06 5.96 9.59E-19 Transcription initiation factor TFIIF subunit alpha

AFUN005032 −1.86 6.56 6.57E-18 mRNA turnover protein 4

AFUN014198 −2.51 9.41 1.94E-16 40S ribosomal protein S29

AFUN011059 −2.05 5.27 6.44E-15 -

AFUN001216 −1.94 5.18 1.12E-14 -

AFUN006762 −2.43 9.41 4.03E-14 -

AFUN009976 −1.82 6.48 9.17E-14 Nuclear protein NHN1

AFUN014520 −2.04 5.27 9.09E-13 CCR4-NOT transcription complex subunit 7/8

AFUN014691 −1.91 5.50 9.63E-13 -

AFUN002476 −3.32 6.87 2.21E-12 -

nad6 −2.65 8.06 2.44E-12 Nad6

AFUN009128 −1.69 5.29 2.86E-12 Nat13 protein

AFUN007527 −2.88 2.97 5.92E-12 Phosphopantothenoylcysteine decarboxylase

AFUN005236 −1.84 8.05 6.25E-12 40S ribosomal protein S21

AFUN003657 −1.77 5.92 6.78E-12 -

AFUN010447 −2.04 4.37 1.08E-11 26 proteasome complex subunit DSS1
aLog2 fold change between ‘expression’ levels in Ribo-Zero and poly(A) samples (for values >0, Ribo-Zero > poly(A); for values <0, poly(A) > Ribo-Zero)
bLog2 counts per million mapped reads. Mean ‘expression’ level for all samples
cSignificance of differential ‘expression’, P-value adjusted for a 5 % false discovery rate
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increased amount of immature transcripts (that are neither
fully spliced nor polyadenylated) and/or a greater contribu-
tion from DNA contamination in the Ribo-Zero samples
(which are subjected to less PCR amplification specifically
of transcripts). However, visual inspection of a sample of
these putative transcripts showed that a number were in-
deed unannotated, Ribo-Zero-specific transcribed regions
that did not occur within the introns of annotated genes
and were predominantly strand-specific (i.e. did not result
from DNA contamination, which would not be strand-
specific). An example is shown in Fig. 5. Further analyses
are needed to elucidate the functions of these transcripts.

Validation and improvement of the annotation of
Anopheles funestus genes, focused on detoxification-
associated gene families
An important part of genome annotation is validation of
the predicted gene models. These RNAseq data allowed
this to be done. On a genome-wide scale there were
44,031 predicted introns, of which 43,852 were unique
(i.e. not the same intron in multiple transcript isoforms
or overlapping genes). Of these, 28,346 (61.64 %) were
validated by at least 10 reads in the FANG-1, 2 and 3
poly(A) data sets (31,927 introns, 72.91 %, were validated
by at least 1 read in the same data set). A small number
of introns were supported at only one end, suggesting
mis-annotation of the gene models. Of the 44,031 pre-
dicted introns, 1,125 were supported only at the 5′ end
and 2,118 only at the 3′ end. Introns supported only at
the 3′ end tend to be the first predicted intron (45 % the
first intron vs. 13 % the last intron), while introns sup-
ported only at the 5′ end tend to be the last predicted

intron (33 % the last intron vs. 17 % the first intron),
suggesting that the ends of up to around 3,000 gene models
are mis-annotated and could be manually improved. Re-
sults of the validation analysis for all predicted introns are
shown in Additional file 3. For the 28,346 validated introns,
consensus motifs at intron-exon boundaries are shown in
Fig. 6. The 5′ end of the intron has an extended GTAAGT
motif, while the 3′ end of the intron has the conserved AG
motif preceded by an extended pyrimidine-rich region. No
conserved motif is seen in the flanking exons, except for a
slight enrichment of purines at the last position of the
upstream exon.
Visual inspection of the automated MAKER genome

annotation of Anopheles funestus showed that, in many
cases, the MAKER annotation had inferred a single gene
model from multiple closely located genes. This behaviour
is particularly problematic for detoxification-associated
genes such as cytochrome P450 and GST because these
genes often occur in clusters of tandemly duplicated
paralogous genes. Manual editing was required to im-
prove the genome annotation, an example of which is
shown in Fig. 7.
We aimed to improve the annotation of genes involved

in the three phases of detoxification: transformation (phase
I), conjugation (phase II) and transport/efflux (phase III).
Two major enzyme families, P450 (phase I) and GST
(phase I and II), have already been manually curated and,
at the time of writing, are being incorporated into the
VectorBase genome annotation, AfunF1.3 (Dr. Craig Wilding
and Dr. Dan Lawson, personal communications). Therefore,
we focused upon seven other detoxification gene families.
These were: the phase I enzymes carboxylesterases (COE),

RZ 

PA 

both 

Fig. 3 Representation of functional categories in poly(A) and Ribo-Zero over-represented gene sets and in genes not differentially represented (“both”)

Table 5 Summary of gene ontology analysis

GO domain Instancesa (BGb) Instances (RZb) Instances (PAb) RZ vs. BGc PA vs. BGc RZ vs. PAc

Biological process 7,228 763 711 11 9 19

Molecular function 14,362 1,912 1,109 15 13 25

Cellular compartment 3,648 403 515 4 10 10
aAn “instance” refers to a GO term associated with a gene ID
bBG = background (whole genome); RZ = Ribo-Zero; PA = poly(A)
cSignificantly differentially represented GO terms (adjusted p < 0.05)
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flavin-containing monooxygenases (FMO), aldehyde oxidases
(AOX) and aldehyde dehydrogenases (ALDH); the phase II
enzymes UDP glucosyltransferases (UGT) and sulfotrans-
ferases (SULT); and the phase III transporter-encoding
ATP-binding cassette genes (ABC).
Manual editing considerably improved the annotation of

detoxification-associated genes. A table of manually edited
gene models and unedited, putatively correct, gene models
belonging to each family is shown in Additional file 4.
For the carboxylestarase genes (COE), 22 gene models

were manually edited to produce 28 putative COE genes
and 6 non-COE genes, 10 gene models were not modified.
For the flavin-containing monooxygenase genes (FMO) 4
gene models were identified and were not modified. For the
aldehyde oxidase genes (AO), 9 gene models were manually
edited to produce 6 putative AO genes, 2 xanthine de-
hydrogenase genes and 2 non-AO genes, 2 gene models
were not modified. For the aldehyde dehydrogenase genes
(ALDH), 2 gene models were manually edited to produce 2
ALDH genes and 1 non-ALDH gene, 1 gene model was
not modified.
For the UDP-glycosyltransferase genes (UGT), 4 gene

models were manually edited to produce 8 UGT genes

and 3 non-UGT genes, 14 gene models were not modified.
For the sulfotransferase genes (SULT), 1 gene model was
manually edited to produce 5 SULT genes and and an
oestrogen sulfotransferase gene, 3 gene models were
not modified.
For the ATP-binding cassette genes (ABC), 9 gene

models were manually edited to produce 13 ABC
genes and 10 non-ABC genes, 16 gene models were
not modified.
All manually edited gene models have been submitted to

VectorBase for incorporation into the Anopheles funestus
genome annotation.

Integration of An. funestus transcriptome datasets and
assignment of FUMOZ scaffolds to chromosome arms
Two An. funestus whole transcriptome datasets were
published before the whole genome assembly [22, 23].
We integrated both the “Crawford” transcriptome (14,850
sequences) and the “Gregory” transcriptome (18,103
sequences) with the FUMOZ predicted transcript set,
AfunF1.2 (13,897 sequences) by clustering them based
on sequence similarity. The results are shown in Additional
file 5. Clustering the full set of 46,850 sequences at 95 %
similarity resulted in 25,519 clusters. The results suggested
that the “Gregory” transcriptome was more fragmented
than the other two: its 18,103 sequences were repre-
sented in only 5,741 unique clusters, compared to
12,349 clusters for the “Crawford” transcriptome and
13,172 clusters for the AfunF1.2 transcript set.
Genome sequences assembled to the level of whole

chromosomes are more useful than draft assemblies for
analyses of genome wide variation and gene expression,
because structural and spatial information can be im-
portant (e.g. for defining the location of a selective
sweep or the effect of regional chromatin remodelling
on co-regulation of gene expression). The comparison of
An. funestus predicted genes to those of An. gambiae
allowed a number of scaffolds to be tentatively assigned
to chromosome arms based on homology to An. gam-
biae. Table 7 summarises the number of scaffolds with 5
or more genes assigned to a chromosome arm by puta-
tive 1:1 orthology with An. gambiae (all scaffold IDs are
listed in Additional file 6). In a small number of anomal-
ous cases where a scaffold contained genes with orthol-
ogy to genes on a different chromosome An. gambiae
arm, the minority chromosome arm was never sup-
ported by more than 1 gene and these were removed by
setting a threshold of 5 genes to support assignment of a
scaffold to a group. This conservative approach to defin-
ing linkage groups assigned only a small number (286/
1392 = 20.55 %) of scaffolds. However, these were gener-
ally large scaffolds and represented the greater propor-
tion (183,517,537/225,223,604 = 81.48 %) of the total
genome length. These groups could form a starting

0% 5% 10% 15% 20% 25% 30% 

ribosome 

membrane 

plasma membrane 

intracellular 

nucleus 

mitochondrion 

proteasome core complex 

dynein complex 

kinesin complex 

voltage-gated potassium 
channel complex 

Poly(A) 

RiboZero 

Fig. 4 Cellular compartment GO terms differentially represented
between gene sets over-represented in poly(A) (red) and Ribo-Zero
(blue) samples

Table 6 Comparison of the published genome annotation with
de novo annotations based on RNAseq alignments

AfunF1.2a Poly(A) (not
in refb)

Ribo-Zero (not
in refb)

Scaffolds with annotation 622 587 (415) 727 (645)

Genes 13,757 11,395 (1,000) 15,914 (4,744)

Transcripts 13,898 15,605 (1,039) 20,317 (4,831)
aExcludes mitochondrial genome
bFeatures that do not overlap any in the reference annotation
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point for genome assembly finishing and for further ana-
lysis of synteny and co-linearity of genes between An.
funestus and An. gambiae.

Conclusions
The sequencing of the genome of the major malaria vec-
tor Anopheles funestus allows new analyses of its biology
and may accelerate research on this species, which cur-
rently lags behind that of Anopheles gambiae. To carry
out analyses of gene expression relevant to insecticide
resistance, we have piloted the use of RNAseq. In
addition, we have improved the genome annotation for a
number of gene families with roles in the detoxification
of xenobiotic agents.
As reported in other eukaryotic systems, the method

used to enrich for mRNA relative to rRNA has a large ef-
fect upon the observed transcriptome [18–21]. Functional
classes of genes are differentially represented in poly(A)
mRNA-enriched and Ribo-Zero rRNA-depleted transcrip-
tomes, with greater representation of ribosomal proteins
with poly(A) and membrane-associated proteins with Ribo-
Zero. Genes with both poly(A) + and poly(A)- transcripts,

such as histones, and ncRNA, such as signal recognition
particle RNAs, were also highly represented in the Ribo-
Zero transcriptome. The Ribo-Zero libraries show a higher
proportion of reads aligning outside of annotated exons,
which may represent a combination of novel, poly(A)- tran-
scripts and the introns of immature transcripts.
In making recommendations for which method to use

for studies of the transcriptomes of mosquitoes, several
factors should be considered. For analyses of differential
gene expression, power to detect different expression
levels is proportional to the number of reads aligned to
each gene. Poly(A) mRNA enrichment does provide
more of this ‘on-target’ data than Ribo-Zero rRNA de-
pletion, yet the difference is less striking after accounting
for rRNA genes, in particular a highly poly(A)-enriched
mitochondrial 16S rRNA. The transcriptome profiles of
poly(A) samples were more highly correlated with each
other than Ribo-Zero samples, indicating that power to
detect differential gene expression would be greater for
poly(A) mRNA-enriched samples. However, we argue
that Ribo-Zero rRNA depletion produces a truer repre-
sentation of the transcriptome because (i) there is less

AFUN010585 AFUN015394 AFUN015150 

Fig. 5 Example of putative novel transcript(s) represented in the Ribo-Zero libraries but not in the poly(A) libraries. The top panel shows a coverage depth
summary plot (grey plot; log-scaled coverage depth) and aligned reads (red bars are reads from pairs aligned to the plus strand, blue bars from pairs
aligned to the minus strand) for the poly(A) data. Below these are the same for the Ribo-Zero data. Below these are gene models (grey boxes represent
exons, black lines un-translated regions: introns and UTRs) from the gene set AfunF1.2. A large transcribed region on the minus strand is evident in the
Ribo-Zero data only, representing one or more putatively poly(A)- transcripts

Fig. 6 Consensus sequences at the 5′ and 3′ intron-exon boundaries of 28,346 introns validated by RNAseq. Position 0 at the 5′ end marks the first
nucleotide in the intron. Position 0 at the 3′ end marks the first nucleotide in the following exon. Two diagonal lines denote the variable central
portions of the introns. The y-axis indicates the bit-score for each nucleotide position. An extended motif of GTAAGT is seen at the 5′ end, with a
slight enrichment of purines at the last position of the preceding exon. The conserved AG motif is seen at the 3′ end, preceded by an extended
pyrimidine-rich region. Little or no sequence conservation is seen in the flanking exons, apart from at the last position of the preceding exon
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PCR amplification of transcripts, which can bias the final
results and (ii) The transcriptome includes the poly(A)-
fraction, which may be functionally relevant. Due to the
large effect that the mRNA enrichment method has on the
transcriptome obtained, researchers should be very careful
in comparing results obtained using different methods.
The draft genome annotation of An. funestus is cur-

rently inadequate for detailed studies of gene expression
targeted at insecticide resistance mechanisms. Major
gene families involved in detoxification of xenobiotic
substances, such as cytochrome P450 and GST genes,
are not well annotated by automated approaches. Manu-
ally edited gene models for these gene families are being
incorporated into the genome annotation at the time of
writing (Dr. Craig Wilding and Dr. Dan Lawson, per-
sonal communications). We extended this annotation
improvement to 7 more key detoxification genes fam-
ilies: 4 associated with phase I; 2 with phase II and 1
with phase III. This effort offers a major improvement of
the utility of the An. funestus genome as a tool to study

insecticide resistance in this species. Accurate annota-
tion of these gene families is particularly important for
An. funestus, as insecticide resistance appears to be pri-
marily mediated by detoxification of the compounds in
this species.

Methods
Mosquito samples used in the study
The study used Anopheles funestus mosquitoes of the
FANG laboratory colony, a fully insecticide susceptible col-
ony derived from Angola [28]. Mosquito eggs (a kind gift of
Prof. Lizette Koekemoer, University of the Witwatersrand,
South Africa) were hatched and mosquitoes reared to
adulthood in the insectaries at the Liverpool School
of Tropical Medicine under conditions described else-
where [2].

RNA extraction, sequence library preparation and
sequencing
Total RNA was extracted from three pools of 10 individ-
ual adult female mosquitoes using the Arcturus PicoPure
RNA isolation kit (Life Technologies, Carlsbad, USA),
according to the manufacturer’s instructions and includ-
ing a DNase treatment step. On visual inspection of the
purified RNA, the samples displayed some pigmentation,
the likely effect of which on data quality was unknown.
To assess this, the most abundant sample (FANG-1) was
split in two. One half of the sample was cleaned using
Agencourt AMPure XP beads (Beckman Coulter, Brea,
USA) prior to further processing.
All four samples were split in two and one of each pair

subjected to poly(A) mRNA enrichment and the other to
ribosomal RNA depletion. Polyadenylated RNA was se-
lected from total RNA samples using 3 rounds of poly(A)
selection with the Dynabeads mRNA purification kit (Life

AFUN009068 

AgCOEAE1D AgCOEAE2E AgCOEAE3D 

Fig. 7 Example of an incorrect gene model (AFUN009068) and three manually edited gene models. The top panel shows a coverage depth
summary plot (grey plot; log-scaled coverage depth) and aligned reads (red bars are reads from pairs aligned to the plus strand, blue bars from
pairs aligned to the minus strand). Below these are the gene models (grey boxes represent exons, black lines un-translated regions: introns and
UTRs). The gene model in gene set AfunF1.2 (AFUN009068) is shown above three manually edited gene models based on read alignments and
orthologous genes in the Anopheles gambiae (Ag) genome annotation (bottom). The three genes are carboxylesterases (COE)

Table 7 Anopheles funestus scaffolds assigned to groups
representing putative chromosome arms

Chromosome arm a Scaffolds b Total length (bp) c

X 27 16,915,574

2R 78 52,607,791

2 L 57 42,990,663

3R 72 41,849,609

3 L 52 29,153,900

Total 286 183,517,537
a An. funestus chromosome arm, accounting for the whole arm translocation
between 2 L and 3R relative to An. gambiae
b Number of An. funestus scaffolds with 5 or more putative 1:1 orthologues
with An. gambiae
c Length includes sequencing gaps
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Technologies), using 1.5 μg of starting material. Total
RNA was rRNA-depleted using the Ribo-Zero low input
kit for Human/Mouse/Rat (Illumina, San Diego, USA),
using 100 ng of starting material. RNAseq libraries were
prepared from poly(A) and Ribo-Zero mRNA-enriched
material using the ScriptSeq v2 RNAseq library prepar-
ation kit (Illumina), using 15 cycles of PCR amplification.
Libraries were purified using Agencourt AMPure XP
beads (Beckman Coulter). Each library was quantified
using a Qubit fluorometer (Life Technologies) and the size
distribution assessed using the 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, USA).
The eight final libraries were pooled in equimolar

amounts using the Qubit and Bioanalyzer data. The quan-
tity and quality of each pool was assessed by Bioanalyzer
and subsequently by qPCR using the Kapa Illumina library
quantification kit (Kapa Biosystems, Wilmington, USA),
on a Light Cycler LC480II (Roche, Basel, Switzerland), ac-
cording to manufacturers’ instructions. The pool of librar-
ies was sequenced on one lane of the HiSeq 2500
(Illumina) at 2x125 bp paired-end sequencing with v4
chemistry. Sequence library preparation and sequencing
were done at the Centre for Genomic Research, University
of Liverpool, UK.

Alignment of sequence reads to a reference genome
Initial processing and quality assessment of the sequence
data was performed using a software pipeline developed
at the Centre for Genomic Research, University of Liver-
pool (Dr. Richard Gregory, personal communication). In
this pipeline, basecalling and de-multiplexing of indexed
reads was performed by CASAVA version 1.8.2 (Illu-
mina) to produce samples from the pooled sequence
data, in fastq format. The raw fastq files were trimmed
to remove Illumina adapter sequences using Cutadapt
version 1.2.1 [29]. The 3' end of any read matching the
adapter sequence over at least 3 bp was trimmed off.
Reads were further trimmed to remove low quality
bases, using Sickle version 1.200 [30], with a minimum
window quality score of 20. After trimming, reads
shorter than 10 bp were removed. If both reads from a
pair passed this filter, each was included in either the R1
(forward reads) or R2 (reverse reads) file. If only one of
a read pair passed this filter, it was included in the R0
(unpaired reads) file.
The reference sequence used for alignment was the

Anopheles funestus assembled scaffold sequences derived
from the FUMOZ laboratory colony, a multi-insecticide
resistant colony derived from southern Mozambique
[11, 28]. Assembly AfunF1 (GenBank assembly identifier
GCA_000349085.1; GenBank WGS project identifier
APCI01) was downloaded from VectorBase [12, 13]. A
single sequence representing the Anopheles funestus
mitochondrial genome (accession number DQ146364)

[31] was added to these scaffolds to make the reference
sequence used in the analysis.
R1/R2 read pairs were aligned to the reference se-

quence using TopHat version 2.0.10 [32], based on the
bowtie2 aligner [33]. The alignment was carried out
using the following non-default parameters: the insert
inner distance (between 3′ ends of R1 and R2 reads) was
set to 0, with a standard deviation of 50 (options
“–mate-inner-dist 0” and “–mate-std-dev 50”); for reads
with multiple alignments in the genome(s), only a single,
best alignment was recorded, with ties assigned ran-
domly (option “–max-multihits 1”); the library type was
specified as second-stranded (option “–library-type fr-
secondstrand”), as it was a ScriptSeq library (in second
strand sequencing, the forward read of a pair, R1, will
map sense to a transcript, and the reverse read, R2, will
map antisense).

Analysis of transcript abundance among samples
Tags mapped in the sense orientation to annotated
Anopheles funestus genes (automated predictions from
gene set AfunF1.2, 2014-08-22, downloaded from Vec-
torBase and annotated genes from the mitochondrial
genome) were counted using htseq-count, part of the
‘HTSeq’ framework, version 0.5.3p9 [34]. Read count
data were analysed in the R environment, in particular
using the package edgeR for differential gene expression
analysis [35].
Analysis of the tag count data used log2 transformed

counts (after replacing 0 values with 1 s). Pairwise scat-
ter plots of these values were plotted and the Pearson’s
correlation coefficients (r2) represented in a sample cor-
relation heatmap. Principal component analysis (PCA)
was applied and the first, second and third principal
components of variation plotted.
Differential gene expression analysis was carried out

using edgeR [35]. Due to the low level of technical vari-
ation between cleaned and uncleaned FANG-1 samples,
differential gene expression analysis used the mean tag
count values for cleaned and uncleaned FANG-1 samples
for each enrichment method. Two groups of samples
(“Ribo-Zero” and “poly(A)”) were defined. Normalisation
factors were calculated to correct for differences in total
tag counts among samples, which may otherwise cause
bias in differential gene expression analysis, using the
“TMM” (Trimmed Mean M-values) method in edgeR [36]
with default parameters. Common, trended (with a mini-
mum of 500 genes in each bin) and tag-wise dispersion
parameters were estimated. Trended dispersion was used
for significance testing. Variation of RNAseq data can be
modelled by a negative binomial distribution [37] and the
data modelled using a generalized linear model [38]. For
the contrast “Ribo-Zero / poly(A)”, the estimated log2 Fold
Change for each gene was tested in edgeR using a
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Likelihood-Ratios (LR) test [39]. P-values associated with
logFC were adjusted for multiple testing using the False
Discovery Rate (FDR) approach [40]. Significantly differ-
entially expressed genes were defined as those with an
FDR-adjusted P-value < 5 %.

Analysis of gene ontologies and KEGG functional
categories
All GO terms associated with features in genome anno-
tation AfunF1.2 were obtained from VectorBase. The
terms were separated by GO domain: biological process
(BP; 7,228 instances), molecular function (MF; 14,362 in-
stances) and cellular compartment (CC; 3,648 instances).
An “instance” refers to a GO term associated with a
gene ID and the term is used here because multiple GO
terms can be associated with the same gene ID and mul-
tiple gene IDs with the same GO term. To test for sig-
nificant differences in GO term representation among
sets of genes, Fisher’s exact test was applied for each GO
term, with a correction for multiple testing using the
method of Benjamini and Hochberg [40]. The gene sets
tested were those over-represented in Ribo-Zero or in
poly(A) libraries (with adjusted p-values < 0.01 in the test
for differential expression).
Proteins were annotated using blastKOALA v2.0 [41], a

tool available via the Kyoto Encyclopedia of Genes and Ge-
nomes, KEGG [42–44]. Four sets of proteins were submit-
ted to blastKOALA: those over-represented in Ribo-Zero
libraries (n = 1841); those over-represented in poly(A) li-
braries (n = 1250); those not significantly differentially rep-
resented (two sets, as a maximum of 10,000 sequences can
be submitted at a time: n = 5531 and n = 4722). The pro-
tein sequence files were uploaded and the taxonomy ID of
An. funestus (taxid:62324) entered. The database searched
against was the “genus_eukaryotes” database (containing
3,696,044 entries).

Detection of un-annotated transcripts
Alignment files of the four poly(A) mRNA-enriched librar-
ies and the four Ribo-Zero rRNA-depleted libraries (in
bam format) were merged to create a single poly(A) and a
single Ribo-Zero alignment. Alignments to the mitochon-
drial genome were filtered out. These filtered alignments
were used to predict transcripts using Cufflinks v2.2.1
[45]. Default parameters were applied except for the op-
tions “–library-type” (set to “fr-secondstrand”) and “–min-
frags-per-transfrag” (set to 100 rather than the default 10).
Putative transcripts were compared to the genome annota-
tion using Cuffmerge and transcripts not associated with
annotated features extracted for each of the poly(A) and
the Ribo-Zero alignments. These transcripts were merged
using Cuffmerge and the resulting file of features used in
conjunction with the alignment files to generate read

counts for poly(A) and the Ribo-Zero samples using fea-
tureCounts v1.4.6 [46].

Genome annotation validation and improvement
Genomic location information for introns annotated in
An. funestus gene set AfunF1.2 and the mitochondrial gen-
ome was extracted from the genome annotation. Similar
location information for introns identified by alignment of
RNAseq data, for the poly(A) samples, was extracted and
the two datasets were compared to identify introns vali-
dated by RNAseq. Similar analyses were done for 5′ and
3′ intron ends alone. For validated introns, sequences
spanning the 5′ and 3′ intron ends were extracted and
used to identify enriched nucleotide motifs, represented as
sequence logos using WebLogo 3 [47, 48].
Manual genome annotation improvement was carried

out using Anopheles gambiae gene models as a refer-
ence. Starting with translated An. gambiae genes,
BLASTp similarity searches were carried out in Vector-
Base to define the closest matching An. funestus proteins
and identify gross differences in protein length. Then,
gene models were compared and An. funestus gene
models modified to match those of An. gambiae where
appropriate. RNAseq alignments were used to guide the
An. funestus gene model editing. As transcript ends are
difficult to define from RNAseq alignments (due to
coverage drop off near to molecule ends), edited gene
models included putative protein coding regions but not
putative un-translated regions. Edited gene models were
submitted to VectorBase [12, 13].

Clustering of sequences from multiple transcriptome
datasets and assignment of scaffolds to chromosome
arms
Sequences from two transcriptome assemblies were
downloaded from NCBI [49]: the “Crawford” tran-
scriptome, comprising 14,850 sequences (accessions
EZ966136-EZ980985) and the “Gregory” transcriptome,
comprising 18,103 sequences (accessions EZ915182-
EZ933284). Sequences from the FUMOZ predicted
transcript set AfunF1.2, comprising 13,897 sequences,
were downloaded from VectorBase [12, 13]. The three
datasets were concatenated and clustered by sequence
identity using CD-HIT-EST v4.6 [50], with a clustering
threshold of 95 % nucleotide identity.
To tentatively assign An. funestus genome assembly

scaffolds to chromosome arms, predicted protein se-
quences from An. funestus (gene set Afun1.2) and An.
gambiae (gene set Agam4.3) were downloaded from
VectorBase [12, 13]. Sequence headers were parsed to
retain the scaffold/chromosome information and the two
datasets concatenated and clustered by peptide sequence
identity using CD-HIT v4.6 [50], with a clustering thresh-
old of 75 % amino acid identity. An. funestus scaffolds
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were assigned to a chromosome arm if they contained at
least 5 putative 1:1 An. gambiae orthologues from that
chromosome arm. Chromosome arms 2 L and 3R were
switched to account for a whole arm translocation be-
tween 2 L and 3R in An. funestus relative to An. gambiae.

Availability of supporting data
The RNAseq read data reported in this study were sub-
mitted to the European Nucleotide Archive (ENA) under
the study accession PRJEB10294 (http://www.ebi.ac.uk/
ena/data/view/PRJEB10294) and the sample accessions
ERS809802-ERS809809.

Additional files

Additional file: 1: Detailed and extra information and figures. File
containing detailed descriptions of the analyses and figures not included
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Additional file 2: Differential gene representation analysis results.
Table of results of differential gene representation analysis (for gene set
Afun1.2 and mitochondrial genes) contrasting Ribo-Zero and poly(A)
enriched RNAseq libraries. The most over-represented genes in Ribo-Zero
libraries are highlighted in red. The most over-represented genes in
poly(A) libraries are highlighted in blue. The significance cutoff used was
an FDR-adjusted (FDR = 5 %) P-value < 0.01. The tag counts for FANG-1
samples are the mean of two libraries (see main text). (XLSX 1784 kb)

Additional file 3: Validation of annotated exon-exon junctions.
Table of exon-exon junctions annotated in gene set Afun1.2 and the
mitochondrial genome that were, or were not, validated by RNAseq data
generated in this study. Introns validated at both ends (labelled 5′_and_3′) or
at only one end (labelled 5′_only or 3′_only) are indicated. (XLSX 1949 kb)

Additional file 4: Annotation improvements. Table of gene annotation
validation and/or manual improvement of Anopheles funestus detoxification
gene models. Gene models for genes involved in the detoxification of
xenobiotics were checked against both Anopheles gambiae orthologues and
RNAseq alignments and modified where necessary. (XLSX 40 kb)

Additional file 5: Integration of transcriptome datasets. Table of
sequence clusters (clustered at 95 % sequence identity) comprising
AfunF1.2 gene set transcripts (13,897 sequences), the “Crawford”
assembled transcriptome (14,850 sequences) and the “Gregory”
assembled transcriptome (18,103 sequences). Each row represents a
cluster. Sequences in a cluster that come from the same dataset are
separated by commas. (XLSX 868 kb)

Additional file 6: Scaffold assignment to chromosome arms. Table
of Anopheles funestus scaffolds assigned to chromosome arms. Assignment
is based on the possession of at least 5 putative 1:1 orthologues with
Anopheles gambiae occurring on the same chromosome arm. Orthology
was inferred by clustering predicted protein sequences at 75 % amino acid
identity. (XLSX 43 kb)

Abbreviations
NGS: Next-generation sequencing; PCA: Principal component analysis;
DGE: Differential gene expression; TMM: Trimmed mean M-values;
LR: Likelihood ratio; FDR: False discovery rate; UTR: Un-translated region;
GO: Gene ontology; RZ: Ribo-Zero; PA: Poly(A); P450: Cytochrome P450
monooxygenase; GST: Glutathione S-transferase; COE: Carboxylesterase;
FMO: Flavin-containing monooxygenase; AOX: Aldehyde oxidase;
ALDH: Aldehyde dehydrogenase; UGT: UDP glucosyltransferase;
SULT: Sulfotransferase; ABC: ATP-binding cassette transporter.

Competing interests
The authors declare no competing interests.

Authors’ contributions
GDW and CSW conceived the study. HI carried out RNA extraction and
pooling. MH carried out mRNA enrichment and sequence library preparation.
GDW carried out bioinformatic analyses and wrote the manuscript. CSW
participated in coordination of the study and the writing of the manuscript.
All authors read and approved the final manuscript.

Acknowledgements
We are grateful to Prof. Lizette Koekemoer (University of the Witwatersrand,
South Africa) for the kind gift of FANG colony mosquito eggs. Sequence
data were generated at the Centre for Genomic Research, which is based at
the University of Liverpool. We are grateful to Dr. Yongxiang Fang (Centre
for Genomic Research, University of Liverpool) for scripts and advice on the
analysis of differential gene expression data. This work was supported by a
Wellcome Trust Senior Research Fellowship in Biomedical Sciences (101893/
Z/13/Z) awarded to CSW.

Author details
1Vector Biology Department, Liverpool School of Tropical Medicine,
Pembroke Place, Liverpool L3 5QA, UK. 2Centre for Genomic Research,
Institute of Integrative Biology, University of Liverpool, Crown Street,
Liverpool L69 7ZB, UK.

Received: 2 September 2015 Accepted: 20 October 2015

References
1. Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, et al.

The dominant Anopheles vectors of human malaria in Africa, Europe and
the Middle East: occurrence data, distribution maps and bionomic précis.
Parasites Vectors. 2010;3:117.

2. Morgan JC, Irving H, Okedi LM, Steven A, Wondji CS. Pyrethroid resistance
in an Anopheles funestus population from Uganda. PLoS One. 2010;5:e11872.

3. Wondji CS, Coleman M, Kleinschmidt I, Mzilahowa T, Irving H, Ndula M, et al.
Impact of pyrethroid resistance on operational malaria control in Malawi.
Proc Natl Acad Sci U S A. 2012;109:19063–70.

4. Riveron JM, Irving H, Ndula M, Barnes KG, Ibrahim SS, Paine MJ, et al.
Directionally selected cytochrome P450 alleles are driving the spread
of pyrethroid resistance in the major malaria vector Anopheles funestus.
Proc Natl Acad Sci U S A. 2013;110:252–7.

5. Riveron JM, Yunta C, Ibrahim SS, Djouaka R, Irving H, Menze BD, et al. A single
mutation in the GSTe2 gene allows tracking of metabolically based insecticide
resistance in a major malaria vector. Genome Biol. 2014;15:R27.

6. Riveron JM, Ibrahim SS, Chanda E, Mzilahowa T, Cuamba N, Irving H, et al.
The highly polymorphic CYP6M7 cytochrome P450 gene partners with the
directionally selected CYP6P9a and CYP6P9b genes to expand the
pyrethroid resistance front in the malaria vector Anopheles funestus in Africa.
BMC Genomics. 2014;15:817.

7. Choi KS, Christian R, Nardini L, Wood OR, Agubuzo E, Muleba M, et al. Insecticide
resistance and role in malaria transmission of Anopheles funestus populations
from Zambia and Zimbabwe. Parasites Vectors. 2014;7:464.

8. Mulamba C, Riveron JM, Ibrahim SS, Irving H, Barnes KG, Mukwaya LG, et al.
Widespread pyrethroid and DDT resistance in the major malaria vector
Anopheles funestus in East Africa is driven by metabolic resistance
mechanisms. PLoS One. 2014;9:e110058.

9. Glunt KD, Abílio AP, Bassat Q, Bulo H, Gilbert AE, Huijben S, et al. Long-lasting
insecticidal nets no longer effectively kill the highly resistant Anopheles funestus
of southern Mozambique. Malar J. 2015;14:298.

10. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, et al.
The genome sequence of the malaria mosquito Anopheles gambiae. Science.
2002;298:129–49.

11. Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, et al.
Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16
Anopheles mosquitoes. Science. 2015;347:1258522.

12. Giraldo-Calderón GI, Emrich SJ, MacCallum RM, Maslen G, Dialynas E,
Topalis P, et al. VectorBase: an updated bioinformatics resource for
invertebrate vectors and other organisms related with human
diseases. Nucleic Acids Res. 2015;43(Database issue):D707–13.

13. VectorBase. https://www.vectorbase.org

Weedall et al. BMC Genomics  (2015) 16:931 Page 14 of 15

http://www.ebi.ac.uk/ena/data/view/PRJEB10294
http://www.ebi.ac.uk/ena/data/view/PRJEB10294
dx.doi.org/10.1186/s12864-015-2114-z
dx.doi.org/10.1186/s12864-015-2114-z
dx.doi.org/10.1186/s12864-015-2114-z
dx.doi.org/10.1186/s12864-015-2114-z
dx.doi.org/10.1186/s12864-015-2114-z
dx.doi.org/10.1186/s12864-015-2114-z
https://www.vectorbase.org/


14. Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, et al. MAKER: an easy-to-
use annotation pipeline designed for emerging model organism genomes.
Genome Res. 2008;18:188–96.

15. Holt C, Yandell M. MAKER2: an annotation pipeline and genome-database
management tool for second-generation genome projects. BMC
Bioinformatics. 2011;12:491.

16. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al.
Landscape of transcription in human cells. Nature. 2012;489:101–8.

17. de Klerk E, ‘t Hoen PA. Alternative mRNA transcription, processing,
and translation: insights from RNA sequencing. Trends Genet.
2015;31:128–39.

18. Cui P, Lin Q, Ding F, Xin C, Gong W, Zhang L, et al. A comparison between
ribo-minus RNA-sequencing and polyA-selected RNA-sequencing.
Genomics. 2010;96:259–65.

19. Yang L, Duff MO, Graveley BR, Carmichael GG, Chen LL. Genomewide
characterization of non-polyadenylated RNAs. Genome Biol. 2011;12:R16.

20. Zhao W, He X, Hoadley KA, Parker JS, Hayes DN, Perou CM. Comparison of
RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray
for expression profiling. BMC Genomics. 2014;15:419.

21. Sultan M, Amstislavskiy V, Risch T, Schuette M, Dökel S, Ralser M, et al. Influence
of RNA extraction methods and library selection schemes on RNA-seq data.
BMC Genomics. 2014;15:675.

22. Crawford JE, Guelbeogo WM, Sanou A, Traoré A, Vernick KD, Sagnon N, et al.
De novo transcriptome sequencing in Anopheles funestus using Illumina RNA-
seq technology. PLoS One. 2010;5:e14202.

23. Gregory R, Darby AC, Irving H, Coulibaly MB, Hughes M, Koekemoer LL, et al.
A de novo expression profiling of Anopheles funestus, malaria vector in Africa,
using 454 pyrosequencing. PLoS One. 2011;6:e17418.

24. Winnebeck EC, Millar CD, Warman GR. Why does insect RNA look degraded?
J Insect Sci. 2010;10:159.

25. Marzluff WF, Wagner EJ, Duronio RJ. Metabolism and regulation of
canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet.
2008;9:843–54.

26. Kühl M, Wedlich D. XB/U-cadherin mRNA contains cytoplasmic polyadenylation
elements and is polyadenylated during oocyte maturation in Xenopus laevis.
Biochim Biophys Acta. 1995;1262:95–8.

27. Beilharz TH, Preiss T. Widespread use of poly(A) tail length control to
accentuate expression of the yeast transcriptome. RNA. 2007;13:982–97.

28. Hunt RH, Brooke BD, Pillay C, Koekemoer LL, Coetzee M. Laboratory
selection for and characteristics of pyrethroid resistance in the malaria
vector Anopheles funestus. Med Vet Entomol. 2005;19:271–5.

29. Martin M. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet J. 2011;17:10–2.

30. Joshi NA, Fass JN. Sickle. A sliding-window, adaptive, quality-based trimming
tool for FastQ files (Version 1.33). https://github.com/najoshi/sickle. 2011

31. Krzywinski J, Grushko OG, Besansky NJ. Analysis of the complete mitochondrial
DNA from Anopheles funestus: an improved dipteran mitochondrial genome
annotation and a temporal dimension of mosquito evolution. Mol Phylogenet
Evol. 2006;39:417–23.

32. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2:
accurate alignment of transcriptomes in the presence of insertions,
deletions and gene fusions. Genome Biol. 2013;14:R36.

33. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat
Methods. 2012;9:357–9.

34. HTSeq. http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
35. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for

differential expression analysis of digital gene expression data.
Bioinformatics. 2010;26:139–40.

36. Robinson MD, Oshlack A. A scaling normalization method for differential
expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.

37. Robinson MD, Smyth GK. Moderated statistical tests for assessing differences
in tag abundance. Bioinformatics. 2007;23:2881–7.

38. Nelder JA, Wedderburn RWN. Generalized linear models. J R Stat Soc Ser A.
1972;135:370–84.

39. Wilks SS. The large-sample distribution of the likelihood ratio for testing
composite hypotheses. Ann Math Stat. 1938;9:60–2.

40. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.

41. BlastKOALA. http://www.kegg.jp/blastkoala. Accessed April, 2015.
42. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes.

Nucleic Acids Res. 2000;28:27–30.

43. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data,
information, knowledge and principle: back to metabolism in KEGG. Nucleic
Acids Res. 2014;42(Database issue):D199–205.

44. Kyoto Encyclopedia of Genes and Genomes (KEGG).
http://www.genome.jp/kegg. Accessed April, 2015.

45. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al.
Transcript assembly and quantification by RNA-Seq reveals unannotated
transcripts and isoform switching during cell differentiation. Nat Biotechnol.
2010;28:511–5.

46. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for
assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

47. Schneider TD, Stephens RM. Sequence logos: a new way to display
consensus sequences. Nucleic Acids Res. 1990;18:6097–100.

48. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo
generator. Genome Res. 2004;14:1188–90.

49. NCBI. http://www.ncbi.nlm.nih.gov
50. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-

generation sequencing data. Bioinformatics. 2012;28:3150–2.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Weedall et al. BMC Genomics  (2015) 16:931 Page 15 of 15

https://github.com/najoshi/sickle
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
http://www.kegg.jp/blastkoala/
http://www.genome.jp/kegg/
http://www.ncbi.nlm.nih.gov/

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Preparation of transcriptome sequencing libraries
	Alignment of sequence reads to reference genome
	Tag counting for annotated genomic features and analysis of the ribosomal RNA content of libraries
	Comparison of poly(A) mRNA-enriched and Ribo-Zero rRNA-depleted samples
	Analysis of differential transcriptome composition between mRNA enrichment methods
	Detection of un-annotated transcripts
	Validation and improvement of the annotation of Anopheles funestus genes, focused on detoxification-associated gene families
	Integration of An. funestus transcriptome datasets and assignment of FUMOZ scaffolds to chromosome arms

	Conclusions
	Methods
	Mosquito samples used in the study
	RNA extraction, sequence library preparation and sequencing
	Alignment of sequence reads to a reference genome
	Analysis of transcript abundance among samples
	Analysis of gene ontologies and KEGG functional categories
	Detection of un-annotated transcripts
	Genome annotation validation and improvement
	Clustering of sequences from multiple transcriptome datasets and assignment of scaffolds to chromosome arms

	Availability of supporting data
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



