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Abstract 20 

Long lasting pyrethroid treated bednets are the most important tool for preventing malaria. 21 

Pyrethroid resistant Anopheline mosquitoes are now ubiquitous in Africa though the public health 22 

impact remains unclear, impeding the deployment of more expensive nets. Meta-analyses of 23 

bioassay studies and experimental hut trials are used to characterise how pyrethroid resistance 24 

changes the efficacy of standard bednets, and those containing the synergist piperonyl butoxide 25 

(PBO), and assess its impact on malaria control. New bednets provide substantial personal 26 

protection until high levels of resistance though protection may wane faster against more resistant 27 

mosquito populations as nets age. Transmission dynamics models indicate that even low levels of 28 

resistance would increase the incidence of malaria due to reduced mosquito mortality and lower 29 

overall community protection over the life-time of the net. Switching to PBO bednets could avert up 30 

to 0.5 clinical cases per person per year in some resistance scenarios.  31 

  32 
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 33 

It is estimated that 68% of the 663 million cases of malaria that have been prevented since the year 34 

2000 have been through the use of long-lasting insecticide treated bednets (LLINs) (1). However 35 

there is a growing realisation that insecticide resistance is putting these advances under threat (2), 36 

with mosquitoes reporting widespread resistance to pyrethroids, the only class of insecticides 37 

currently approved for use in bednets (3). The public health impact of pyrethroid resistance in areas 38 

of LLIN use is hard to quantify as comparison between sites is complicated by multiple 39 

epidemiological factors making it difficult to ascribe differences in malaria metrics solely to mosquito 40 

susceptibility (4). The efficacy of LLINs against mosquitoes is typically measured in experimental hut 41 

trials (5). These experiments are time consuming, relatively expensive, and geographically limited 42 

and by themselves they do not fully account for all effects of the LLIN as they do not show the 43 

community impact (herd effects) caused by the insecticide killing mosquitoes (6, 7). Mathematical 44 

models can be used to translate entomological endpoint trial data into predictions of public health 45 

impact. Currently this has only been done for a small number of sites (8) making it difficult for 46 

malaria control programmes to understand the problems caused by insecticide resistance in their 47 

epidemiological setting. 48 

There are no easy to use genetic markers that can reliably predict the susceptibility of mosquitoes to 49 

pyrethroid insecticide (9). The current most practical phenotypic method for assessing resistance is 50 

the use of bioassays which take wild mosquitoes and measures their mortality after exposure to a 51 

fixed dose of insecticide (5). However the discriminating doses used in the assay are unrelated to the 52 

field exposure and so the predictive value of these bioassays for assessing the problems of 53 

pyrethroid resistance is unknown. A meta-analysis has shown that insecticide treated bednets still 54 

outperform untreated nets in experimental hut trials even against pyrethroid resistant populations 55 

(10) though the community impact (herd effects) of the LLIN was not assessed (6). The population 56 

prevalence of pyrethroid resistance is known to be changing at a fast rate (11) making it important 57 
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to regularly re-evaluate the efficacy of LLINs in order to guide current vector control and resistance 58 

management strategies (2). 59 

There are limited tools available for tackling pyrethroid resistance and protecting the advances made 60 

in malaria control. Until new LLINs containing alternative insecticide are available the only 61 

alternative bednet are those containing pyrethroids plus the insecticide synergist piperonyl butoxide 62 

(PBO). Studies have shown that PBO LLINs are substantially better at killing insecticide resistant 63 

mosquitoes in some locations but not others (12-23). PBO LLINs are more expensive than standard 64 

LLINs, with one manufacturer’s 2012 price for PBO LLIN being US$4.90 compared to a comparable 65 

standard LLIN price of US$3.25 (8). This makes it unclear where and when their use would be 66 

beneficial over standard LLINs given constrained public health budgets. A mathematical modelling 67 

study used results from 6 experimental hut trials comparing a standard LLIN (PermaNet® 2.0) with a 68 

PBO LLIN (PermaNet® 3.0) against Anopheles gambiae sensu lato mosquitoes (8). It predicted that 69 

the more expensive PBO LLIN was still cost effective compared to a threshold of US$150/DALY 70 

averted (not comparing against standard LLINs) in 4 of the 6 sites though these results are not 71 

generalisable beyond the specific sites chosen by the manufacturer, population prevalence of 72 

resistance, the type of LLIN or mosquito species. The WHO has recognised the increased bio-efficacy 73 

of PermaNet® 3.0 in some areas (24) but there is a lack of clear consensus on when and where these 74 

should be deployed.  Defining the added public health benefit expected by a switch to PBO LLINs is 75 

essential to guide decisions on pricing, purchasing and deployment. 76 

Here we propose that information on the current malaria endemicity, mosquito species and 77 

population prevalence of pyrethroid resistance (as measured by bioassay mortality) can be used to 78 

predict the public health impact of pyrethroid resistance and choosing the most appropriate LLIN for 79 

the epidemiological setting. Firstly (1) a meta-analysis and statistical model are used to determine 80 

whether mosquito mortality in a bioassay can be used to predict the proportion of mosquitoes 81 

which die in experimental hut trials and to define the shape of this relationship. Secondly (2), 82 
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another meta-analysis of experimental hut trial data is analysed to characterise the full impact of 83 

pyrethroid resistance on LLIN effectiveness. Thirdly, information from (1) and (2) is used to 84 

parameterise a widely used malaria transmission dynamics mathematical model to estimate the 85 

public health impact of pyrethroid resistance in different settings taking into account the community 86 

impact of LLINs. An illustration of model predictions showing how different malaria metrics change 87 

over time is given in Figure 1. The figure also indicates how LLIN coverage and variables such as 88 

malaria endemicity are incorporated in the model. Finally (4) this model is combined with bioassay 89 

and experimental hut trial results to predict the epidemiological impact of switching from mass 90 

distribution of  standard to  PBO LLIN.  91 

 92 

Results 93 

Defining a metric for pyrethroid resistance 94 

The population prevalence of pyrethroid resistance is defined from the percentage of mosquitoes 95 

surviving a pyrethroid bioassay performed according to standardised methodologies. Data from all 96 

bioassay types (such as the WHO tube susceptibility bioassay (25), WHO cone bioassay (5) or CDC 97 

tube assay (26)) are combined to produce a simple to use generalisable metric. Note that this 98 

pyrethroid resistance test does not differentiate between varying levels of resistance within an 99 

individual mosquito as only single discriminating doses are used. It is assumed that the ability of a 100 

mosquito to survive insecticide exposure is not associated with any other behavioural or 101 

physiological change in the mosquito population which influences malaria transmission. For 102 

example, an increased propensity for mosquitoes to feed outdoors (subsequently referred to as 103 

behavioural resistance) would limit their exposure to LLINs though there is currently insufficient field 104 

evidence to justify its inclusion in the model (27, 28). 105 

 106 
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Using bioassays to predict LLIN efficacy 107 

Table 1 summarises the datasets used in the different meta-analyses. Meta-analysis M1 shows that 108 

mosquito mortality in experimental hut trials can be predicted by the percentage of mosquitoes 109 

surviving a simple pyrethroid bioassay (Figure 2A). There is a substantial association between 110 

pyrethroid resistance in a bioassay and mortality measured in a standard LLIN experimental hut trial 111 

(Figure 2A, Deviance Information Criteria, DIC, with resistance as an explanatory variable =2544.0, 112 

without =2649.0 (lower value shows more parsimonious model), best fit parameters ߙଵ=0.634 (95% 113 

Credible Intervals, 95%CI, 0.012-1.29) and ߙଶ=3.99 (95%CI 3.171-5.12)). This indicates that bioassay 114 

survival can be used as a quantitative test to assess how the population prevalence of pyrethroid 115 

resistance influences LLIN efficacy. The number of studies identified in M1 is relatively small (only 21 116 

data-points) so the predictive ability of the bioassay was further validated using the A. gambiae s.l. 117 

PBO data (Figure 2BC).  118 

 119 

Added benefit of PBO 120 

The increased mortality observed by adding the synergist PBO to a pyrethroid bioassay was assessed 121 

for A. funestus and A. gambiae s.l. mosquitoes with different levels of pyrethroid resistance (M2, 122 

Figure 2B). Data suggests that for the A. gambiae complex PBO has the greatest benefit in mosquito 123 

populations with intermediate levels of pyrethroid resistance (including pyrethroid resistance as an 124 

explanatory variable DIC=2544.0, without DIC=4748.0). In A. funestus adding PBO appears to kill all 125 

mosquitoes irrespective of the prevalence of pyrethroid resistance (including resistance as an 126 

explanatory variable improved model fit, with DIC=2544.0, without DIC=2547.0, though the gradient 127 

of the line was so shallow as to effectively make the PBO synergised pyrethroid mortality 128 

independent of the population prevalence of pyrethroid resistance).  129 
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The relationships identified in Figure 2A and 2B are used to predict the added benefit of a PBO LLIN 130 

over a standard LLIN (Figure 2C). These predictions are consistent with the observed results from all 131 

published experimental hut trials directly comparing both LLIN types (M3) (see overlap of data 132 

points with model predictions on Figure 2C) providing further independent evidence that the 133 

population prevalence of pyrethroid resistance measured by a bioassay can be used to predict LLIN 134 

induced mortality in a hut trial for both standard and PBO LLINs.  135 

 136 

The impact of pyrethroid resistance on LLIN efficacy 137 

Mortality in experimental huts was shown to be a useful predictor of LLIN induced deterrence, 138 

exiting and the rate of pyrethroid decay (Figure 3A-C). Figure 3A indicates that the number of 139 

mosquitoes deterred from entering the experimental hut substantially decreases in areas of higher 140 

pyrethroid resistance (where LLIN induced mortality inside the hut is low) though the variability 141 

around the best fit line is high suggesting the precise shape of the relationship is uncertain. As the 142 

population prevalence of pyrethroid resistance increases (and mortality inside the hut decreases) an 143 

increasing proportion of mosquitoes entering the house exit without blood-feeding (Figure 3B). Only 144 

when there is a very high population prevalence of pyrethroid resistance does the probability that a 145 

mosquito will successfully feed start to increase (Figure 3C). The changing behaviour of a host 146 

seeking mosquito with different levels of pyrethroid resistance is shown in Figure 3D. 147 

The overall efficacy of an LLIN depends on its initial efficacy and the rate at which this changes over 148 

the life-time of the net. Since there are currently no published durability studies in areas of high 149 

pyrethroid resistance or with PBO LLINs we estimate the loss of insecticidal activity from 150 

experimental hut trials using washed nets. Results indicate that washing decreases efficacy fastest in 151 

areas of higher pyrethroid resistance. Figure 3E shows estimates of the decay in pyrethroid activity 152 

assuming that the loss of efficacy due to washing is proportional to the change in activity seen over 153 

time (i.e. if the rate of decay over subsequent washes is twice as fast in a resistant mosquito 154 
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population then the decay of pyrethroid activity over time will also be twice as fast). Mosquitoes 155 

with high pyrethroid resistance appear to overcome the insecticide activity of the LLIN faster than 156 

susceptible mosquitoes. A hypothesis for the cause of this relationship is outlined in Figure 3F. 157 

 158 

The public health impact of pyrethroid resistance 159 

The transmission dynamics model predicts that the higher the population prevalence of pyrethroid 160 

resistance the greater impact it will have on both the number of clinical cases (Figures 4A and 4B) 161 

and the force of infection (as measured by the EIR, Figure 4C). This is due to the lower initial killing 162 

efficacy of the LLIN but also because of the higher rate of decay of insecticidal activity (it gets less 163 

effective more quickly).  The absolute increase in EIR caused by resistance increases in areas of high 164 

endemicity (Figure 4C), though the model predicts that the number of clinical cases caused will peak 165 

at intermediate parasite prevalence because high levels of clinical immunity will mask increased 166 

infection rates in hyper-endemic areas. Understandably the impact of resistance will depend on the 167 

current LLIN coverage, with the total public health impact of resistance being greatest in areas 168 

where bednets were having the highest impact (i.e. areas of lower, 50%, coverage, see Figure 4–169 

figure supplement 1). Equally the impact of resistance will be higher in areas with mosquito species 170 

which are more amenable to control through the use of LLINs (i.e. greater in A. gambiae s.s. than 171 

A. arabiensis, Figure 4–figure supplement 2 and 3). The transmission dynamics model predicts that 172 

the public health impact of pyrethroid resistance will be high. For example with as little as 30% 173 

resistance (70% mortality in discriminating dose assay) in a population with 10% slide prevalence (in 174 

2-10 year olds) the model predicts that pyrethroid resistance would cause an additional 245 (95%CI 175 

142-340) cases per 1000 people per year (Figure 4A, averaged over the 3 year life-expectancy of the 176 

net). Similar increases in the number of cases are seen in those with or without LLINs (Figure 4A).  177 

 178 
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The public health benefit of switching to PBO LLINs  179 

The impact of the addition of the synergist, PBO, on pyrethroid induced mortality appears to depend 180 

on mosquito species and the population prevalence of pyrethroid resistance. In mosquito 181 

populations with moderate to high resistance results indicate PBO is an effective synergist of 182 

pyrethroids (Figure 5A). For example in an area with 10% endemicity and 80% resistance (20% 183 

mortality in discriminating dose assay) the model predicts that switching to PBO LLINs would avert 184 

an additional 501 (95%CI 319-621) cases per 1000 people per year (Figure 5A) compared to the same 185 

level of standard LLIN coverage. The absolute number of cases averted by switching to PBO LLINs is 186 

predicted to be greater in areas with intermediate endemicity as human immunity is likely to 187 

partially buffer the added benefit of PBO LLINs in areas of highest malaria prevalence (Figure 5B). 188 

However, due to the non-liner relationship between incidence of clinical infection and endemicity 189 

the greatest percentage reduction in clinical cases and EIR is seen in areas of low endemicity (Figure 190 

5CF). The exact change in clinical cases will vary between settings. For example switching from 80% 191 

coverage with standard LLINs to 80% coverage with PBO LLINs in an area with 30% endemicity and a 192 

mosquito population with 60% pyrethroid resistance is predicted to reduce the number of clinical 193 

cases by ~60% whereas the same switch in the type of nets used in an area with 30% endemicity and 194 

20% pyrethroid resistance would only reduce the number of clinical cases by ~20% (Figure 5C). 195 

Greater percentage reductions are likely to be seen in EIR than the number of clinical cases due to 196 

human immunity (Figure 5E). 197 

 198 

Discussion 199 

Pyrethroid resistance is widespread across Africa though its public health impact in unknown. Here 200 

we show that the simple bioassay can be used to predict how pyrethroid resistance is changing the 201 

efficacy of different types of LLIN and how this would be expected to influence malaria morbidity.  202 
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The bioassay is a crude tool for measuring pyrethroid resistance though its simplicity makes it 203 

feasible to use on a programmatic level. Figure 2A and 2C indicate that on average bioassay 204 

mortality is able to predict the results of standard and PBO LLIN experimental hut trials for 205 

A. gambiae s.l. mosquitoes. There is a high level of measurement error in the bioassay (as seen by 206 

the wide variability in points in Figure 2A and 2B) so care should be taken when interpreting the 207 

results of single assays as differences in mosquito mortality may have been caused by chance. 208 

Multiple bioassays could be conducted on the same mosquito population and the results averaged 209 

to increase confidence. However the exact cause of the measurement error remains unknown so 210 

increased repetition many not necessarily generate substantially more accurate results as possible 211 

causes of variability, such as mosquito husbandry techniques or environmental conditions (4), may 212 

be repeated. Further work is therefore needed to determine whether assay repetition substantially 213 

improves overall accuracy or whether further standardisation or more complex assays are required. 214 

The majority of data are for A. gambiae s.l. so the analysis needs to be repeated for other species 215 

once data becomes available. More advanced methods of measuring insecticide resistance (such as 216 

the intensity bioassay (29) or the use of genetic markers (9)) are likely to be a more precise way of 217 

predicting resistance. However since there are insufficient data to repeat this analyses with these 218 

other assays their predictive ability remains untested. Similarly this analysis has grouped WHO tube, 219 

WHO cone and CDC bottle assays together when the use of a single assay type might be more 220 

predictive. 221 

The meta-analysis of experimental hut trials in areas with different levels of resistance has important 222 

implications for our understanding of how pyrethroid resistance influences LLIN efficacy. This 223 

analysis suggests that the probability that a mosquito will feed on someone beneath a LLIN only 224 

increases substantially at high levels of pyrethroid resistance (Figure 3C). People under bednets 225 

exposed to mosquito populations with intermediate levels of resistance still have a high degree of 226 

personal protection whilst in bed as those mosquitoes which do not die are likely to exit the hut 227 

without feeding. It is only when mosquito populations are highly resistant (>60% survival) that an 228 
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increasing proportion of mosquitoes appear to successfully feed through the LLIN (Figure 3D). This 229 

may explain why a previous meta-analysis on the impact of pyrethroid resistance on LLIN efficacy in 230 

experimental hut trials failed to find a substantial effect (10) as resistance was categorised into 231 

broad groups (partially based on highly variable bioassay data) unlike here where resistance is 232 

treated as a continuous variable (as measured using experimental hut trial mortality data which are 233 

less variable than bioassay data). This earlier study also only analysed papers published or presented 234 

prior to May 2013 and so it did not include the recent experimental hut trials which had the lowest 235 

mosquito mortality (30, 31).  236 

The meta-analysis revealed that the number of mosquitoes deterred from entering a hut with a LLIN, 237 

decreases with increasing pyrethroid resistance. LLIN efficacy is therefore reduced as mosquitos 238 

enter huts where they have both a higher chance of feeding and a lower chance of being killed. 239 

These parallel changes in behaviour increase the resilience of mosquito populations to LLINs as in a 240 

susceptible mosquito population, high deterrence will reduce LLIN efficacy by preventing 241 

mosquitoes entering houses where they have a high chance of being killed (relative to susceptible 242 

populations). Importantly the loss of deterrence suggests that those sleeping in a house with an LLIN 243 

though not sleeping under the net themselves (a phenomenon particularly common in older children 244 

(32)) will lose an additional degree of protection (on top of the community impact of mosquito 245 

killing). 246 

The overall effectiveness of LLINs depends on the duration of insecticide activity. Evidence suggests 247 

that multiply washed LLINs lose their ability to kill mosquitoes more in areas of high pyrethroid 248 

resistance. Washing is seen as an effective method of aging LLINs (5). Repeatedly washing a net (and 249 

presumably reducing the concentration of the insecticide) appears to have little impact on its ability 250 

to kill a susceptible mosquito whilst significantly reducing the lethality of the LLIN against more 251 

resistant mosquitoes (Figure 2E). The difference in mortality is likely to be caused by mosquitoes 252 

with  higher population prevalence of resistance being able to tolerate a higher concentration of 253 
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insecticide (5). If so, then the higher longevity of LLINs against susceptible mosquitoes observed in 254 

the washed net data may be explained by the longer time it takes for the insecticide concentration 255 

on the LLIN to drop below this critical level (Figure 2F). This analysis assumes that the decay in 256 

pyrethroid activity over time is proportional to its decay following washing and this needs to be 257 

confirmed by durability studies in areas of high pyrethroid resistance. Nevertheless the results seem 258 

to be confirmed by two recent studies which evaluated mosquito mortality in older (standard) LLINs 259 

(11, 33). Durability studies should be prioritised as the model predicts that, even at low levels of 260 

pyrethroid resistance, the loss of insecticide activity over the three year bednet life-expectancy, has 261 

a bigger epidemiological impact on malaria, than the initial efficacy of new LLINs. If confirmed then 262 

more regular net distribution could be considered as a temporary, albeit expensive, method to 263 

mitigate the public health impact of high pyrethroid resistance. 264 

Transmission dynamics mathematical models are a useful tool for disentangling the different 265 

impacts of LLINs. Though a person under a LLIN requires high pyrethroid resistance before LLINs 266 

start to fail (Figure 3C), the models predict that at a population level even low pyrethroid resistance 267 

can increase the number of malaria cases over the life-time of the net (Figure 4A). Hut trials measure 268 

feeding when the volunteer is underneath a bednet whilst in reality (and in the mathematical model) 269 

a percentage of mosquito bites are taken when people are not in bed. The loss of LLIN induced 270 

mosquito mortality is likely to decrease the community impact of LLINs, increasing average mosquito 271 

age and the likelihood that people are infected whilst unprotected by a bednet. This is primarily due 272 

to the shorter duration of insecticide potency of LLINs in mosquito populations with a higher 273 

prevalence of resistance (33). Without this change in the duration of pyrethroid activity, the 274 

epidemiological impact of pyrethroid resistance will only become evident once it reaches a high level 275 

(Figure 4A). The change in the community impact of LLINs can be seen in the increase in the number 276 

of cases in people who do not use nets. This change is substantial, reinforcing the need to consider 277 

community effects in any policy decision. 278 
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Detecting an epidemiological impact of a low population prevalence of resistance may be 279 

challenging for local health systems (for example, see <20% resistance prevalence Figure 1–figure 280 

supplement 1, Figure 4) especially in an area where LLIN coverage, local climatic conditions and the 281 

use of other malaria control interventions are changing over time. These simulations also assume 282 

that resistance arrives overnight, when in reality it will spread through a mosquito population more 283 

gradually and therefore may be harder to detect. Mosquitoes exposed to LLINs may have reduced 284 

fitness (34). Currently the model assumes that mosquitoes which survive 24 hours after LLIN 285 

exposure are indistinguishable from unexposed mosquitoes. If this is not the case then hut trials 286 

data alone will be insufficient to predict the public health impact of pyrethroid resistance as current 287 

models will over-estimate its impact. Similarly, if the mosquito population exhibits additional 288 

behavioural mechanisms to avoid LLINs, such as earlier biting times, in tandem to the increased 289 

tolerance of pyrethroid insecticide then the predictions presented here will likely underestimate the 290 

public health impact as this behaviour change has not been incorporated. 291 

Currently a mosquito population is defined as being pyrethroid resistant if there is <90% bioassay 292 

mortality (25, 35). Though useful, this entomological measure should not be considered as a 293 

measure of the effectiveness of pyrethroid LLINs. The personal protection provided by sleeping 294 

under a LLIN is likely to be substantial even at very high levels of resistance (10, 36). Any reduction in 295 

mosquito mortality will likely reduce the community impact of LLINs though it may be hard to 296 

detect, especially in areas with new LLINs (the public health impact of resistance is likely to be 297 

greater in older nets, Figure 3E). As with all transmission dynamics mathematical models these 298 

predictions need to be validated in particular locations with well-designed studies combining 299 

epidemiological and entomological data.  We are currently unaware of any published data with 300 

sufficient information to test the model against though a thorough validation exercise should be 301 

carried out as soon as such studies become available. Currently the meta-analyses and transmission 302 

dynamics models concentrated on malaria in Africa and give predictions for the three primary 303 

mosquito vector species found there. Each meta-analyses has data from multiple countries but these 304 



 

14 
 

sites are not geographically representative of the whole of malaria endemic Africa. Though the 305 

principles outlined here may apply to other mosquito species in different settings care should be 306 

taken when extrapolating the results beyond the areas where the data were collated.  307 

The bioassay data indicate that the ability of PBO to synergise pyrethroid induced mortality depends 308 

on the mosquito species. In A. funestus PBO always appears to restore near 100% mortality whilst 309 

for mosquitoes from the A. gambiae complex the greatest additional benefit of PBO being seen at 310 

intermediate levels of pyrethroid resistance (Figure 2B). The exact causes of this are unknown but is 311 

likely related to the predominant resistance mechanisms in each species.  PBO’s primary synergistic 312 

effect on pyrethroids is thought to be due to the inhibition of the cytochrome P450 enzymes which 313 

catalyse the detoxification of the insecticides (37).  Elevated P450 levels are the primary resistance 314 

mechanism in A. funestus whereas in A. gambiae s.l. both increased detoxification and alterations in 315 

the target site contribute to pyrethroid resistance with the latter mechanism being largely 316 

unaffected by PBO (38, 39). 317 

For A. gambiae s.l. populations this result was verified by experimental hut trial data which directly 318 

compare standard and PBO LLINs (Figure 2C). Both bioassay and hut trial data suggest minimal 319 

additional benefit of PBO in areas with very high levels of pyrethroid resistance. Unfortunately there 320 

are currently no published studies where PBO LLINs have been tested in experimental hut trials in 321 

areas with A. funestus so these bioassay results should be treated with caution until they can be 322 

further verified. Additional data would also allow the differences between species in the A. gambiae 323 

complex to be assessed. A previous analysis comparing PermaNet® 2.0 and 3.0 was unable to test 324 

whether the increase in efficacy of the PBO LLIN was solely due to the addition of PBO as this net has 325 

a higher concentration of insecticide (8). The results presented here show a consistent pattern 326 

between PermaNet® 2.0 and 3.0 and Olyset® and Olyset® Plus. As both Olyset nets have the same 327 

concentration of insecticide, this suggests that PBO is causing the enhancement of efficacy.  328 
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The WHO recommends that countries routinely conduct non-PBO pyrethroid bioassays as part of 329 

their insecticide resistance management plan (2). In areas with A. gambiae s.l. the evidence 330 

presented here suggests that the results of bioassays with and without PBO can be used to predict 331 

the additional public health benefit of PBO LLINs. If there is greater mortality in the PBO bioassay 332 

and the relative mortalities broadly agree with the red curve in Figure 2B, then Figure 5B can be 333 

used to predict the approximate number of cases that will be saved by switching from standard to 334 

PBO LLINs (for a given level of endemicity and LLIN coverage). Areas with 40-90% survival (10-60% 335 

mortality) in a non-PBO standard bioassay (of any type) should consider conducting PBO synergism 336 

bioassays to determine the suitability of PBO LLINs. We would suggest that either the WHO cone, 337 

WHO tube or CDC bottle assay (conducted in triplicate and averaged to improve precision) should be 338 

sufficient evidence to justify the need to switch to PBO LLINs. 339 

The decision to recommend PBO nets over standard LLINs requires information on the relative cost 340 

effectiveness and affordability of PBO nets. If both net types cost the same and resistance has been 341 

detected then this work suggests that PBO LLINs should always be deployed as evidence suggests 342 

that they are always more effective. However, if PBO nets are more expensive, then cost 343 

effectiveness analysis will be required. The results of such analysis are likely to be context specific 344 

(depending on price, resistance level, endemicity and coverage) and interpreting them will require 345 

information on decision makers’ willingness and ability to pay for additional effectiveness.  In many 346 

situations, malaria control budgets are likely to be fixed and therefore switching to more expensive 347 

PBO LLINs may cause a reduction in overall bednet coverage. The impact of reduced coverage must 348 

therefore be off set against the benefits of introducing PBO nets, taking into consideration any 349 

additional factors such as changed programmatic costs, and equity issues.  350 

Rapid deployment of new vector control products saves lives and gives incentives for industry to 351 

invest in new methods of vector control. New methods are likely to have a higher unit price than 352 

existing tools so it is important to be able to determine where and when they should be deployed in 353 
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an efficient and transparent manner. Frameworks such as those presented here offer a relatively 354 

straightforward method of comparing two different products to determine whether the increased 355 

effectiveness justifies the higher unit price. 356 

Much of the debate over the impact of pyrethroid resistance on LLIN effectiveness has focused on 357 

the loss of personal protection provided by new nets and does not fully take into account their 358 

community impact. A large body of evidence has shown how widespread use of LLINs can cause 359 

considerable community protection, both to those who use bednets and non-users (40 and 360 

references therein). Therefore the community impact should be considered in any study 361 

investigating the consequences of pyrethroid resistance (8, 41), as any reduction in mosquito killing 362 

is likely to increase malaria cases even in areas with mildly resistant mosquito populations where 363 

LLINs are still providing good personal protection. Evidence presented here suggests that high levels 364 

of pyrethroid resistance is likely to have a bigger public health impact than previously thought and 365 

therefore could represent a major threat to malaria control in Africa. 366 

 367 

Materials and Methods 368 

Description of data 369 

To generate results which are broadly applicable all mathematical models were fit to data compiled 370 

by systematic meta-analyses of the published literature. Where possible meta-analyses were 371 

extended to the grey literature by including unpublished information. These include unpublished 372 

bioassay data from Liverpool School of Tropical Medicine, submissions to the World Health 373 

Organisation Pesticide Evaluation Scheme (WHOPES) and results from unpublished experimental hut 374 

trials (collated by contacting LLIN manufacturers Vestergaard-Frandsen and Sumitomo Chemicals 375 

Ltd). The meta-analyses followed the Preferred Reporting Items for Systematic Reviews and Meta-376 

Analyses guidelines (42) for study search, selection and inclusion criteria though the study was not 377 
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registered. The predefined inclusion criteria of each of the meta-analyses are presented in Table 2 378 

whilst the pre-defined search strings and the databases searched are outlined in full in Figure 2-379 

source data 1. Extraction was done by N.L. into piloted forms. Study corresponding authors were 380 

contacted for raw data when this information was unavailable (all contacted investigators responded 381 

with the requisite information).  382 

  383 

Impact of pyrethroid resistance on LLIN mortality 384 

To determine whether simple pyrethroid bioassays can be used to infer the outcome of 385 

experimental LLIN hut trials a meta-analysis (summarised as Meta-analysis 1, M1) was conducted to 386 

identify studies where both were carried out concurrently. To test whether this relationship changed 387 

with the population prevalence of insecticide resistance simple functional forms were fit to the raw 388 

data using a mixed-effect logistic regression (summarised as Relationship 1, R1). There has been an 389 

attempt to standardise bioassay and experimental hut trial procedures to enable data from different 390 

studies to be directly compared. These include using standard concentrations of insecticide, 391 

mosquito exposure time and mosquito husbandry in bioassays, hut design, trap type and the use of 392 

human baits in experimental hut trials. Nevertheless, some procedural discrepancies remain 393 

between studies, for example, in bioassays the age and sex of mosquitoes and how they were 394 

collected (e.g. F1 progeny of wild caught mosquitoes or wild caught larvae reared in insectary and 395 

tested as adults). These co-variates and others (for example information on genetic markers 396 

associated with insecticide resistance), could be included within the analysis though their addition 397 

would increase data needs of future studies and complicate the use of study results. Instead a 398 

mixed-effects binomial regression is adopted which allows mosquito mortality to vary at random 399 

between studies. This statistical method enables a wider selection of studies to be included within 400 

the analysis, produces more generalizable results and reduces problems caused by data 401 
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autocorrelation. Mosquito mortality in an experimental hut trial is defined as the proportion of 402 

mosquitoes which enter the hut which die, either within the hut or within the next 24 hours. 403 

Meta-analysis 1 (M1) identified only 7 studies where concurrent bioassays and experimental hut 404 

trials were carried out (Table 3). Given the paucity of data results from all types of bioassay and 405 

mosquito species were combined and a simple functional form was used to describe the relationship 406 

(the fixed-effect). Let  ݔ denote the proportion of mosquitoes dying in a standard (non-PBO) 407 

pyrethroid bioassay then the population prevalence of pyrethroid resistance (expressed as a 408 

percentage, denoted ܫ) is described by the following equation, 409 

ܫ = 100 ሺ1 −  ሻ.     [1] 410ݔ

Extending the notation of Griffin et al. (43) the proportion of mosquitoes which died in a hut trial is 411 

denoted ݈, where subscript  indicates the net type under investigation, be it a no-net control hut 412 

) = 0), a standard non-PBO LLIN ( = 1), or a PBO LLIN ( = 2). For a standard LLIN it is assumed to 413 

be explained by the equation, 414 

logitሾ݈ଵሿ = ଵߙ + ݔଶሺߙ − ߬ሻ,     [2] 415 

where parameters ߙଵ and ߙଶ define the shape of the relationship and ߬ is a constant used to centre 416 

data to aid the fitting process. More sophisticated functional forms could be used for R1 (equation 417 

[2]) though they were not currently warranted given the limited dataset. Let ܰ indicate the number 418 

of mosquitoes entering a hut in an experimental hut trial. If the number of these mosquitoes which 419 

enter the hut and subsequently die (ܮଵ) follows a binomial distribution then parameters  ߙଵ and ߙଶ 420 

can be estimated for a non-PBO net by fitting the following equation to M1, 421 

,ଵ~Bሾ݈ଵܮ ଵܰሿ + ߳ఈ.      [3] 422 

The random-effects component is included by allowing mortality to vary at random between sites by 423 

adding the error term ߳ఈ which has a mean of zero and a constant variance.  424 

 425 
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Estimating the impact of PBO on pyrethroid induced mortality 426 

The number of experimental hut trials investigating the difference between standard and PBO nets 427 

is limited. Instead a meta-analysis of all bioassay data investigating the impact of PBO on pyrethroid 428 

induced mosquito mortality is undertaken incorporating all published and unpublished literature 429 

(M2, Table 4). Bioassay mortality can be influenced by a multitude of factors including assay type, 430 

temperature and relative humidity (4). To account for this difference between studies the 431 

relationship between the benefit of adding PBO and the population prevalence of pyrethroid 432 

resistance was estimated using a mixed-effect logistic regression (R2). Preliminary analysis suggests 433 

that the shape of the relationship is relatively complex and cannot simply be described by the use of 434 

a standard linear function typically used in regression. Since the added benefit of PBO in a given 435 

population will ultimately be determined by the shape of this relationship a variety of different 436 

functional forms are tested statistically. It was initially intended to include the type of assay used 437 

(e.g. WHO tube assay, WHO cone assay or CDC bottle assay) as an additional fixed effect, though the 438 

paucity of data (especially comparing bioassay mortality to experimental hut trial mortality) meant 439 

that data from all assays were combined and this covariate was excluded. As the same type of assay 440 

are used for both non-PBO and PBO tests this should not bias the results and will generate 441 

recommendations that are generalizable across all three assay types. The proportion of mosquitoes 442 

killed by pyrethroid insecticide in a bioassay with the addition of PBO is denoted ݂ and is given by 443 

the equation: 444 

logitሾ݂ሿ = ଵߚ + ఉమሺ௫ିఛሻଵାఉయሺ௫ିఛሻ     [4] 445 

where ݔ is the proportion of mosquitoes dying in a non-PBO bioassay, parameters, ߚଵ,  ଷ 446ߚ ଶ andߚ

define the shape of the relationship and ߬ is a constant supporting the fitting process (this 447 

relationship is referred to as R2). Let ܣ  be the number of mosquitoes used in a bioassay and ܦ  the 448 

number which died, with subscript ݅ denotes whether or not PBO was added to the bioassay (݅=1 449 

pyrethroid alone, ݅=2 pyrethroid plus PBO). If it is assumed that the number of mosquitoes that die 450 
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in the bioassay follows a binomial distribution then parameters, ߚଵ,  ଷ can be estimated by 451ߚ ଶ andߚ

fitting the following equations to dataset (1), 452 

,ݔଵ~Bሺܦ ଵሻܣ + ߳ఉ,      [5] 453 

,ଶ~Bሾ݂ܦ ଶሿܣ + ߳ఉ.      [6] 454 

 455 

Parameter ߳ఉ represents a normally distributed random error with a mean of zero and a constant 456 

variance and is estimated from the fitting procedure.  457 

 458 

Predicting the added benefit of PBO LLINs in experimental hut trials 459 

Relationships R1 and R2 can be used to predict the effectiveness of PBO LLINs in experimental hut 460 

trials. When bioassay data are unavailable the current population prevalence of insecticide 461 

resistance can be predicted from mosquito mortality measured in a standard LLIN experimental hut 462 

trial by rearranging equation [2], 463 

ොݔ = ቀቂ ୣ୶୮ሺభሻଵିୣ୶୮ሺభሻቃ − ଵቁߙ ଶൗߙ + ߬,     [7] 464 

where the section in squared brackets is the inverse logit function. This equation together with 465 

equations [2] and [4] can be then used to predict the relationship between hut trial mortality in 466 

standard and PBO LLINs for a range of areas with different levels of pyrethroid resistance using the 467 

following steps (a) to (c) below. 468 

a) For a range of values of ݈ଵ (proportion of mosquitoes which died in a standard LLIN hut trial) 469 

generate the predicted population prevalence of mosquito mortality in a bioassay expected 470 

in the population (ݔො) using equation [7]. 471 

b) Use ݔො to predict pyrethroid induced mortality in a bioassay with PBO ( መ݂) given the current 472 

population prevalence of pyrethroid resistance (i.e. substitute ݔො for ݔ in equation [4]). 473 
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c) Convert the expected mortality in a bioassay ( መ݂) into the expected mortality in a PBO LLIN 474 

hut trial (i.e. substitute መ݂ for ݔ in equation [2]). 475 

To test the predictive ability of R1 and R2 a third meta-analysis was carried out for all experimental 476 

hut trials which directly compare standard and PBO pyrethroid LLINs (M3, Table 5). The accuracy of 477 

these predictions can then be examined by comparing them visually (Figure 2C) or by calculating the 478 

coefficient of determination (R2). 479 

 480 

Quantifying the impact of standard and PBO LLINs in the presence of insecticide resistance 481 

The impact of insecticide resistance on mosquito interactions with LLINs is systematically 482 

investigated by analysing the experimental hut trials identified in M3. Restricting the analysis to the 483 

two most commonly used standard LLINs minimises the inter-study variability and allows the 484 

different behaviours of mosquitoes exposed to standard and PBO LLINs to be directly assessed. 485 

Following a widely used transmission dynamics model of malaria (43, 44) it is assumed that a LLIN 486 

can alter a host-seeking mosquito behaviour in one of three ways: firstly it can deter a mosquito 487 

from entering a hut (an exito-repellency effect); secondly the mosquito can exit the hut without 488 

taking a bloodmeal; and thirdly it could kill a mosquito (with the mosquito either being fed or unfed). 489 

A mosquito that isn’t deterred, exited or killed will successfully blood-feed and survive. The public 490 

health benefit of LLINs depends not only on their initial effectiveness but also on how the properties 491 

of the net changes over its life-time. The ability of a net to kill a mosquito will decrease over time as 492 

the quantity of insecticide active ingredient declines. The non-lethal protection provided by the LLIN 493 

may also decrease with the decay of the active ingredient and the physical degradation of the net 494 

(i.e. the acquisition of holes). It is assumed that the underlying difference in hut trial mortality 495 

between sites for standard LLINs is caused by the mosquito population having a different population 496 

prevalence of pyrethroid resistance. Pyrethroid resistance may also influence the relative strength of 497 

LLIN deterrence and exiting and it is important to characterise these modifications of behaviour as 498 
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they contribute substantially to the population level impact of mass LLIN distribution.  Visual 499 

inspection of these data indicates that mosquito deterrence and exiting can be described by the 500 

degree of mosquito mortality seen in the same hut trial.  501 

The proportion of mosquitoes not deterred from entering a hut by the LLIN is estimated using ݉, 502 

the ratio of the number of mosquitoes entering a hut with a LLIN ( ଵܰor ଶܰ) to the number entering a 503 

hut without a bednet ( ܰ, here assumed to be the same as a hut with an untreated bed net). A 504 

statistical model is used to determine whether there is an association between the number of 505 

mosquitoes entering a hut with a standard LLIN and the proportion of mosquitoes which die when 506 

they do (which is assumed to be a proxy for mosquito susceptibility, i.e. ݉ଵ is described by ݈ଵ and 507 ݉ଶ is described by ݈ଶ). It is assumed that the shape of the relationship between the proportion of 508 

mosquitoes entering a hut with a LLIN relative to a hut with an untreated net (1-deterrence) and 509 

mortality is described by the flexible 3rd order polynomial,  510 

݉ = 1 − ቂߜଵ + ଶ൫݈ߜ − ߬൯ + ଷ൫݈ߜ − ߬൯ଶ  ቃ     [8] 511 

ܰ~N൫݉ ܰ,  ସ൯      [9] 512ߜ

Though there is no a priori reason to assume an inflection point in the relationship between ݉ and 513 ݈ the polynomial function is chosen as it is highly flexible and would allow such a curve should it 514 

exist (which is necessary given the variability in the raw data). The shape parameters ߜଵ, ߜଶ and ߜଷ 515 

are estimated assuming the that the number of mosquitoes caught has a normal distribution 516 

(verified using a  and deterrence is allowed to vary at random between sites (with variance ߜସ). 517 

The proportion of mosquitoes entering the hut which exit without feeding is denoted ݆ whilst the 518 

proportion which successfully feed upon entering is ݇. Once entered the hut mosquitoes have to 519 

either exit, die or successfully feed (i.e. 1 = ݆+݈+݇). Visual inspection of these data indicates 520 

that ݇ increases with decreasing mortality at an exponential rate (Figure 3C). Therefore if the 521 

number of mosquitoes which feed and survive (ܵ) follows a binomial distribution then, 522 
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ܵ~B൫݇, ܰ൯ + ߳ఏ        [10] 523 

݇ = ଵߠ expൣߠଶ൫1 − ݈ − ߬൯൧       [11] 524 

where ߠଵ and ߠଶ determine the shape of the relationship and ߳ఏ  is a normally distributed random 525 

error which varies between sites.  526 

Parameterising transmission dynamics model 527 

Estimates of ݆, ݈ and ݉ can be used to determine the proportion of mosquitoes repeating (a 528 

combination of deterrence and exiting, ݎ), dying (݀) and feeding successfully (ݏ) during a 529 

single feeding attempt in a hut with a new LLIN relative to those successfully feeding in a hut without 530 

an LLIN (i.e. 1= or 2), 531 

ݎ = ቀ1 − ᇲబቁ ൬ ᇲᇲ ାᇲ ൰      [12] 532 

݀ = ቀ1 − ᇲబቁ ൬ ᇲᇲ ାᇲ ൰      [13] 533 

ݏ = ᇲబ        [14] 534 

 535 

 536 

where ݆ = 1 − ݈ − ݇,   ݆ᇱ = ݆݉ + ൫1 − ݉൯,   ݇ᇱ = ݉݇ and ݈ᇱ = ݈݉  (43). Not all 537 

mosquitoes which enter a house will successfully feed even if there are no vector control 538 

interventions inside. The experimental hut trials used in this analysis did not include a no-net control 539 

(݇) so historical studies are used for this parameter (45, 46). Though theoretically ݏ could have 540 

values >1 for practical purposes it is constrained between zero and one as on average mosquitoes 541 

entering a hut with an LLIN are less likely to feed than a mosquito entering a hut without a bednet 542 

(as shown by all estimates of ݇ being substantially lower than ݇, see Figure 3C and Table 6). The 543 

majority of experimental hut trials in M3 are in areas where the dominant vector is A. gambiae s.s. 544 

and no studies were conducted in areas with A. funestus. As there is insufficient information to 545 

generate these functions for each species separately it is assumed that the relationship between  546 
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  and ݀ are consistent across all species. The average effectiveness of LLINs in an entirely 547ݏ ,ݎ

susceptible mosquito population identified in M3 is slightly higher than those analysed by Griffin et 548 

al. (43) which included a wider range of LLIN types. Values of ݉ (the propensity of mosquitoes to 549 

enter a hut with an LLIN relative to one without) greater than one are truncated at one as there is 550 

insufficient evidence to justify that mosquitoes preferentially enter huts with LLINs (in part because 551 

the number of studies with very low mortality are low and the metric has high measurement error). 552 

 553 

 554 

 555 

Decay in LLIN efficacy over time 556 

The ability of a net to kill a mosquito will decrease over time as the quantity of insecticide active 557 

ingredient declines. The non-lethal protection provided by the LLIN may also decrease with the 558 

decay of the active ingredient and the physical degradation of the net (i.e. the acquisition of holes). 559 

To fully capture the loss of efficacy of an LLIN requires a net durability survey to be carried out over 560 

multiple years. To our knowledge no durability studies have been published in areas of high 561 

pyrethroid resistance nor using the new generation of LLINs with the addition of PBO. In the absence 562 

of these data we use the results from experimental hut trials that washed the net prior to its use. 563 

These experimental huts give some indication of how mosquitoes react to the change in insecticide 564 

concentration though they do not provide information on the physical durability of the net (as holes 565 

in the net are artificially generated). For simplicity and following (43) it is assumed that the killing 566 

activity of pyrethroid over time (the half-life in years, denoted ܪ௬) is proportional to the loss of 567 

morbidity caused by washing (the half-life in washes, ܪ௪). A prior estimate of the half-life in years 568 

(47) from a durability study of a non-PBO LLIN with susceptible mosquitoes (ܪ௬௦) is then used to 569 

reflect changes caused by pyrethroid resistance by, 570 
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௬ܪ  = ௪ܪ ⁄௪௦ܪ  ௬௦       [15] 571ܪ

where superscript ݏ indicates the half-life in a fully susceptible mosquito population (i.e. ݈ଵ=1) . Note 572 

that if the newer PBO nets have better durability than standard LLINs then this will under estimate 573 

their additional benefit. Following Griffin et al. (43) it is assumed that the activity of the insecticide 574 

decays at a constant rate according to a decay parameter ߛ, which is related to the half-life by 575 ܪ௪ = lnሺ2ሻ ⁄ߛ . To test whether the rate of decay changes with ݈ (i.e. mosquito mortality caused 576 

by new standard and PBO LLINs) the following equation was fit to M3, 577 

logit൫ߛ൯ = ߤ + ൫݈ߩ − ߬൯.     [16] 578 

 579 

Shape parameters  ߤ and ߩ are allowed to vary between net types. The proportion of mosquitoes 580 

repeating due to the LLIN decreases from a maximum,  ݎ, to a non-zero level ݎெ, reflecting the 581 

protection still provided by a LLIN that no longer has any insecticidal activity. For simplicity it is 582 

assumed that the rate of decay from ݎ to ݎெ is given by ߛ (as the degradation of the net over time 583 

is unlikely to be recreated by washing). The full equations for the proportion of mosquitoes 584 

repeating, dying and successfully feeding at time ݐ following LLIN distribution (ݎ, ݀ and ݏ, 585 

respectively) is given by, 586 

ݎ = ൫ݎ − ൯ݐߛ−ெ൯exp൫ݎ + ெ    [17] 587 ݀ݎ = ݀exp൫−ߛݐ൯      [18] 588 ݏ = 1 −  −݀.      [19] 589ݎ

 590 

Fitting procedure 591 

All models were fit using a Markov chain Monte Carlo sampling algorithm implemented in the 592 

programme OPENBUGS (48). This Bayesian method enabled measurement error to be incorporated 593 

in both the dependent and independent variables according to the number of mosquitoes sampled 594 

(both in bioassays and hut trials). Uninformative priors were used for all parameters with the 595 

exception of the random effects variance parameters which were constrained to be positive (though 596 
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were still uninformative, see Source Code in the Supplementary Information for a full list of priors). 597 

Three Markov chains were initialized to assess convergence and the first 5,000 Markov chain Monte 598 

Carlo iterations were discarded as burn in. Convergence was assessed visually and a total of 10,000 599 

iterations were used to derive the posterior distribution for all parameters and to generate 95% 600 

Bayesian credible interval estimates for model fits. Models were compared using the deviance 601 

information criterion (DIC) where the smaller value indicate a better fit, and a difference of five 602 

deviance information criterion units is considered to be substantial (49). Equations [8] to [19] were 603 

fit simultaneously to M3 enable the impact of washed nets to contribute to the relationship 604 

between ݎ, ݀ and ݏ, through the decay function, ߛ, doubling the number of datapoints in the 605 

analysis. A direct comparison between net types is beyond the scope of this study. Only one study 606 

compared PermaNet 2.0 and PermaNet 3.0 at the same time and place as Olyset and Olyset Plus and 607 

this study did not conduct hut trials with washed LLINs. As the different nets were tested in areas 608 

with different levels of pyrethroid resistance (in part because the low overall number of studies) 609 

then the impact of resistance and net type cannot currently be disentangled.   610 

 611 

Predicting the public health impact of insecticide resistance 612 

The public health benefit of PBO-LLINs will depend on the epidemiological setting in which they are 613 

deployed. This includes the baseline characteristics of the setting (e.g. mosquito species, abundance 614 

and seasonality), history of malaria control interventions (e.g. prior use of bednets, management of 615 

clinical cases) and prevalence of insecticide resistance. The rate at which pyrethroid resistance has 616 

evolved is highly uncertain. It is likely that it first became evident through its use in agriculture and 617 

the relative contribution of vector control to the selection of resistance is unknown and will vary 618 

between sites. This makes it impossible to recreate the spread of resistant phenotypes in a particular 619 

setting and predict its cumulative public health impact without detailed longitudinal studies 620 

spanning decades (which do not exist for malaria endemic regions). Instead the impact of pyrethroid 621 
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resistance is estimated by assuming it arrives instantaneously at a given level. To generate a broadly 622 

realistic history of LLIN usage it is assumed that LLINs were introduced at a defined coverage at year 623 

0 and redistributed every three years to the same percentage of the human population (Figure 1). 624 

The mosquito population is assumed to be either Anopheles gambiae sensu strictu, Anopheles 625 

arabiensis or Anopheles funestus (the three major vectors in Africa) which are entirely susceptible to 626 

pyrethroids up until year 6 when pyrethroid resistance arrives instantaneously. The public health 627 

impact of resistance is then measured over the subsequent three years (the average clinical 628 

incidence or entomological inoculation rate (EIR) between years 6 and 9) and compared to a 629 

population where resistance did not arise. The impact of PBO LLINs is predicted by introducing them 630 

into the resistant population at year 9 and then measuring over the subsequent 3 years. For 631 

simplicity it is assumed that there is perennial transmission, no other type of vector control and that 632 

once introduced pyrethroid resistance remains constant. Though perennial transmission is 633 

unrealistic it is necessary in order to produce simple guidelines (as there is a very high number of 634 

combination of seasonal patterns, relative mosquito species abundance and timings of LLIN 635 

distribution campaigns). A sensitivity analysis with more realistic seasonal patterns shows the 636 

change in clinical incidence compared to the perennial transmission is relatively minor, in part 637 

because the LLINs are used over 3 yearly cycles and their decay in effectiveness is relatively slow. 638 

LLINs are initially distributed at time zero at random (i.e. there was no targeting to those with the 639 

highest infection) and from then on the same people receive them every campaign to ensure that 640 

coverage remains at the defined level (i.e. the number of people with a LLIN would go up if 641 

distribution was random each round). Realistic usage patterns are adopted to reflect higher 642 

coverage immediately after LLIN distribution. No other vector control is incorporated whilst 35% of 643 

clinical cases are assumed to receive treatment, 36% which receive an ACT (estimated by averaging 644 

across Africa using data collated by Cohen et al.(50)). A full list of the parameters, their definitions 645 

and estimated values are given in Table 6 whilst all other parameters are taken from Griffin et al. 646 

(43) and White et al. (50).  647 
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To investigate how the uncertainty in mosquito behaviour and the impact of PBO influence model 648 

predictions a full sensitivity analysis is carried out for the parameters determining LLIN efficacy. A 649 

thousand parameter sets for ߙଵ, ߙଶ, ߚଵ,   are sampled from the 650ߩ   andߤ ,ଶߠ ,ଵߠ ,ଶߜ ,ଵߜ ,ଷߚ ,ଶߚ

posterior distribution and are used to generate a range of possible values for  ݎ, ݏ, ݀ and  ߛ 651 

(Figure 4–figure supplement 5). This allows uncertainty in all measurements (such as the relationship 652 

between resistance and hut trial mortality) to be propagated throughout the equations. These 653 

parameter sets are then included as runs within the full transmission dynamics model to unsure the 654 

full uncertainty in these data is represented and the 95% credible intervals for model outputs are 655 

then shown. 656 
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Figure 2-source data 1-3. Figure 2-source data 4 is hosted on Dryad (doi:10.5061/dryad.13qj2)  665 

Source Code 666 

All OPENBUGS code used to fit the functional relationships between variables are included below. 667 
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Figures Captions 911 

Figure 1. Scenario under investigation: timings for the introduction of LLINs, insecticide resistance 912 
and PBO LLINs for different malaria metrics. The figure illustrates how insecticide resistance is 913 
incorporated into the mathematical model. Panel (A) shows parasite prevalence by microscopy in 2-914 
10 year olds, (B) clinical incidence in the entire population (cases per 1000 people per year) and (C) 915 
the annual entomological inoculation rate (EIR). In all three panels 4 different scenarios are run: 916 
black line shows a situation with no insecticide resistance whilst red line illustrates resistance 917 
arriving at year 6 (moderate, 50% survival measured in a bioassay); solid lines show non-PBO LLIN 918 
whilst dashed lines show PBO LLINs introduced at year 9 (vertical dotted-dashed grey line). There is 919 
no vector control in the population up until time zero (vertical dashed grey line) at which time there 920 
is a single mass distribution of non-PBO LLINs to 80% of the population. LLINs are redistributed every 921 
3 years to the same proportion of the population. Mosquitoes are entirely susceptible up until 922 
resistance arrives overnight at the start of year 6 (vertical grey dotted line). Endemicity (a variable in 923 
Figures 4 and 5) is changed by varying the slide prevalence in 2-10 year olds at year 6 (by changing 924 
the vector to host ratio) and in this plot takes a value of 10% (as illustrated by the horizontal green 925 
dashed line in A). The impact of insecticide resistance is predicted (in Figures 4) by averaging the 926 
clinical incidence and EIR for the solid red lines (resistance) and solid black lines (no resistance) 927 
between years 6 and 9 (period ❶). Similarly, the impact of switching to PBO LLINs (in Figures 5) is 928 
estimated by averaging the clinical incidence and EIR for the solid red line (standard LLINs) and 929 
dashed red lines (switch to PBO LLINs) lines between years 9 and 12 (period ❷). Different scenarios 930 
with a low and high prevalence of pyrethroid resistance are shown in Figure 1–figure supplement 1 931 
and 2. 932 
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 934 

Figure 2. The ability of the pyrethroid resistance test (the percentage mosquito survival in a 935 
bioassay) to predict the results of experimental hut trials and the increase in mosquito mortality 936 
caused by the synergist PBO. Panel A: The relationship between mosquito mortality measured in 937 
non-PBO WHO tube bioassay and experimental hut trials (the percentage of mosquitoes which enter 938 
the house that die within the next 24 hours). Solid grey line shows the best fit model for all mosquito 939 
species combined. Panel B: Differences in mosquito mortality caused by adding PBO to a pyrethroid 940 
bioassay. Panel C: Best fit models from Panel A and Panel B were combined to predict the change in 941 
mortality seen by adding PBO to a pyrethroid LLIN for mosquito populations with different levels of 942 
insecticide resistance. Points show the different mortalities measured from the limited number of 943 
experimental hut trials where PBO and non-PBO nets were simultaneously tested. Overall the model 944 
appears to be a good predictor of these data, both visually and statistically (Analysis of Variance test 945 
shows there was no significant difference between model predictions and observed data p-946 
value=0.25). No experimental hut trial data were available for validation of the Anopheles funestus 947 
model. Throughout all panels colour denotes mosquito species, either Anopheles gambiae sensu lato 948 
(red) or A. funestus (blue), whilst the shape of points indicate the type of pyrethroid used: 949 
permethrin (circle), deltamethrin (square), or another pyrethroid (diamond). In panels A and B the 950 
fill of the points indicates the type of bioassay used (filled points = WHO cone; no fill = WHO tube; 951 
light fill = CDC bottle). Solid line shows the best fit model whilst the shaded areas indicate the 95% 952 
credible intervals around the best fit line. In all panels the dashed lines show no difference between 953 
the x and y axes. Pre-defined search string used in the meta-analyses are listed in Figure 2-source 954 
data 1 whilst raw data from panels A,B and C are provided in Figure 2-source data 2, Figure 2-source 955 
data 3, and doi:10.5061/dryad.13qj2 respectively. 956 
 957 
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 959 

Figure 3. Meta-analysis of how the different outcomes of experimental hut trials which impact 960 
LLIN efficacy change with the percentage of mosquitoes which survive after entering the hut. (A) 961 
The probability that mosquito will be deterred away from a hut with an LLIN, (B) once entered the 962 
hut the mosquito will exit without feeding, or (C) will successfully feed. Panel (D) shows how the 963 
average probability that a bloodfeeding mosquito will be killed, deterred from entering, exit without 964 
feeding or successfully feed and survive during a single feeding attempt and how this changes with 965 
the population prevalence of pyrethroid resistance (as measured as the percentage survival in a 966 
pyrethroid bioassay). The lines are drawn using the best fit estimates from (A)-(C). Panel (E) shows 967 
how the longevity of the insecticide activity (estimated from washed nets) is longer in mosquito 968 
populations with high mosquito mortality in experimental hut trials. A possible hypothesis for this 969 
change is proposed in (F) where the black line indicates how insecticide concentration might decay 970 
over time. The time taken for a hypothetical resistant mosquito to survive the insecticide 971 
concentration (pink arrow) may be shorter than a susceptible mosquito (purple arrow). In Panels (A), 972 
(B), (C) and (E) the points show data from experimental hut trials with standard (green) or PBO 973 
(purple) LLINs. In (A) points which fell below the line (i.e. mosquitoes were more likely to enter huts 974 
with LLINs) were set to zero. The black line shows the best fit model to these data whilst the shaded 975 
area denotes the 95% credible interval estimates for the best fit line. Graphical assessment of the 976 
validity of the distributional assumptions and the posterior distributions for each parameter are 977 
shown in Figure 3-figure supplement 1A). 978 
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 980 

Figure 4. The predicted impact of pyrethroid resistance on the clinical incidence of malaria (Panels 981 
A and B) and the force of infection (Panel C). Panel (A) shows how the number of clinical cases in 982 
the population increases with the population prevalence of pyrethroid resistance (as assessed by the 983 
percentage survival in a pyrethroid bioassay) for a single setting (with 10% slide prevalence). Black 984 
lines show the full resistance model whilst the brown lines give predictions for mosquito populations 985 
where the rate of change in insecticide activity over time is the same for all mosquitoes (i.e. 986 
resistance has no impact on LLIN longevity). Solid lines show the average for the population, shaded 987 
grey area indicates the 95% credible intervals around this best fit line, dashed lines denote those 988 
using bednets whilst dotted-dashed lines show those who do not. Panel (B) shows the 3D 989 
relationship between prevalence of resistance (x-axis), endemicity (y-axis) and the absolute increase 990 
in the number of clinical cases (contours, see colour legend) per 1000 people (all ages). Panel (C) 991 
presents the same model as (B) though showing the absolute increase in the entomological 992 
inoculation rate (EIR, the average number of infectious bits per person per year). In this figure it is 993 
assumed that the mosquito species is Anopheles gambiae sensu stricto and that there is 80% LLIN 994 
coverage. Figure 4–figure supplement 1 shows the same figure with 50% LLIN coverage. Further 995 
secondary figures indicate how the impact of resistance changes with mosquito species, be it 996 
Anopheles arabiensis (Figure 4–figure supplement 2) or Anopheles funestus (Figure 4–figure 997 
supplement 3). Panel (A) shows the importance of the rate of change in insecticide activity over 998 
time.  Figure 4–figure supplement 4 shows how Panels B and C would change if the rate of decay in 999 
insecticide activity was the same for resistant and susceptible mosquitoes. The uncertainty in the 1000 
three LLIN efficacy parameters used to generate the confidence interval estimates in Panel (A) are 1001 
shown in (Figure 4–figure supplement 5) for different levels of pyrethroid resistance. 1002 
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 1004 

Figure 5. Predicting the added benefit of switching from standard LLINs to combination PBO nets. 1005 
Panels (A)-(C) show clinical incidence (per 1000 people per year, all ages) whilst Panels (D)-(F) gives 1006 
the entomological inoculation rate (EIR, infectious bites received per person per year). (A) and (D) 1007 
show how malaria incidence and the force of infection increase with the population prevalence of 1008 
pyrethroid resistance (as assessed by the percentage survival in a pyrethroid bioassay) in a single 1009 
setting (with 10% slide prevalence) for standard LLINs (green line) and PBO LLINs (purple line). 1010 
Shaded region denotes the 95% credible intervals around the best fit lines. Panels (B) and (E) show 1011 
the 3D relationship between the prevalence of resistance (x-axis), endemicity (y-axis) and the 1012 
absolute number of cases (and EIR) averted by switching to PBO LLINs. (C) and (F) give 3D 1013 
relationship for the percentage reduction in cases and EIR (respectively) caused by switching from 1014 
standard to PBO LLINs. The non-linear relationship between endemicity, clinical incidence and EIR 1015 
means that the greatest percentage reduction is seen at low endemicities despite the greatest 1016 
absolute reduction being in higher transmission settings. In all Panels it is assumed that the 1017 
mosquito species is Anopheles gambiae sensu stricto and that there is 80% LLIN coverage. Figure 5–1018 
figure supplement 1 shows the same figure with 50% LLIN coverage. Further secondary figures 1019 
indicate how the impact of resistance changes with mosquito species, be it Anopheles arabiensis 1020 
(Figure 5–figure supplement 2) or Anopheles funestus (Figure 5–figure supplement 3). 1021 
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Table 1: Summary of data collated in the three meta-analyses. The number of data points is subdivided 1024 
according to the insecticides or LLIN tested and the predominant mosquito species in each population tested. 1025 
Studies which did not determine species in the Anopheles gambiae complex are shown separately. All 1026 
Published Data can be downloaded from Dryad Digital Repository whilst a list of the studies included their 1027 
geographical range are given in the Material and Methods. 1028 
 1029 

Meta-analysis 
description Details No. 

Studies 

Number data points 
Anopheles 

gambiae s.s. 
Anopheles 
arabiensis 

Anopheles 
gambiae s.l. 

Anopheles 
funestus Total 

M1 Bioassay and 
experimental 
hut trial 
mortality 

Deltamethrin 5 2 1 10 0 13
 Permethrin 8 2 1 3 0 6
 Other 1 0 0 1 1 2
 Total 13 4 2 14 1 21
   
M2 Impact of PBO 

in pyrethroid 
bioassays 

Deltamethrin 16 15 5 29 8 57
 Permethrin 20 22 7 30 9 68
 Other 4 2 0 4 6 12
 Total 24 39 12 63 23 137
   
M3 Experimental 

hut trials of 
standard and 
PBO LLINS 

Olyset® 6 6 0 10 0 16 
 PermaNet®  6 18 4 6 0 28 
 Total 12 24 4 16 0 44 
 1030 
 1031 

  1032 
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 1033 

Table 2: Inclusion and exclusion criteria used when conducting literature searches of published and grey 1034 
literature. Pre-defined search string used are listed in Figure 2-source data 1. 1035 
 1036 

Inclusion criteria Exclusion criteria
General criteria across all meta-analyses

- 
 

- 
- 
 

- 

Mosquito belong to the A. gambiae
complex or A. funestus group 
Study conducted in Africa 
Bioassay must be of the standard dose for 
the particular pyrethroid (5, 25, 26)  
Net must be a pyrethroid LLIN 
 
 

-

-

- 

Studies which report percentage mortality 
but not the numbers tested / caught‡ 
Experimental hut trials which do not have 
adequate design to reduce bias (i.e. 
treatments arms were not rotated 
between huts; sleeper bias unaccounted 
for by preliminary testing; randomisation 
or rotation; huts were not cleaned 
between treatments) 
Experimental huts of the Ifakara design○ 
 

M1 -  Bioassay and experimental hut trial mortality
- 
 
 
 
 

Mosquito mortality measured in both an 
experimental hut study and separate 
bioassay (e.g. WHO tube assay, WHO cone 
assay, CDC bottle assay) 

-

 

Cone assays where the net had been 
washed 
 

M2 - Impact of PBO in pyrethroid bioassays
- adult mosquito stage exposure to PBO 

M3 - Experimental hut trials of standard and PBO LLINS
- 
 
 
 

- 

Study compares a combination LLIN 
(PermaNet® 3.0 or Olyset® Plus) with a 
conventional LLIN (PermaNet® 2.0 or 
Olyset® Net)† 

LLINs should be holed (Six 4 cm x 4 cm 
holes) 

-

-
- 

Studies without both standard and PBO 
LLINs as non-parallel studies as studies 
from different sites may bias the 
difference between LLINs 
Trials without untreated control nets 
Studies which did not include feeding 
success 

† currently there are only two commercially available LLINs with PBO, PermaNet® 3.0 (Vestergaard-Frandsen) and Olyset 1037 
Plus (Sumitomo Chemicals Ltd). To limit the difference between LLIN types only nets made by the same manufacturer are 1038 
directly compared. 1039 
‡ to increase the size of the cone bioassay dataset the authors of papers which failed to give sample sizes were contacted 1040 
directly. 1041 
○ The probability that a mosquito will die in an experimental hut will depend on the hut design. To minimise the difference 1042 
between studies the most common design of hut is used, excluding the small number of studies which use the new Ifakara 1043 
design (eg. (47)).   1044 
  1045 

  1046 



 

41 
 

 1047 
Table 3. List of studies identified in meta-analysis M1 -  Predicting LLIN effectiveness from bioassay 1048 
mortality. Pre-defined search string used in the meta-analyses are listed in Figure 2-source data 1 1049 
whilst raw data from are provided in Figure 2-source data 2. 1050 
Study Reference Test Country
1 Ngufor et al.  (2014) (12) WHO tube Côte d'Ivoire 
2 Ngufor et al.  (2014) (13) WHO tube Benin 
3 Kitau J et al.  (2014) (14) WHO tube Tanzania 
4 Asale A et al.  (2014) (15) WHO tube Ethiopia 
5 Ngufor et al. (2014) (16) WHO tube Burkina Faso
6 Agossa et al.  (2014) (22) WHO tube Benin 
7 Malima et al.  (2013) (23) WHO tube Tanzania 
8 Adeogun et al.  (2012) (21) WHO tube Nigeria 
9 Koudou BG et al.  (2011) (17) WHO tube Côte d'Ivoire 
10 Corbel V et al.  (2010) (18) WHO tube Benin, Burkina Faso, Cameroon 
11 Tungu P et al.  (2010) (19) WHO tube Tanzania 
12 Malima et al.  (2008) (20) WHO tube Tanzania 
13 Kétoh et al.  Unpublished (53) WHO tube Togo 
14 Toé et al.  (2015) (30) WHO tube Burkina Faso 
 1051 

 1052 
1053 
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Table 4. List of studies identified in meta-analysis M2 - Estimating the impact of PBO in pyrethroid 1054 
bioassays. Bioassays run using laboratory strains are denoted * Pre-defined search string used in the 1055 
meta-analyses are listed in Figure 2-source data 1 whilst raw data from are provided in Figure 2-1056 
source data 3. 1057 
Study Reference Test Country 

1 Matowo et al.  (2015) (54) CDC tube Tanzania 
2 Mulamba et al.  (2014) (37) WHO tube Uganda & Kenya 
3 Choi et al.  (2014) (55)  WHO tube Zambia & Zimbabwe 
4 Edi et al.  (2014) (56) WHO tube Côte d'Ivoire 
5 Jones et al.  (2013) (57) WHO tube Zanzibar 
6 Chouaïbou et al.  (2013) (58) WHO tube Côte d'Ivoire 
7 Koffi et al.  (2013) (59) WHO tube Côte d'Ivoire 
8 Witzig C et al.  (2013) (60) WHO tube Chad 
9 Darriet & Chandre (2013) (61) WHO tube * 

10 Mawejje et al.  (2013) (62) WHO tube Uganda 
11 Adeogun et al.  (2012) (63) WHO tube Nigeria 
12 Adeogun et al.  (2012) (64) WHO tube Nigeria 
13 Nardini et al.  (2012) (65) WHO tube South Africa & Sudan
14 Darriet et al.  (2011) (66) WHO cone * 
15 Kloke et al.  (2011) (67) WHO tube Mozambique 
16 Awolola et al.  (2009) (68) WHO tube Nigeria 
17 Brooke et al.  (2001) (69) WHO tube Mozambique 
18 Ranson (2015) Personal Communication WHO tube Burkina Faso/Benin 
19 Ranson (2015) Personal Communication WHO tube Chad colony 
20 Morgan (2015) Personal Communication WHO tube Côte d'Ivoire 
21 Ranson (2015) Personal Communication WHO tube Benin 
22 Koudou & Malone (2015) Personal 

Communication 
WHO cone Côte d'Ivoire 

23 PMI (2014). Personal Communication CDC tube Mali 
24 Toe, H (2015). PhD Thesis (30) WHO tube Burkina Faso 
25 Abílio et al. (2015) (70) WHO cone Mozambique 
26 Riveron et al. (2015) (71) WHO cone Malawi 
27 Awolola et al. (2014) (72) WHO cone Nigeria 
28 Yewhalaw et al. (2012) (73) WHO cone Ethiopia 

 1058 

  1059 
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 1060 

Table 5. List of studies identified in meta-analysis M3 - Estimating the impact of PBO in experimental 1061 
hut trials. Pre-defined search string used in the meta-analyses are listed in Figure 2-source data 1 1062 
whilst raw data from published studies are provided at doi:10.5061/dryad.13qj2. 1063 
Study Reference Country 

1 Pennetier et al.  (2013) PloS One (31) Benin, Cameroon 
2 Adeogun et al.  (2012) Nig J Clin BioMed Res (21) Nigeria 

3 Corbel V et al.  (2010) Malar J (18) Benin, Burkina Faso, 
Cameroon 

4 Tungu P et al.  (2010) Malar J (19) Tanzania 
5 N'Gussan et al.  (2010). Trans R Soc Trop Med Hyg (74) Benin 
6 Kétoh et al.  Unpublished (53) Togo 
7 Tungu et al. , Personal Communication  Tanzania 
8 Toé et al. , Personal Communication   Burkina Faso 
   

 1064 

  1065 
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Table 6. Parameters definitions and fitted values. Unless otherwise stated all other parameters 1066 
used were taken from Griffin et al. (43). Some parameters are mosquito species specific whilst 1067 
others are constant within species complex (denoted *) or universal (species independent).  1068 

Parameter definitions Anopheles 
gambiae s.s. 

Anopheles 
arabiensis 

Anopheles 
funestus 

 proportion mosquitoes dying in a ݔ 
discriminating dose pyrethroid bioassay - 

 population prevalence of pyrethroid ܫ 
resistance (percentage survival) estimated 
using ݔ (equation [1]) 

- 

 net type under investigation in experimental  
hut trials: untreated ( = 0); standard LLIN 
) = 1); PBO LLIN ( = 2). 

- 

 ݀ probability a mosquito dies during single 
feeding attempt (equation [18]) Estimated from parameters below 

  probability a mosquito exits the hut duringݎ 
single feeding attempt (equation [17]) Estimated from parameters below 

  probability a mosquito feeds during singleݏ 
feeding attempt (equation [19]) Estimated from parameters below 

 ܰ the number of mosquitoes entering a hut 
with net type  (equation [3]) - 

 ݉ proportion of mosquitoes entering a hut 
with a LLIN to relative to a hut with an 
untreated bed net ( ܰ/ ܰ, equation [8]). 

 ଷ=1.52ߜ ଶ=1.26ߜ  ଵ=0.071ߜ
 ݈ proportion of mosquitoes that enter a hut 

with net type  that die (equation [2]) 
 ଶ=4.00ߙ ଵ=0.63ߙ

 ݇ proportion of mosquitoes that enter a hut 
with net type  that successfully feed and 
survive (equation [11]) 

 ଶ=3.32ߠ       ଵ=0.02ߠ

 ݆ proportion of mosquitoes that enter a hut 
with net type  that exit without feeding  1 − ݈ − ݇ 

  rate of decay in insecticide activity (inߛ 
washes) for net type  (equation [16]) 

 =-3.05ߩ      =-2.36ߤ
 ݂ proportion of mosquitoes killed in 

pyrethroid + PBO bioassay (equation [4])* ߚଵ=3.41, ߚଶ=5.88, ߚଷ=0.78 ߚଵ=2.53 ߚଶ=0.89 
 ߬ constant used to centre the data to aid the 

fitting process 0.5 

 
Relevant parameters previously estimated by Griffin et al. (43)† and Walker et al. (44)‡ 
 ݇ proportion of mosquitoes that enter a hut 

with no bednet that successfully feed 0.70† 

 ௬௦ insecticide activity half-life in years for aܪ 
susceptible mosquito population  2.64† 

 ெ proportion of mosquitoes which exit the hutݎ 
when LLIN has no insecticidal activity 0.24† 0.24‡ 0.24† 

 - mean life expectancy (days) 7.6† 7.6‡ 8.9† 
 - proportion blood meals taken on humans 

without LLINs (human blood index) 0.92† 0.71‡ 0.94† 

 - proportion of bites taken on humans whilst 
they are in bed 0.89† 0.83‡ 0.90† 
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Supplementary Figure Legends 1069 

 1070 

Figure 1–figure supplement 1. Scenario under investigation: example of a mosquito population 1071 
with a low population prevalence of resistance. The figure illustrates how insecticide resistance is 1072 
incorporated into the mathematical model. Panel (A) shows parasite prevalence by microscopy in 2-1073 
10 year olds, (B) clinical incidence in the entire population (cases per 1000 people per year) and (C) 1074 
the annual entomological inoculation rate (EIR). In all three panels 4 different scenarios are run: 1075 
black line shows a situation with no insecticide resistance whilst red line illustrates resistance 1076 
arriving at year 6 (20% survival measured in a bioassay); solid lines show non-PBO LLIN whilst dashed 1077 
lines show PBO LLINs introduced at year 9 (vertical dotted-dashed grey line). There is no vector 1078 
control in the population up until time zero (vertical dashed grey line) at which time there is a single 1079 
mass distribution of non-PBO LLINs to 80% of the population. LLINs are redistributed every 3 years to 1080 
the same proportion of the population. Mosquitoes are entirely susceptible up until resistance 1081 
arrives overnight at the start of year 6 (vertical grey dotted line). Endemicity (a variable in Figures 4 1082 
and 5) is changed by varying the slide prevalence in 2-10 year olds at year 6 (by changing the vector 1083 
to host ratio) and in this plot takes a value of 10% (as illustrated by the horizontal green dashed line 1084 
in A). The impact of insecticide resistance is predicted (in Figures 4) by averaging the clinical 1085 
incidence and EIR for the solid red lines (resistance) and solid black lines (no resistance) between 1086 
years 6 and 9 (period ❶). Similarly, the impact of switching to PBO LLINs (in Figures 5) is estimated 1087 
by averaging the clinical incidence and EIR for the solid red line (standard LLINs) and dashed red lines 1088 
(switch to PBO LLINs) lines between years 9 and 12 (period ❷). 1089 

 1090 

Figure 1–figure supplement 2. Scenario under investigation: example of a mosquito population 1091 
with a high population prevalence of resistance. The figure illustrates how insecticide resistance is 1092 
incorporated into the mathematical model. Panel (A) shows parasite prevalence by microscopy in 2-1093 
10 year olds, (B) clinical incidence in the entire population (cases per 1000 people per year) and (C) 1094 
the annual entomological inoculation rate (EIR). In all three panels 4 different scenarios are run: 1095 
black line shows a situation with no insecticide resistance whilst red line illustrates resistance 1096 
arriving at year 6 (80% survival measured in a bioassay); solid lines show non-PBO LLIN whilst dashed 1097 
lines show PBO LLINs introduced at year 9 (vertical dotted-dashed grey line). There is no vector 1098 
control in the population up until time zero (vertical dashed grey line) at which time there is a single 1099 
mass distribution of non-PBO LLINs to 80% of the population. LLINs are redistributed every 3 years to 1100 
the same proportion of the population. Mosquitoes are entirely susceptible up until resistance 1101 
arrives overnight at the start of year 6 (vertical grey dotted line). Endemicity (a variable in Figures 4 1102 
and 5) is changed by varying the slide prevalence in 2-10 year olds at year 6 (by changing the vector 1103 
to host ratio) and in this plot takes a value of 10% (as illustrated by the horizontal green dashed line 1104 
in A). The impact of insecticide resistance is predicted (in Figures 4) by averaging the clinical 1105 
incidence and EIR for the solid red lines (resistance) and solid black lines (no resistance) between 1106 
years 6 and 9 (period ❶). Similarly, the impact of switching to PBO LLINs (in Figures 5) is estimated 1107 
by averaging the clinical incidence and EIR for the solid red line (standard LLINs) and dashed red lines 1108 
(switch to PBO LLINs) lines between years 9 and 12 (period ❷). 1109 

 1110 

 1111 

 1112 
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Figure 3–figure supplement 1. Justification of normality distributed errors in the deterrence 1113 
dataset (A) and posterior distributions of parameter estimates (B). (A) shows a normal quantile-1114 
quantile plot for the residuals of the data for the relationship between deterrence and mosquito 1115 
survival in experimental hut trials (Figure 3A, equation [9]). The linearity of the residuals (the 1116 
proximity of the blue dots to the red dotted line) indicate that the error in these data are adequately 1117 
described by the normal distribution (equation [9]). Panel (B) shows a kernel density plot for the 1118 
posterior distributions for all model parameters. Line colours match legend colours (with values 1119 
indicating median and 95% credible intervals for all parameters). In panel (B) all x-axes values are 1120 
shown on the absolute scale. 1121 

   1122 

Figure 4–figure supplement 1. The predicted impact of pyrethroid resistance on the clinical 1123 
incidence of malaria (Panels A and B) and the force of infection (Panel C). Panel (A) shows how the 1124 
number of clinical cases in the population increases with the population prevalence of pyrethroid 1125 
resistance (as assessed by the percentage survival in a pyrethroid bioassay) for a single setting (with 1126 
10% slide prevalence). Solid lines show the average for the population whilst shaded grey area 1127 
indicates the 95% credible intervals around this best fit line. Panel (B) shows the 3D relationship 1128 
between prevalence of resistance (x-axis), endemicity (y-axis) and the absolute increase in the 1129 
number of clinical cases (contours, see colour legend) per 1000 people (all ages). Panel (C) presents 1130 
the same model as (B) though showing the absolute increase in the entomological inoculation rate 1131 
(EIR, the average number of infectious bits per person per year). In all figures it is assumed that the 1132 
mosquito species is Anopheles gambiae sensu stricto and that there is 50% LLIN coverage. 1133 

 1134 

Figure 4–figure supplement 2. The predicted impact of pyrethroid resistance on the clinical 1135 
incidence of malaria (Panels A and B) and the force of infection (Panel C). Panel (A) shows how the 1136 
number of clinical cases in the population increases with the population prevalence of pyrethroid 1137 
resistance (as assessed by the percentage survival in a pyrethroid bioassay) for a single setting (with 1138 
10% slide prevalence). Solid lines show the average for the population whilst shaded grey area 1139 
indicates the 95% credible intervals around this best fit line.  Panel (B) shows the 3D relationship 1140 
between prevalence of resistance (x-axis), endemicity (y-axis) and the absolute increase in the 1141 
number of clinical cases (contours, see colour legend) per 1000 people (all ages). Panel (C) presents 1142 
the same model as (B) though showing the absolute increase in the entomological inoculation rate 1143 
(EIR, the average number of infectious bits per person per year). In all figures it is assumed that the 1144 
mosquito species is Anopheles arabiensis and that there is 80% LLIN coverage. 1145 

 1146 

Figure 4–figure supplement 3. The predicted impact of pyrethroid resistance on the clinical 1147 
incidence of malaria (Panels A and B) and the force of infection (Panel C). Panel (A) shows how the 1148 
number of clinical cases in the population increases with the population prevalence of pyrethroid 1149 
resistance (as assessed by the percentage survival in a pyrethroid bioassay) for a single setting (with 1150 
10% slide prevalence). Solid lines show the average for the population whilst shaded grey area 1151 
indicates the 95% credible intervals around this best fit line. Panel (B) shows the 3D relationship 1152 
between prevalence of resistance (x-axis), endemicity (y-axis) and the absolute increase in the 1153 
number of clinical cases (contours, see colour legend) per 1000 people (all ages). Panel (C) presents 1154 
the same model as (B) though showing the absolute increase in the entomological inoculation rate 1155 
(EIR, the average number of infectious bits per person per year). In all figures it is assumed that the 1156 
mosquito species is Anopheles funestus and that there is 80% LLIN coverage. 1157 

 1158 
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 1159 

Figure 4–figure supplement 4. The predicted impact of pyrethroid resistance on (A) the clinical 1160 
incidence of malaria and (B) the force of infection when pyrethroid resistance does not influence 1161 
the rate of decay in LLIN insecticide activity over time (i.e. resistance has no impact on LLIN 1162 
longevity). Panel (A) shows the 3D relationship between population prevalence of resistance (x-axis), 1163 
endemicity (y-axis) and the absolute increase in the number of clinical cases (contours, see legend) 1164 
per 1000 people (all ages). Panel (B) presents the same model as (A) though showing the absolute 1165 
increase in the entomological inoculation rate (EIR, the average number of infectious bits per person 1166 
per year). These panels can be directly compared to panels (4B) and (4C) of the main text where 1167 
pyrethroid resistant mosquitoes overcome the actions of the insecticide earlier.  1168 

 1169 

Figure 4–figure supplement 5. Estimates in the uncertainty of the three LLIN efficacy parameters 1170 
for different levels of pyrethroid resistance. Panels (A)-(C) show values for Anopheles gambiae senu 1171 
lato whilst (D)-(F) show Anopheles funestus. (A) and (C) predict the proportion of mosquitoes dying 1172 
per feeding attempt (݀) whilst (B) and (C) show the proportion of mosquitoes which successfully 1173 
feed and survive (ݏ). Panels (C) and (F) show how the estimated half-life of insecticide activity in 1174 
years changes (ܪ௬) with the pyrethroid resistance test. Green lines denote standard LLINs whilst 1175 
purple lines indicate PBO LLINs. Solid line represent the best fit estimates whilst the shaded region 1176 
gives the 95% credible intervals generated by sampling from the individual parameter posterior 1177 
distributions used within the equation. 1178 

 1179 

Figure 5–figure supplement 1. Predicting the added benefit of switching from standard LLINs to 1180 
combination PBO nets. Panels (A)-(C) show clinical incidence (per 1000 people per year, all ages) 1181 
whilst Panels (D)-(F) gives the entomological inoculation rate (EIR, infectious bites received per 1182 
person per year). (A) and (D) shows how malaria incidence and the force of infection increases with 1183 
the population prevalence of pyrethroid resistance (as assessed by the percentage survival in a 1184 
pyrethroid bioassay) in a single setting (with 10% slide prevalence) for standard LLINs (green line) 1185 
and PBO LLINs (purple line). Panels (B) and (E) show the 3D relationship between the prevalence of 1186 
resistance (x-axis), endemicity (y-axis) and the absolute number of cases (and EIR) averted by 1187 
switching to PBO LLINs. (C) and (F) give 3D relationship for the percentage reduction in cases (and 1188 
EIR) caused by switching from standard to PBO LLINs. The non-linear relationship between 1189 
endemicity, clinical incidence and EIR means that the greatest percentage reduction is seen at low 1190 
endemicities despite the greatest absolute reduction being in higher transmission settings. In all 1191 
figures it is assumed that the mosquito species is Anopheles gambiae sensu stricto and that there is 1192 
50% LLIN coverage. 1193 

 1194 

 1195 

 1196 

 1197 
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 1198 

Figure 5–figure supplement 2. Predicting the added benefit of switching from standard LLINs to 1199 
combination PBO nets. Panels (A)-(C) show clinical incidence (per 1000 people per year, all ages) 1200 
whilst Panels (D)-(F) gives the entomological inoculation rate (EIR, infectious bites received per 1201 
person per year). (A) and (D) shows how malaria incidence and the force of infection increases with 1202 
the population prevalence of pyrethroid resistance (as assessed by the percentage survival in a 1203 
pyrethroid bioassay) in a single setting (with 10% slide prevalence) for standard LLINs (green line) 1204 
and PBO LLINs (purple line). Panels (B) and (E) show the 3D relationship between the prevalence of 1205 
resistance (x-axis), endemicity (y-axis) and the absolute number of cases (and EIR) averted by 1206 
switching to PBO LLINs. (C) and (F) give 3D relationship for the percentage reduction in cases (and 1207 
EIR) caused by switching from standard to PBO LLINs. The non-linear relationship between 1208 
endemicity, clinical incidence and EIR means that the greatest percentage reduction is seen at low 1209 
endemicities despite the greatest absolute reduction being in higher transmission settings. In all 1210 
figures it is assumed that the mosquito species is Anopheles arabiensis and that there is 80% LLIN 1211 
coverage. 1212 

 1213 

Figure 5–figure supplement 3. Predicting the added benefit of switching from standard LLINs to 1214 
combination PBO nets. Panels (A)-(C) show clinical incidence (per 1000 people per year, all ages) 1215 
whilst Panels (D)-(F) gives the entomological inoculation rate (EIR, infectious bites received per 1216 
person per year). (A) and (D) shows how malaria incidence and the force of infection increases with 1217 
the population prevalence of pyrethroid resistance (as assessed by the percentage survival in a 1218 
pyrethroid bioassay) in a single setting (with 10% slide prevalence) for standard LLINs (green line) 1219 
and PBO LLINs (purple line). Panels (B) and (E) show the 3D relationship between the prevalence of 1220 
resistance (x-axis), endemicity (y-axis) and the absolute number of cases (and EIR) averted by 1221 
switching to PBO LLINs. (C) and (F) give 3D relationship for the percentage reduction in cases (and 1222 
EIR) caused by switching from standard to PBO LLINs. The non-linear relationship between 1223 
endemicity, clinical incidence and EIR means that the greatest percentage reduction is seen at low 1224 
endemicities despite the greatest absolute reduction being in higher transmission settings. In all 1225 
figures it is assumed that the mosquito species is Anopheles funestus and that there is 80% LLIN 1226 
coverage. 1227 

 1228 

 1229 

 1230 

 1231 
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δ1 = 0.071  ( −0.17 to 0.255 )
δ2 = 1.257  ( 0.627 to 2.073 )
δ3 = −1.517  ( −4.03 to 0.646 )
α1 = 0.634  ( 0.012 to 1.294 )
α2 = 3.997  ( 3.171 to 5.119 )
θ1 = 0.025  ( 0.007 to 0.034 )
θ2 = 3.317  ( 2.919 to 4.899 )

µp = −2.36  ( −2.948 to −1.821 )
ρp = −3.048  ( −3.762 to −2.322 )

β1 = 3.407  ( 2.666 to 4.331 )
β2 = 5.878  ( 4.754 to 6.956 )
β3 = 0.783  ( 0.543 to 1.038 )
βf1 = 2.527  ( 1.528 to 3.547 )
βf2 = 0.891  ( −0.128 to 1.882 )
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