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Abstract
Implementation of successful prevention of mother-to-child transmission of HIV strategies

has resulted in an increased population of HIV-exposed uninfected (HEU) infants. HEU

infants have higher rates of morbidity and mortality than HIV-unexposed (HU) infants.

Numerous factors may contribute to poor health in HEU infants including immunological

alterations. The present study assessed T-cell phenotype and function in HEU infants with

a focus on memory Th1 responses to vaccination. We compared cross-sectionally selected

parameters at 3 and 12 months of age in HIV-exposed (n = 42) and HU (n = 28) Kenyan

infants. We measured ex vivo activated and bulk memory CD4 and CD8 T-cells and regula-

tory T-cells by flow cytometry. In addition, we measured the magnitude, quality and memory

phenotype of antigen-specific T-cell responses to Bacillus Calmette-Guerin and Tetanus

Toxoid vaccine antigens, and the magnitude and quality of the T cell response following

polyclonal stimulation with staphylococcal enterotoxin B. Finally, the influence of maternal

disease markers on the immunological parameters measured was assessed in HEU

infants. Few perturbations were detected in ex vivo T-cell subsets, though amongst HEU

infants maternal HIV viral load positively correlated with CD8 T cell immune activation at 12

months. Conversely, we observed age-dependent differences in the magnitude and poly-

functionality of IL-2 and TNF-α responses to vaccine antigens particularly in Th1 cells.

These changes mirrored those seen following polyclonal stimulation, where at 3 months,

cytokine responses were higher in HEU infants compared to HU infants, and at 12 months,

HEU infant cytokine responses were consistently lower than those seen in HU infants.

Finally, reduced effector memory Th1 responses to vaccine antigens were observed in
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HEU infants at 3 and 12 months and higher central memory Th1 responses toM. tuberculo-
sis antigens were observed at 3 months only. Long-term monitoring of vaccine efficacy and

T-cell immunity in this vulnerable population is warranted.

Introduction
Due to the success of antiretroviral therapy (ART) strategies, mother-to-child transmission of
HIV-1 has been virtually eliminated in countries with universal access to health care and is in
steep decline in many sub-Saharan African countries[1,2]. However, it has been frequently
reported that infants born to HIV-1-infected mothers who are themselves free from HIV infec-
tion, termed HIV-exposed uninfected (HEU) infants, suffer from higher rates of infectious dis-
eases[3,4] and mortality[5] than infants born to HIV uninfected mothers. Currently in some
areas of southern Africa, up to 30% of all new-borns are HEU[6]. Thus, defining factors that
underlie poor health in HEU infants is a public health priority for countries with high HIV-1
prevalence[2].

Being born into an HIV-infected household has clear implications regarding infant care.
Mothers may themselves be ill or suffering economic consequences of their infection. Infant
feeding practices may also be sub-optimal. Importantly, HEU infants may also experience
heightened vertical exposure to maternal co-infections such as cytomegalovirus (CMV) and
Mycobacterium tuberculosis[7]. In addition, in utero exposure to antiretroviral drugs and
maternal immune system perturbations, including inflammation from HIV-1 infection during
foetal and/or neonatal development may have lasting effects on infant immunity.

Immune abnormalities such as reduced maternal antibody transfer to the foetus have been
described in HEU infants[8,9]. Maternal antibodies are critical in mediating early infant immu-
nity and reduced levels probably contribute to infection susceptibility. Sustained subclinical
reductions in lymphocytes, neutrophils and platelets[10,11] persisting into late childhood[12]
have also been described. In addition, phenotypic alterations, particularly in T-cells, indicate
altered memory subset distribution and heightened immune activation[13,14]. HIV-1-specfic
T-cell responses in HEU neonates[15,16] under the influence of regulatory T-cells (Tregs)[17]
have also been reported, suggesting in utero priming of T-cells by HIV-1 antigens. The func-
tional consequences of these alterations are unclear; to address this a common approach has
been to measure responses to routine immunisation, a scenario of a controlled antigenic
challenge.

Most infant vaccinations elicit protection through neutralizing antibody induction. There
are conflicting reports regarding antibody induction in HEU infants with reports of higher[8]
or lower[18] antibody titres. Reports on vaccine-specific T-cell responses are also conflicting
(reviewed in[7]). Most studies have focused on Bacillus Calmette-Guerin (BCG), the only vac-
cine under the Expanded Programme for Immunization thought to mediate protection directly
through T-cells. Due to the increasing number of HEU infants born in regions with twin HIV/
tuberculosis epidemics, assessing BCG responses and the induction of vaccine-specific memory
has important public health implications.

Here we cross-sectionally compared T-cell phenotype and function in Kenyan HEU and
HIV-unexposed (HU) infants at 3 and 12 months of age. We assessed the frequencies of ex
vivo activated T-cells, Tregs and memory T-cell subsets. In addition, we measured single and
polyfunctional cytokine responses following vaccination with BCG and TT delivered under the
Kenyan Expanded programme for Immunisation and following polyclonal stimulation. Our
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principal aim was to examine the memory phenotype of cytokine-responsive cells to vaccine
antigens. Finally, we assessed the role of maternal disease markers in modulating T cell immu-
nity in HEU infants.

Methods

Participants
The study was conducted between 2011 and 2013 and nested within a longitudinal cohort of
HEU infants recruited to assess adaptive immunity following exposure to HIV[19]. The proto-
col was approved by the Kenyan Medical Research Institute Ethical Research Council (protocol
no. SSC 2085) and the Oxford Tropical Research Ethics Committee (ref: 45–11); written
informed consent was obtained from mothers or guardians. Infants born to HIV-1 infected
women (N = 42) were recruited from the Comprehensive Care and Research Clinic (CCRC),
Kilifi County Hospital, Coastal Province, Kenya. PMTCT followed national guidelines[20] and
WHO recommendations[21] and included cotrimoxazole prophylaxis from six weeks to 18
months of age in HIV-exposed infants. Pregnant women were given time-limited prophylactic
ART for PMTCT of HIV-1 if their CD4 count was>350 CD4 T cells/uL (azidothymidine
[AZT] from 14 weeks of pregnancy or at first contact with antenatal services if later, and con-
tinued AZT prophylaxis through labour and one week after delivery) or put on lifelong highly
active antiretroviral therapy (HAART) if their CD4 count was< 350 cell/μL. HIV exposed
infants born to mothers not on HAART were prescribed nevirapine prophylaxis at birth to be
continued until one week after complete cessation of breastfeeding; infants born to mothers on
HAART were prescribed nevirapine prophylaxis up to six weeks of life. Mothers were coun-
selled on safe breastfeeding practices HIV-1 status was determined for all infants attending the
CCRC by PCR at six weeks of age or at first contact and by rapid antibody test at 9 and 18
months of age. A 15 mL blood sample was obtained from the mothers of participating infants
from the CCRC. Community control HU infants (N = 28) were recruited from three localities
within the catchment area of Kilifi County and sampled at a single time point. Due to ethical
considerations, HU infants were not directly screened for HIV infection. N = 16 infants classed
as HU (all 3 month old infants and six 12 month old infants) were born to HIV-negative moth-
ers tested antenatally. Antenatal screening data was not available for the remaining n = 12
infants classed as HU, who were recruited as part of an annual malaria epidemiological survey.
HIV prevalence in Coastal Province in women aged 25–35 years is 4.1%[22]. The severity of
HIV-1 pathology in early infancy and low maternal prevalence relative to the national average
in women (7.6%[23]) made the recruitment of HIV-1 positive or HEU infants unlikely. Vacci-
nation was in accordance with the Kenyan Expanded Programme for Immunisation which
includes BCG (BCG-Russia, Serum Institute of India, Pune, Maharashtra, India) at birth and
Diphtheria/Tetanus/Pertussis/Hepatitis B/Haemophilus influenza type B (Serum Institute of
India) pentavalent vaccine at 6, 10 and 14 weeks of age. Vaccination data were obtained from
infant vaccination cards. 5mL infant whole-blood samples for the present study were collected,
stored at room temperature and processed within 4 hours. Complete blood counts were deter-
mined using a Coulter MDII-18 counter (Beckman-Coulter, Fullerton CA, USA). Summary
data on maternal ART usage and CD4 counts are presented elsewhere[19] and were obtained
from clinical records.

Maternal viral load determination
Maternal viral loads were determined at the point of infant recruitment. This was done at the
International Centre for Reproductive Health, Mombasa Kenya, using a RT-qPCR test
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developed by the Agence Nationale de Recherches sur le SIDA (ANRS)[24]. The assay targets a
conserved long terminal repeat region and has a detection limit of 300 RNA copies/ml.

Immunophenotyping
Plasma was removed from whole-blood and replaced with RPMI 1640 medium plus 10% inac-
tivated new-born calf serum, 0.01% β-mercaptoethanol, 1% penicillin/streptomycin, 1% L-glu-
tamate and 1% Hepes (R10). 100μL of resuspended cells were incubated with fluorescently-
labelled antibodies (S1 Table) following standard protocols[25]; red blood cells (RBCs) were
lysed (FACS lysing solution; BD Bioscience, San Jose, CA) and washed in phosphate buffered
saline (PBS). To detect intracellular Bcl-2, surface-stained cells were permeabilised (permeabili-
sation buffer, BD Bioscience). The Human Regulatory T-cell Whole-Blood staining kit (eBios-
ciences, San Diego, CA) was used according to the manufacturer’s instructions to detect Tregs.
Following permeabilisation, cells were blocked with 2% rat serum and incubated with anti-
FOXP3. Isotype controls processed similarly were used to set positive gates for markers except
CD3, CD4, CD8 and CD25.

Whole-blood stimulation and intracellular cytokine staining
A short-term stimulation assay for intracellular cytokine staining (ICS) in whole blood was
adapted [26]. Briefly, plasma was replaced with R10; 200μL of blood cells in R10 were cultured
with CD49d and CD28 alone (0.5ug/mL each; eBiosciences; unstimulated control), or in com-
bination with either TT (Indian Serum Institute, Pune, India; 10ug/mL), purified protein deriv-
ative (PPD) ofM. tuberculosis (Statens Serum Institute, Copenhagen, Denmark; 20ug/mL) or
staphylococcal enterotoxin B (SEB; Sigma-Aldrich, St. Louis, Missouri; 1ug/mL). After 7 hours
in a water bath at 37°C, brefeldin A (Sigma-Aldrich) was added (10ug/mL). After 5 hours the
heat switched off. After 10hrs, RBCs were lysed and white cells fixed (FACS lysing solution; BD
Bioscience) and cryopreserved. Batched stimulated cells were thawed, washed in PBS and per-
meabilised. Fluorescently-labelled antibodies were added (S1 Table); following incubation, cells
were washed before acquisition.

Flow cytometry
A Cyan ADP (Beckman Coulter, Pasadena, CA) flow cytometer was used for acquisition. Com-
pensation controls using anti-mouse κ beads (BD Bioscience) were used for all experiments.
For ex vivo phenotyping,>70,000 CD3+ events were collected. For all ICS experiments all cells
were acquired, resulting in acquisition of a mean 4.09 x105 (standard deviation [SD] 2.43 x105)
total events and 2.20x105 (SD, 1.15x105) CD3+ events. Following vaccine antigen stimulation, a
mean of 712 (SD 544) events in the cytokine+ gates were recorded.

Data analysis
Compensation and gating was done in FlowJo v7.6 (Treestar, Ashland, Oregon). Statistics were
done in Prism v6 (GraphPad Software, La Jolla, CA). Differences between independent groups
were assessed by an unpaired t-test for normally distributed data or by a Mann-Whitney U test
for data not normally distributed. χ2 was used to compare categorical data. Approximate abso-
lute CD3 T cell counts were obtained by dividing the absolute lymphocyte count by 100 and
multiplying the result by the frequency of CD3 T cells obtained from the flow cytometry lym-
phocyte gate. Approximate absolute CD4 and CD8 T cell counts were similarly calculated
based on the approximate CD3 T cell count and the frequencies of CD4 and CD8 T cells rela-
tive to the flow cytometry parent gate. A P value�0.05 was considered significant. For ICS
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analysis, positive events in the unstimulated controls were subtracted from PPD, TT or SEB
stimulations. Responses were considered positive for responder frequency analysis (S3 Fig) if
adjusted values were�0.01% of total CD4 T-cells. Negative values, resulting from measure-
ment errors, were set to zero; to compensate for this potential systematic bias, positive values
<0.01% were set to zero as detailed in [27]. Boolean gating was used to assess frequencies of
cells expressing cytokine combinations; the data was processed in Excel and Spice version 5.3
[27]. Exclusion from ICS analysis occurred if a) vaccination was not recorded or the relevant
doses were not received (vaccine schedule failure); b) insufficient sample was available or 3) the
adjusted positive control (SEB) value was< the median plus 3 median absolute deviations of
the unstimulated samples for all infants (failed positive control). Analysis of TT responses at 3
months was done in infants who received 2 pentavalent vaccine doses or who received the 3rd

<72hrs of sampling. This cut off was set based on Cellerai et al. where equivalent Th1 CD4 T
cell responses to TT stimulation were shown up to 72hrs post revaccination in adults compared
to baseline [28]. TT responses at 12 months were analysed in infants who had received all 3
pentavalent vaccine doses.

Results

Infant characteristics and sample exclusion
81 specimens from 65 infants were analysed (S1 Fig). Age and gender were well matched
between HU and HEU infants within age groups (Table 1). Ex vivo analyses were done on all
specimens from 3 month-old infants and in a subset (n = 32) of specimens from 12 month-old
infants. For antigen-specific analyses, after applying exclusion criteria, 10, 22 and 6 specimens
were excluded for the PPD, TT and SEB analyses, respectively (Table 1).

Comparable ex vivo frequencies of CD4 and CD8 T-cell subsets
between HEU and HU infants at 3 and 12 months of age
Previous reports have shown decreased CD4 and CD8 T cell absolute counts in HEU infants
compared to controls that have been attributed to exposure to ART[10,11,29]. In addition,
increased T-cell frequencies with antigen-experienced[13,14] and regulatory[17] phenotypes
have been reported in HEU infants.

Analysis of absolute CD3 and CD8 T cell counts in our data indicated a significant increase
in these parameters at 12 months in HEU infants but not at 3 months (S2 Table). Although a
trend towards an increased absolute number of CD4 T cells in HEU infants was also observed
at 12 months, no significant differences were observed in CD4 and CD8 T cell percentages or
in the CD4/CD8 T cell ratio at either time point (S2 Table).

We analysed frequencies of activated T-cells and Tregs at 3 and 12 months of age and bulk
memory subsets at 12 months. Surprisingly, activated and PD-1-expressing CD4 T-cell fre-
quencies were significantly higher in HU infants at 3 months of age and activated CD4 T-cell
frequencies remained higher at 12 months (Table 2). We found no significant differences in
expression levels of any marker of CD8 T-cell activation or exhaustion (S3 Table). Similarly, no
significant changes in circulating Treg frequencies between HU and HEU infants at 3 and 12
months were found (Table 2). To assess memory subsets, CD45RA and CCR7[30], as well as
the homeostatic maintenance marker CD127[31] and the anti-apoptotic marker Bcl-2[32],
were used. No significant redistributions of memory subsets were observed in CD4 or CD8 T-
cells in HEU infants or in expression levels of CD127 and Bcl-2 (Table 2 and S3 Table). A
trend towards a reduction in bulk effector memory CD4 T cells was observed in HEU infants
at 12 months of age (Table 2).

T-Cells in HIV-Exposed Uninfected Infants

PLOS ONE | DOI:10.1371/journal.pone.0143043 November 16, 2015 5 / 19



Table 1. Infant age, gender, timing of relevant vaccinations and sample exclusions.

Characteristic Month 3 P Month 12 P

HU (10) HEU (19) HU (18) HEU (34)

Median age, months (range) 3.5 (2.5–4.8) 4.0 (2.6–5.6) NS 12.3 (9.6–13.9) 12.1 (10.7–14.0) NS

Female sex (%) 6 (60) 8 (42) NS 12 (67) 17 (50) NS

Median age at BCG, days (IQR) 5 (1.5–12.5) 3.5 (1–12.5) NS 4 (2–23) 9 (1–34) NS

Median age at 1st PV, weeks (IQR) 6.5 (6.2–7.0) 6.2 (6.0–6.9) NS 6.3 (6.1–6.6) 6.3 (6.0–7.4) NS

1st PV, median days off schedule (IQR) 4 (1–7) 2 (0–6) NS 2 (1–7) 2.0 (1–10) NS

Median age at 2nd PV, weeks (IQR) 11 (10.6–11.6) 10.2 (10.0–11.8) NS 10.9 (10.6–12.9) 10.9 (10.1–12.7) NS

2ndPV, median days off schedule (IQR) 7 (4–11) 2 (0–12) NS 9 (4–23) 6.5 (1–19) NS

Median age at 3rd PV, weeks (IQR) NA NA - 15.4 (14.8–29.6) 15.8 (14.3–18.9) NS

3rdPV, median days off schedule (IQR) NA NA - 10 (7–26) 12.5 (2–34) NS

N infants excluded from PPD analysis 1c 1a, 2b - 1c 2a, 1b, 2c -

N infants excluded from TT analysis 2a 11a - 1c 5a, 2b,1c -

N infants excluded from SEB analysis 1c 2b - 1c 2c -

An unpaired t-test was used to compare continuous parameters; χ2 was to compare categorical data; NS, not significant; NA not applicable; PV

pentavalent vaccination; HEU, HIV exposed uninfected; HU, HIV-unexposed; IQR, inter-quartile range
a Vaccine schedule failure;
b insufficient sample volume;
c failed positive control.

doi:10.1371/journal.pone.0143043.t001

Table 2. Ex vivo CD4 T cell immune activation, Tregs andmemory cell phenotypes.

Characteristic 3 months median % of CD4 T cells
(range)

12 months median % of CD4 T cells (range)

HU (n = 10) HEU (n = 19) ¥P HU (n = 16) ΦHEU (n = 16) P

Activation & exhaustion

CD38+ HLA-DR+ 6.8 (3.0–13.7) 3.2 (2.0–12.8) 0.01 6.2 (1.7–14.0) 2.7 (1.4–11.9) 0.04

PD-1 12.9 (8.7–22.9) 8.7 (1.1–16.8) 0.01 13.6 (7.2–25.1) 11.5 (8.8–26.1) NS

Tim-3 3.0 (1.2–5.0) 2.1 (0.3–10.0) NS 1.8 (0.5–3.7) 2.4 (1.3–9.7) NS

Regulation

CD25hi FoxP3+ 5.1 (1.4–7.0) 4.6 (1.7–6.8) NS 4.8 (1.81–7.96) 3.9 (1.2–7.7) NS

Anti-apoptosis

Bcl-2+ - - NA 74.55 (22.2–92.2) 72.1 (47.9–89.6) NS

Bcl-2- - - NA 25.45 (7.8–77.8) 30.6 (10.4–55.0) NS

Memory

CD127+ - - NA 84.5 (69.8–93.4) 83.7 (74.8–94.9) NS

CD127- - - NA 16.2 (6.6–30.6) 16.9 (5.4–26.4) NS

Naïve - - NA 66.2 (43.5–83.9) 73.5 (19.2–83.0) NS

TCM - - NA 16.15 (8.5–42.8) 14.0 (4.5–19.3) NS

TEMRA - - NA 5.6 (0.7–10.8) 2.6 (1.0–52.2) NS

TEM - - NA 10.2 (4.0–22.5) 6.9 (2.8–24.1) 0.06

¥ P values were calculated using the Mann-Whitney U test.
Φ CD127 expression was measured on n = 11 samples.

NS = not significant NA = not applicable; HEU, HIV-exposed uninfected; HU, HIV-unexposed

doi:10.1371/journal.pone.0143043.t002
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Altered mono and polyfunctional cytokine responses to stimulation with
PPD, TT and SEB in HEU relative to HU infants
We assessed the magnitude and polyfunctionality of CD4 and CD8 T-cell cytokine responses
(IFN-γ, IL-2 and TNF-α) to vaccine antigens and polyclonal stimulation (S2A–S2E Fig). Simi-
lar frequencies of HEU and HU infant responders to both vaccine antigens at both time points
was found (S3A and S3B Fig).

Th1 responses to BCG vaccination at birth peak at 6–10 weeks of age [33]. At 3 months, the
time-point closest to peak response, a significantly higher bulk response with any cytokine to
PPD as well as a trend towards higher IL-2 and TNF-α responses was observed in HEU infants
(Fig 1A); this was mirrored by a significantly higher dual IL-2/TNF-α response at this time
point following polyfunctional analysis (Fig 2A). At 12 months, no differences were apparent
in bulk Th1 cytokine responses (Fig 1A) or polyfunctionality (S4A Fig). In CD8 T-cells, a trend
to a higher TNF-α and any cytokine response was observed in HEU infants at 3 months; no dif-
ferences were apparent at 12 months (Fig 1B) or in polyfunctional responses at either time-
point (S5A Fig).

Following TT stimulation, no differences were observed in magnitude of Th1 cytokine
responses (Fig 1C) or polyfunctionality (S4B Fig) between HU and HEU infants at 3 months
However, at 12 months a significant decrease in the magnitude of the IL-2 response (Fig 1C) as
well as the polyfunctional IL-2/TNF-α response (Fig 2B) was observed in HEU infants.

Following SEB stimulation, significantly higher CD4 T-cell expression of IFN-γ, IL-2 and
any cytokine, as well as a trend to higher TNF-α expression, was observed in HEU compared
to HU infants at 3 months following analysis of single cytokine responses (Fig 3A); this was
mirrored, following polyfunctional analysis, by significantly higher dual IFN-γ/IL-2 and IFN-
γ/TNF-α and single IL-2-expression as well as trends towards higher triple IFN-γ/IL-2/TNF-α,
dual IL-2/TNF-α and single IFN-γ expression in HEU infants at this time point (Fig 2C). Simi-
larly, in CD8 T-cells a significant rise in the magnitude of any cytokine response as well as a
trend to a rise in IFN-γ responses was observed in HEU infants at 3 months (Fig 3B); this was
mirrored by significant rise in dual IFN-γ/IL-2 and IFN-γ/TNF-α expression and a trend to an
rise in single IFN-γ expression at this time point, following polyfunctional analysis (S5B Fig).

At 12 months the opposite observation was made, where, except for IFN-γ, the magnitude
of all cytokine responses following SEB stimulation were significantly decreased in HEU
infants (Fig 3A); this was mirrored by significant decreases in dual IL-2/TNF-α and single
TNF-α responses and a trend towards reduced triple IFN-γ/IL-2/TNF-α and single IL-2
responses (Fig 2D). Altered CD8 T-cell response to SEB were less apparent at 12 months with
trends to decreased TNF-α (Fig 3B) and dual IL-2/TNF-α responses (S5B Fig) in HEU infants.

Altered memory Th1 cytokine responses following stimulation vaccine
antigens in HEU relative to HU infants
We determined the memory phenotype of cytokine responsive cells through surface expression
of CD45RA and CCR7 following stimulation with vaccine antigens (S2F Fig).

Following PPD stimulation we observed a dominant TEM response from CD4 T-cells at 3
months in both HEU and HU infants (Fig 4A). At 12 months, we observed an increase in the
proportion of TCM CD4 T-cells contributing to the overall Th1 response. Group comparisons
revealed a significant reduction in the proportion of cytokine secreting TEM in HEU infants
(Fig 4A) coupled with a significant increase in cytokine secreting TCM cells (Fig 4A). At 12
months, a significant reduction in the proportional response of TEM and TEMRA cells in HEU
infants was also observed (Fig 4A). No significant difference were observed in memory T-cell
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Fig 1. Single cytokine CD4 and CD8 T-cell responses to vaccine antigens. The magnitude of CD4 (A) and CD8 (B) T-cell IFN-γ, IL-2, TNF-α or any
cytokine (Any) responses following short term stimulation with PPD in HIV-unexposed (HU) and HIV-exposed uninfected (HEU) infants in month 3 (M3) and
month 12 (M12) age groups. Similarly, the magnitude of cytokine responses to TT are shown in (C) for CD4 T-cells only. The horizontal black line is the
median frequency of T-cells expressing the indicated cytokine or any cytokine. The MannWhitney U test was used to assess differences between the two
groups.

doi:10.1371/journal.pone.0143043.g001
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subset frequencies with a positive cytokine response in the CD8 T-cell compartment at either 3
or 12 months (data not shown).

Following TT stimulation, we observed a dominant TEM response from CD4 T-cells at 3
and 12 months in both HEU and HU groups. Group comparisons indicated that at 12 months
there was a significant reduction in the proportion of TEM and TEMRA cells that contributed to
the overall Th1 response in HEU infants (Fig 4B).

Fig 2. Polyfunctional CD4 T-cell responses to stimulation with vaccine antigens and following polyclonal stimulation with SEB. (A) CD4 T-cells
expressing combinations of IFN-γ, IL-2 and/or TNF-α were analysed using Boolean gating following short-term stimulation with PPD in HIV-unexposed (HU)
and HIV-exposed uninfected (HEU) infants in the month 3 (M3) age group. (B) A similar analysis is shown assessing TT responses in the month 12 (M12)
age group. Similarly, polyfunctional SEB responses in M3 (C) and M12 (D) age groups are shown. The black line is the median frequency of T cells
expressing the indicated cytokine combination, the box is the interquartile range and the whiskers the 10th and 90th percentiles. The MannWhitney U test
was used to assess differences between the two groups.

doi:10.1371/journal.pone.0143043.g002
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Immunological findings and maternal characteristics
In order to assess the impact of maternal disease on ex vivo immune parameters and antigen
specific immune responses a sub analysis was carried out in HEU infants. Maternal HIV viral
load at the time of infant recruitment was found to positively correlate with CD8 T cell
immune activation at 12 months of age (S6 Fig). By contrast, no association was found between
maternal HIV viral load and immune activation in CD4 T cells at any time point or between
maternal HIV viral load and the frequency of bulk naïve or TEM cells at 12 months of age in
either CD4 or CD8 subsets (S6 Fig).

Analysis of the influence of maternal disease on antigen specific Th1 cytokine responses was
assessed by grouping infants according to the maternal CD4 count at the time of recruitment
and maternal HAART usage. No significant differences were observed between infants groups
in terms of CD4 T cell production of IFN-γ, IL-2, TNF-α or any of these cytokines in response
to PPD, TT or SEB stimulation (S4 Table).

Fig 3. Single cytokine CD4 and CD8 T-cell responses to polyclonal stimulation with SEB. The magnitude of CD4 (A) and CD8 (B) T-cell IFN-γ, IL-2,
TNF-α or any cytokine (Any) responses following short-term stimulation with SEB in HIV-unexposed (HU) and HIV- exposed uninfected (HEU) infants in
month 3 (M3) and month 12 (M12) age groups. The black line is the median frequency of T-cells expressing the indicated cytokine or any cytokine. The Mann
Whitney U test was used to assess differences between the two groups.

doi:10.1371/journal.pone.0143043.g003
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Discussion
A limited understanding exists of factors that mediate poor health in HEU infants particularly
regarding immune function. We assessed alterations in the T-cell compartment of HEU infants

Fig 4. Memory phenotype of vaccine antigen responsive CD4 T-cells. (A) Analysis of the memory
phenotype of CD4 T-cells that express any cytokine (IFN-γ, IL-2 or TNF-α) in response to short-term
stimulation with PPD. (B) A similar analysis was carried out following short-term stimulation with TT.
Comparisons were made between HIV-unexposed (HU) and HIV-exposed uninfected (HEU) infants at month
3 (M3) and month 12 (M12) age groups. The horizontal line in the box and whisker plots is the median
percentage of cytokine secreting T-cells with a particular surface memory phenotype, the box is the
interquartile range and the whiskers the 10th and 90th percentiles. TCM: central memory, TEM: effector
memory, TEMRA: effector memory that re-express CD45RA. The MannWhitney U test was used to assess
differences between the two groups.

doi:10.1371/journal.pone.0143043.g004
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focusing on ex vivo phenotypes and functional responses to the vaccine antigens PPD and TT
and polyclonal stimulation. Cross-sectional comparisons were made at 3 and 12 months of age
between gender-matched HEU and HU infants vaccinated under the Kenyan Expanded Pro-
gramme for Immunisation. The influence of maternal health on these parameters was also
explored in a sub analysis restricted to HEU infants.

In accordance with recent findings[34], ex vivo analyses indicated that immune activation,
Treg frequencies and the frequency of memory subsets were closely matched between groups.
The exception was reduced activation marker expression on CD4 T-cells at 3 and 12 months
and reduced PD-1 expression at 3 months in HEU infants, though activated CD4 T-cell fre-
quencies were typically low (<10% of CD4 T-cells). Reports have shown increased mean fluo-
rescence intensity of CD38 expression on HEU CD4 and CD8 T-cells[13], increased CD38hi

CD8 T-cells frequencies[14] and increased PD-1 expression on CD4 T-cells[35] in HEU
infants, indicating heightened immune activation and possible exhaustion. We observed, as
have others[36], constitutive CD38 expression on infant T-cells; we therefore assessed CD38/
HLA-DR co-expression[37]. Our contrasting results with previous reports may be explained
through differential exposures to cotrimoxazole which was given to HEU infants prophylacti-
cally but not to HU infants. This may have reduced bacterial infections in HEU infants and,
coupled with the anti-inflammatory properties of cotrimoxazole [38], had an impact on CD4
T-cell activation and PD-1 expression. However, the low levels of CD4 T cell activation and the
similarities in median CD8 T cell activation between groups indicate that factors other than
differential cotrimoxazole exposure may play a prominent role in modulation of T cell activa-
tion in this setting. Indeed, we observed wide variation in the frequency of activated CD8 T
cells in HU and HEU infants at both time points. Our findings, as well as those of others [34]
strongly suggest that CD8 T cell activation, in particular, is influenced by maternal HIV viral
load. In addition, the role of CMV infection in modulating CD8 T cell immune activation is
well documented [39,40] and an increased susceptibility of HEU infants to CMV infection may
account for differences in immune activation levels between HEU and HU infants observed in
other cohorts. The relationship between maternal HIV viral load and early CMV infection in
influencing CD8 T cell activation in HEU infants merits further investigation.

We hypothesised that increased immune activation would influence Treg frequencies.
Heightened Treg frequencies have been reported in HEU infants[17], though inconsistently
[41]. Our data support an unaltered immune-regulatory potential in HEU infants, as far as can
be discerned from circulating Treg frequencies.

Studies on ART-exposed and unexposed HEU infants indicate that naïve T-cells frequencies
are reduced in HEU infants[13,14], and this has been interpreted as a mark of in utero/early-
life priming of naïve T-cells through exposure to HIV-1 or other infectious agents. Our results,
and those recently reported in 1 month old Mozambican infants[34], do not indicate alter-
ations in naïve and memory CD4 and CD8 T-cell distributions in HEU infants compared to
controls. This supports the notion that early exposure to HIV antigens is reduced in infants
born to mothers with ART-mediated virological suppression in turn reducing naïve T-cell
priming. In accordance, maternal HIV viral load has been reported to negatively correlate with
naïve CD8 T cell frequencies at 1 month of age in HEU infants[34]. Our results did not indicate
a similar relationship, probably on account of the small sample size. Alternatively, by 12
months of age, any alterations in bulk memory T-cell subset distributions in HEU infants
derived from exposure to maternal HIV may have normalised.

In contrast to the similarities seen ex vivo between infant groups and the influence of mater-
nal disease on modulating some these parameters in HEU infants, analysis of T-cell responses
following stimulation indicated age-dependent alterations in cytokine production in HEU
infants, particularly in CD4 T-cells, that were largely independent of markers of maternal
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disease. This effect was most striking following SEB stimulation where at 3 months all Th1
cytokine responses were enhanced in HEU infants; conversely, at 12 months IL-2 and TNF-α
responses were reduced in HEU infants, despite an overall increase in absolute T cell counts
and a trend to increased CD4 T cell counts. This pattern of alterations was also reflected in
polyfunctional responses. Notably, reductions in dual IL-2/TNF-α and possibly triple IFN-γ/
IL-2/TNF-α expressing cells at 12 months indicate a possible impairment in Th1 functional
quality. Longitudinal analyses are needed to assess if the early enhanced Th1 response is associ-
ated with the subsequent contraction at 12 months and if these alterations persist. In addition,
although no alteration was observed in the magnitude of the 12 month IFN-γ response to SEB
in HEU infants, the early life response to SEB matures and increases in magnitude throughout
infancy and childhood[42]. Therefore, long-term monitoring of IFN-γ and other cytokine
responses into childhood in HEU infants in response to polyclonal stimulation are warranted
to assess if the broad protective roles of Th1 cells are impaired.

Responses to vaccine antigens mirrored some of the polyclonal responses despite compara-
ble frequencies of infant responders to vaccination. Following PPD stimulation we observed
higher production of any cytokine and dual IL-2/TNF-α production in CD4 T-cells at 3
months in HEU infants. These changes were not apparent at 12 months, suggesting a transient
enhancement of immunological reactivity following BCG vaccination in HEU infants in this
cohort. Accordingly, increased BCG-specific CD4 and CD8 T-cell proliferation has been
reported in 16-week-old HEU infants[43]. By contrast, reduced proliferative responses follow-
ing BCG stimulation were reported at 10 weeks[35] and at a median of 7 months of age[44] in
HEU infants. In addition, Mansoor reported robust mono and polyfunctional BCG-specific
cytokine responses in HEU infants throughout the first year of life[45]. We did not assess
maternal/infant exposure toM. tuberculosis, but increased exposure in HEU infants may lead
to enhanced early BCG-specific responses. However, a recent study indicated that maternalM.
tuberculosis sensitization had no effect on BCG-specific responses in 16 week-old infants[46].
Alternatively, HEU infants may experience broad hyper-responsiveness to numerous antigens
in the first months of life, a hypothesis supported by our observations with SEB stimulation.
Additional studies may be needed to define the temporal dynamics of altered responses to
BCG in HEU infants.

Following TT stimulation, we observed predominant IL-2 and TNF-α CD4 T-cell responses
with minimal frequencies of IFN-γ-responsive cells. No significant alterations in cytokine
responses were detected at 3 months in HEU infants; however at 12 months a significant reduc-
tion in IL-2 and dual IL-2/TNF-α expressing Th1 cells was observed. T-cell cytokine responses
following in vitro whole-blood stimulation with TT are reported to result in reduced IFN-γ, IL-
5 and IL-13 production in HEU infants at 12 months[47]. Because maternal TT immunisation
can prime infant TT-specific responses[48], it was suggested that reduced cytokine secretion in
HEU infants results from compromised transplacental transmission of immune complexes
consisting of TT and maternal antibodies[47]. Nevertheless, TT vaccination usually induces
protective antibody titres in HEU infants, albeit with reduced geometric mean anti-tetanus
titres compared to healthy controls[49]. Therefore, it seems that despite compromised mono
and dual Th1 and other cytokine response to TT vaccination the protective efficacy, at least in
the short-term, of TT is not significantly diminished in HEU infants.

We principally aimed to examine memory CD4 T-cell induction in HEU infants. We
observed that following PPD and TT stimulation Th1 responses were mediated predominantly
by TEM cells. This finding is supported by reports for BCG[50–52] and TT[28] vaccinations,
though not by a recent longitudinal study in South African infants which identified BCG-spe-
cific TCM cells as the prominent memory subtype albeit using a distinct anti-CCR7 monoclonal
antibody [33]. Crucially, we found that HEU infants had reduced TEM responses following
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PPD stimulation at 3 and 12 months and at 12 months following TT stimulation. Interestingly,
the reduction in antigen-specific TEM responses at 12 months coincided with a trend towards a
reduction in the frequency of bulk TEM cells in HEU infants. In addition, following PPD stimu-
lation, the lower TEM response occurred together with a higher TCM response at 3 months. The
implications of these observations for protective immunity are not clear, particularly because
the immunological correlates of protection for BCG are not defined. In addition, to our knowl-
edge, studies assessing susceptibility patterns toM. tuberculosis or tetanus are lacking in HEU
infants. Therefore our results highlight the need to assess the long-term functional conse-
quences of altered T-cell responses to vaccines in HEU infants.

Our study has a number of strengths and some weaknesses. The former include the compre-
hensive analysis of ex vivo and functional T cell parameters in infants at two key time-points.
In addition, the method used to analyse vaccine-specific T cell responses using cryopreserved
stimulated leucocytes[26] enabled batch-processing of samples reducing inter-patient experi-
mental error. Finally, to our knowledge, this is the first study to analyse and identify alterations
in memory T-cell subset responses to vaccination in HEU infants. Our study was limited prin-
cipally by our samples size: though a robust cross-sectional analysis could be carried out, mean-
ingful multivariate analyses could not be done. In addition, because the study was not based on
a birth cohort, possible confounding factors such gestational age and maternal/infant exposure
toM. tuberculosis and baseline nutritional data for HU infants could not be obtained. Our data
should therefore be interpreted with these limitations in mind. Lastly, cotrimoxazole prophy-
laxis was only provided to HEU infants, in accordance with PMTCT policy in Kenya. The pos-
sible immunomodulatory effects of cotrimoxazole may therefore remain a factor that impacts
HEU infant immune function. However, the limited data that exists on the effect of cotrimoxa-
zole on T-cell function in humans indicates negligible effects on T cell number[53], prolifera-
tion, and IFN-γ, IL-2 or TNF-α secretion following mitogen stimulation[38]. We therefore
consider differential cotrimoxazole prophylaxis to have a limited impact on the findings pre-
sented here.

In summary, our data add to the body of evidence suggesting specific alterations in T-cell
responses to BCG[43,44,54,55] and TT[47] antigens and to polyclonal stimulation[43] in HEU
infants. Importantly, we describe alterations in the induction of immunological memory in
response to vaccination highlighting the need to monitor long-term outcomes of vaccination
in HEU infants and its links to the heightened morbidity and mortality caused by infectious
diseases in this vulnerable population.
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fected (HEU) infants in the month 12 (M12) age group. (B) A similar analysis is shown assess-
ing TT responses in the month 3 (M3) age group. The black line is the median frequency of T
cells expressing the indicated cytokine combination, the box is the interquartile range and the
whiskers the 10th and 90th percentiles. The MannWhitney U test was used to assess differences
between the two groups.
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S5 Fig. Polyfunctional CD8 T cells responses to stimulation with PPD and SEB. (A) CD8 T
cells expressing combinations of IFN-γ, IL-2 and or TNF-α were analysed using Boolean gating
following short-term stimulation with PPD in HIV-unexposed (HU) and HIV exposed unin-
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