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METHODOLOGY

Markov chain Monte Carlo 
and expectation maximization approaches 
for estimation of haplotype frequencies 
for multiply infected human blood samples
Gie Ken‑Dror* and Ian M. Hastings 

Abstract 

Background: Haplotypes are important in anti‑malarial drug resistance because genes encoding drug resistance 
may accumulate mutations at several codons in the same gene, each mutation increasing the level of drug resistance 
and, possibly, reducing the metabolic costs of previous mutation. Patients often have two or more haplotypes in their 
blood sample which may make it impossible to identify exactly which haplotypes they carry, and hence to measure 
the type and frequency of resistant haplotypes in the malaria population.

Results: This study presents two novel statistical methods expectation–maximization (EM) and Markov chain Monte 
Carlo (MCMC) algorithms to investigate this issue. The performance of the algorithms is evaluated on simulated 
datasets consisting of patient blood characterized by their multiplicity of infection (MOI) and malaria genotype. The 
datasets are generated using different resistance allele frequencies (RAF) at each single nucleotide polymorphisms 
(SNPs) and different limit of detection (LoD) of the SNPs and the MOI. The EM and the MCMC algorithm are validated 
and appear more accurate, faster and slightly less affected by LoD of the SNPs and the MOI compared to previous 
related statistical approaches.

Conclusions: The EM and the MCMC algorithms perform well when analysing malaria genetic data obtained from 
infected human blood samples. The results are robust to genotyping errors caused by LoDs and function well even in 
the absence of MOI data on individual patients.

Keywords: Haplotype reconstruction, Multiplicity of infection, Single nucleotide polymorphisms, Expectation–
maximization algorithm, Markov chain Monte Carlo
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Background
Malaria infections in human blood often consist of sev-
eral genetically-distinct infections, each of which is called 
a clone. Humans in endemic areas may receive up to 1000 
infective bites per year. Polyclonal infections are com-
mon, the number of clones within a human blood sam-
ple called the multiplicity of infection (MOI). The average 
number of MOI is around three in humans who lives in 

areas of intense transmission, and rarely exceeds to 12 in 
any individual patient [1].

The presence of multiple clones (each of which is hap-
loid) in a blood sample often makes it impossible to 
identify what multiple SNPs haplotypes are present in 
each patient. This makes estimating the frequencies of 
haplotypes in the malaria population from human blood 
samples a challenging computational task. Haplotypes 
are important in tracking anti-malarial drug resistance 
because genes encoding drug resistance may accumu-
late mutations at several codons in the same gene, each 
mutation increasing the level of drug resistance and pos-
sibly, reducing the metabolic costs of previous mutation. 
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Drug resistance mutations threaten malaria control and 
treatment policies and the mutations and haplotypes that 
encode resistance will be the subject of this paper.

The prevalence of mutations (i.e. their presence/
absence in a blood sample) can be directly observed so 
the information available for each human blood sample is 
(a) an estimate of the MOI and (b) the presence/absence 
of an allele at a SNP. In effect a blood sample provides a 
genotype whose ploidy level equals its MOI; the prob-
lem is to use these observed polyploid blood genotypes 
to infer haplotype frequencies. This inference is further 
complicated by genetic ambiguity that arises from three 
sources:

  • The MOI is estimated using hyper-variable genetic 
loci, such as msp1, msp2, glurp and ta109, which 
typically have an expected homozygosity of around 
0.05–0.08 [2]. Simple counting of the number of dif-
ferent alleles at each loci provides a minimum MOI. 
However, this may underestimate the population 
MOI if clones share alleles at hyper-variable loci 
purely by chance, or if they are low density clones 
missed during genotyping [3].

  • Alleles at single nucleotide polymorphisms (SNPs) 
can only be scored as present/absent and not directly 
counted unless MOI ≤  2. For example if MOI =  4 
and both wildtype and mutant alleles are present in 
the sample, it is impossible to tell whether the ratio of 
mutant:wildtype clones is 1:3, 2:2 or 3:1.

  • Differing assay sensitivity means that some alleles 
are not detected. Malaria clones in humans are not 
present at the same density. Differences arise because 
they are recognized differently by host immunity, and 
because of sequestration in their 48-h cycle in red 
blood cells. Alleles present in the numerically-smaller 
minor clones will provide fewer PCR amplification 
templates and hence a lower detection signal. The 
situation is further complicated by each allele’s sig-
nal strength being affected by other factors such as 
the size of the region amplified during PCR. Different 
laboratories set different cut-off levels to distinguish 
smaller true signals from background assay noise. 
The Swiss TPH attributed signals less than 30  % 
intensity of the main genotyping signals as ‘noise’, 
while other labs use lower cut-offs and some appar-
ently rely on user subjectivity to distinguish minor 
peaks from technical noise. The cut-off defines as the 
assay’s limit of detection (LoD). If the LoD of PCR 
reactions differ between SNP and hyper-variable loci 
then it is possible to get the situation where an allele 
from a clone is detected at the hyper-variable locus 
used to determine MOI, but may be missed when 
genotyping the SNP at the resistance locus. Clones 

(usually at very low density) that are undetected at all 
loci can be ignored as they do not enter the analysis 
[1].

These three factors have a large impact when attempt-
ing to impute genetic data for the malaria population. In 
particular, it precludes estimating haplotype frequency by 
simple gene counting of unambiguous genotypes because 
low frequency alleles and haplotypes are systematically 
missed, typically leading to twofold errors in frequency 
estimates [1].

The impact of detection limits when genotyping blood 
samples are under-studied. A simulation developed 
to create artificial datasets that incorporate the three 
sources of genetic ambiguity described above. This allows 
for non-detection of clones and allows the user to know 
both the “true” underlying genetic data in the simulated 
dataset and the “observed” data that would be seen in 
the blood samples. This problem does not arise in con-
ventional diploid species. They have equal copies of each 
chromosome so the genetic signal from each SNP allele 
is equal, hence the need to develop new ways of inferring 
haplotype frequency in malaria patients. Several statisti-
cal approaches to estimate haplotype frequencies from 
multiclonal infections have been proposed including: 
maximum-likelihood (ML) estimation using a hill climb-
ing algorithm (MalHapFreq) [4], expectation–maximiza-
tion (EM) using an efficient iterative maximum likelihood 
approach (malaria.em) [5] and a Metropolis–Hastings 
Markov Chain Monte Carlo implementation of a model 
constructed within a Bayesian framework, which we 
hereafter referred to as Bayesian [6]. The aim of the pre-
sent study is to present two novel approaches i.e. MCMC 
and EM algorithms for haplotype reconstruction with 
known or unknown MOI, and to compare the results to 
those obtained from the related statistical approaches 
described above; In addition, quantify the impact of mis-
classified observed genotype and examine the accuracy of 
the various method in estimating the population haplo-
type frequency.

Methods
The simulated datasets, estimation algorithms and sta-
tistical analysis described below have been implemented 
in the R statistical software system version 3.1.1 [7], on a 
64-bit computer with 32.0 GB of random access memory 
and an Intel(R) Core(TM) i7-4770K central processing 
unit (CPU) @ 3.50 GHz processor.

Simulation of genotype and haplotype datasets
Simulation of population (haplotype) data
The simulation starts by generating a user-defined num-
ber of human blood samples, N, (1, 2,…,N) in the dataset. 
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The multiplicity of infection (MOI) in each blood sample 
is generated randomly by the default frequency distribu-
tions given by Jaki et  al. [8] i.e. with “population” MOI 
frequencies as follows: = 1–4 %, 2–40 %, 3–10 %, 4–10 %, 
5–20 %, 6–5 %, 7–6 %, 8–5 % [8]; this reflects a distribu-
tion of MOI observed in a relative intense area of malaria 
transmission.

Separate infections in the MOI are assumed to be 
genetically distinct and unrelated, haploid, asexual clones 
that are presumed to have been inoculated by separate 
mosquito bites into the same person. Each clone within 
the blood sample is then randomly assigned an allele 
from each of three hyper-variable genetic markers used 
to estimate its MOI. Here assume the loci msp1, msp2 
and ta109 whose allele frequency distributions are given 
by Jaki et  al. [8]. Each clone is then assigned a biomass 
randomly selected from the interval 109 to 1011; the 
“biomass” is the total number of parasites in the human 
and this sampling interval is typical for symptomatic 
malaria infections. The relative biomass (i.e. its propor-
tion of total biomass) of each clone is then calculated as 
that clone’s biomass divided by the total biomass in the 
patient. Importantly, the genotyping signal from a SNP or 
MOI allele will be assumed to be proportional to the rela-
tive biomass of parasites containing that allele.

Each clone is then assigned a resistance haplotype 
defined at a user-defined number of SNPs. This may be 
achieved using user-defined resistance allele frequencies 
(RAF) at each SNP in the haplotype and assuming link-
age equilibrium (LE) between the codons. Alternately the 
haplotype frequencies can be input directly from user-
defined haplotype frequencies if alleles at the SNPs are in 
linkage disequilibrium.

This approach was used to generate genetic datasets for 
subsequent analysis. Unless stated otherwise assumed: 
100 blood samples per dataset, diallelic SNPs (i.e. either 
resistant or sensitive) RAF at each codon ranging from 1 
to 50 %, and linkage equilibrium (LE) between all SNPs 
and MOI markers. 1000 datasets were generated and 
analysed assuming differing LoD i.e. 0.0/0.0, 0.1/0.05, 
0.2/0.1, 0.3/0.15 where the first number is LoDSNP and 
the second is LoDMOI.

Simulation of observed (genotype) data
Genotypes are the observable data obtained on human 
blood samples and are subjected to the sources of 
genetic ambiguity described above i.e. genotyping errors 
arising from LoD and the fact that different combination 
of haplotypes may give rise to the same observed geno-
type. The “true” genetic data are therefore processed as 

follows to simulate what would actually be observed in 
the blood samples.

Observed MOI The strength of each genotyping ‘signal’ 
is calculated from their relative biomasses. The cut-off for 
distinguishing true signals from ‘noise’ may differ slightly 
from that used for SNPs which is why having different 
detection limits for LoDSNP and LoDMOI. The novel algo-
rithm assumes a signal less than a certain proportion of 
the major signal, this proportion being denoted LoDMOI, is 
regarded as ‘noise’. So if LoDMOI = 0.1, signals <10 % of the 
maximum would be regarded as noise and would not con-
tribute to the ‘observed’ blood sample genotype. Alterna-
tive algorithms for distinguishing noise in MOI genotyping 
suggested (Additional file  1), and can be integrated into 
the code if required. The observed MOI is then calculated 
as the maximum number of the alleles observed at three 
hyper-variable genetic markers msp1, msp2 and ta109.

Observed genotypes These are calculated in an analo-
gous manner to MOI i.e. by assuming that a clone’s 
biomass determines its contribution to the genotyping 
signal. The total ‘signal’ for each allele at each SNP is then 
calculated and compared to the user-defined LoDSNP to 
find which alleles are detectable and contribute to the 
observed blood genotype.

Finally run a “reality check” on the simulated blood 
dataset as would be done for real data. In particular, 
search for samples with observed MOI =  1 and one of 
the SNPs is heterozygous. These observations are incom-
patible and generally occur when MOI ≥ 2 but appears to 
have MOI = 1 for one of two main reasons. Firstly, the ≥2 
clones are identical at all three MOI loci purely by chance 
such that the observed MOI = 1. Secondly, the clones do 
differ at one or more MOI loci, but difference in geno-
typing sensitivity (LoD) between MOI and SNPs means 
only a single MOI allele is detected at each hypervariable 
locus but a heterozygote is detected at one of the SNPs. 
In both cases, the MOI is reset to have a value of two as 
would likely occur when processing clinical samples.

Novel haplotype reconstruction methods
The expectation–maximization (EM)‑algorithm
Here after called the “EM” algorithm. This is a natural 
approach to estimating population parameters where 
the model depends on unknown latent variables [9, 10]. 
The EM-algorithm was first implemented for haplotype 
reconstruction by Excoffier and Slatkin [11], Hawley and 
Kidd [12], and Long et  al. [13]. The EM method imple-
mented here is a variation that incorporates MOI. It con-
sists of several distinct steps and is explained in detail in 
the Additional file 1.
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The Markov chain Monte Carlo (MCMC)‑algorithm
Here after called the “MCMC” algorithm. This approach 
drawn iteratively samples in a way that each step the pro-
cess should be drawing from a distribution that is becom-
ing closer and closer to the target distribution [14–16]. 
The MCMC algorithm was first implemented for haplo-
type reconstruction by Stephens et al. [17], Stephens and 
Donnelly [18] and is implemented by us as described in 
the Additional file 1.

The confidence interval around haplotype frequency 
estimates
Once haplotype frequencies have been estimated, by 
either the EM or MCMC methods, the confidence inter-
val (CI) around these estimates are calculated from the 
exact binomial tail areas [19] that are usually considered 
as the gold standard. The lower and upper bound of the 
interval are defined via quantiles of the F distribution: 

where x = θin, θ is the haplotype frequency, n is number 
of blood sample (sample size) and α is the required width 
of the CI (so α = 0.95 for 95 % confidence intervals).

Existing statistical methods of haplotype reconstruction
There are three other published methods that are avail-
able to use: malaria.em, Taylor et  al. as R packages and 
MalHaploFreq software to infer haplotype frequencies 
that compared against the two novel methods described 
above.

  • Maximum likelihood (ML) estimation using a hill 
climbing algorithm described in [4]. The approach 
was called MalHaploFreq and hereafter will be called 
the “MHF” algorithm. This algorithm uses a hill 
climbing as an iterative optimization method where 
the function to be maximized is evaluated at each 
step. The functions parameters are systematically 
varied each step with the goal to find a better solu-
tion than the previous one.

  • Another expectation–maximization (EM) algorithm 
as described in [5]. Hereafter this will be called the 
“R-EM” approach. This is as efficient iterative maxi-
mum likelihood approach. The algorithm alternates 
between two steps expectation (E-step) the posterior 
probabilities of all haplotype combinations and maxi-
mization (M-step) the expectation of the log likeli-
hood of the frequency estimates is maximized. The 

(1)

x

x + (n− x + 1)F2n−2x+2
2x,1−α/2

≤ θi ≤
(x + 1)F2x+2

2n−2x,1−α/2

x + (n− x + 1)F2x+2
2n−2x,1−α/2

MOI values for each sample are used in the analysis 
if they are known. If unknown, MOI were assumed to 
follow a Poisson distribution with mean = 2. It differs 
from the EM method implemented here as the latter 
does not use the posterior probabilities of all haplo-
type combinations in the expectation.

  • A Bayesian approach as described in [6]. Here after 
it will be called the “Bayesian” algorithm. It uses a 
Metropolis–Hastings Markov chain Monte Carlo 
(MH-MCMC), The MH-MCMC is used to draw 
samples of genotype frequencies conditional on the 
observed data. Each time a new genotype was sam-
pled within the recursive re-sampling scheme. The 
genotype frequency samples drawn using the MCMC 
algorithm were then used to infer the relevant hap-
lotype frequencies. The average of the frequency 
sample set was used as a point estimate of the haplo-
type frequencies. The algorithm starts with an initial 
estimate of haplotype frequencies, a vector of MOI 
in each patient, and a matrix of genotype counts. It 
proposes an update for the MOI vector and geno-
types counts. The proposed MOI vector and geno-
type counts are accepted for rejected based on the 
Metropolis–Hastings ratio, which includes both the 
proposal densities and posterior densities. The MOI 
is based on prior distribution of four possible distri-
butions (Uniform, Poisson, negative Binomial, and 
Geometric). The parameter of the distribution is set 
equal to the reported mean MOI. It differs to the 
MCMC method implemented here because, in its 
simplest form, the latter proposes an update only for 
the set of haplotypes because the MOI is known for 
each patient and the proposed set of haplotypes are 
accepted or rejected based on maximizing the condi-
tional probability of observing the complete data.

Evaluation of different statistical methods
There are several published methods and programmes 
for inferring malaria haplotype frequency [4–6], plus 
the MCMC and EM algorithm developed here, so objec-
tive metrics are required to quantify their relative per-
formances. Simulate 1000 datasets as described above, 
assuming, for simplicity, that resistance is encoded at two 
loci (so there are four resistance haplotypes). Each data-
set is obtained by a process of five sequential steps:

1. The population frequencies of haplotypes are defined 
by selecting a RAF for each locus at random and 
the four population haplotype frequencies obtained 
assuming linkage equilibrium between the alleles.

2. A field survey of malaria blood samples is simulated. 
Each patient in the dataset has an MOI assigned at 
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random according to the frequencies given above. 
The malaria clones (a number equal to the MOI) 
are then sampled at random according to the “true” 
population frequencies of resistance haplotypes and 
polymorphic markers (msp1, msp2, ta109); note that 
the “sampled” resistance haplotype frequencies in the 
dataset will differ from the “true” frequency due to 
this sampling process.

3. The MOI polymorphic markers and resistance SNPs 
in each patient are then processed to obtain the ‘gen-
otypes’ observed in the blood samples taken from 
patients (an example present in Table  1) depending 
on the LoD.

4. The “estimated” resistance haplotype frequencies are 
obtained from each of the statistical programmes 
described above.

5. Randomly select one “estimated” haplotype fre-
quency from that dataset to evaluate the perfor-
mance of the methods. One haplotype used in each 
dataset because the haplotype frequency estimates 
within each datasets are non-independent; for exam-
ple a large deviation in estimating one frequency 
must be matched by a large error in another because 
the estimates must sum to unity.

Each of these five steps is repeated for each of the 1000 
datasets. The datasets and selected haplotype in each 

dataset are kept the same for each of the five analysis 
method; this allows a direct comparison between the dif-
ferent methodologies used to infer haplotype frequencies.

The performance of the different methods is then 
measured as follows. Note that “population/sample” 
means that only one of these definitions should be used 
not that a division should be applied. These metrics are 
fairly standard ones used in haplotype reconstruction in 
conventional (i.e. diploid) organisms and details can be 
found elsewhere [11, 20–23]. Note that ‘P’ used below is 
a vector whose number of elements equal h, the number 
of potential haplotypes in the malaria population (in the 
sample case 2 resistance SNPs so h = 22 = 4, but this may 
vary; for example if there are five SNPs then h = 25 = 32 
and so on). The elements of the vector are indicated by 
the superscript i.

The accuracy of the estimates
The ‘population’ and “sampled” values are compared with 
the “estimated” value reported as:

The correlation coefficient (R2) between population/
sample, and estimated haplotype frequency value is 
recorded for each of the 1000 selected haplotypes.

A similarity index (IF) [11] was calculated to examine 
how close the computationally estimated haplotype fre-
quencies are to the ‘population’ and “sampled” haplotype 
frequencies as:

Table 1 How malaria datasets are simulated

The ‘population’ frequencies of different MOI classes, polymorphic markers (msp1, msp2, ta109) and resistance haplotypes in the local malaria population are first 
defined. A number of patients are then simulated, five in this case but more usually 100. For each patient a MOI is first sampled according to the local “population” 
frequencies (which will depend on local transmission intensity). This MOI then determines the number of malaria clones in the patient. These clones are then 
simulated. The first step is to assign a biomass to the clone. The clone polymorphic markers are assigned at random according to the local true frequencies. Finally a 
resistance haplotype is assigned to the clone, again sampled from the local true frequencies. This process is repeated for each clone in each patient and gives rise to 
the data given in black font below. The genetic signal observed in each patient (last two columns) is then calculated as described in the main text. In this example, 
genetic signals are not detected if they constitute ≤10 % of the biomass (f.BIOMASS gives relative biomass for each clone in a patient). What is actually observed, 
and available for analysis, is the information given in italics; genotyping limits produce errors and those erroneous data are indicated by a asterisk: they are the data 
available to the researcher but do not truly reflect the genetic data of the parasites in that patient

Haplotype is the resistance haplotype for each clone. It is defined at three SNPs, for each clone: 1 = wildtype, 2 = mutat. Observed genotype is observed genotype for 
each patient. It is defined at three SNPs; for each SNP: 1 = wildtype alone, 2 = mutant alone, 3 = both wildtype and mutant genetic signals observed in the blood 
sample

Patient # MOI BIOMASS f.BIOMASS msp1 msp2 ta109 Haplotype Observed MOI Observed genotype

1 1 5.29E+10 1.000 10 34 3 112 1 112

2 3 8.06E+09 0.100 24 23 5 112 1* 111*

6.48E+10 0.803 20 6 5 111

7.86E+09 0.097 16 27 5 112

3 2 5.06E+10 0.474 24 35 3 111 2 111

5.62E+10 0.526 1 34 4 111

4 2 5.52E+10 0.487 21 34 4 122 2 133

5.81E+10 0.513 18 33 4 111

5 3 3.16E+10 0.432 23 32 9 111 2* 133*

1.35E+09 0.018 21 28 7 112

4.03E+10 0.550 23 27 9 122
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Pestimated and Ppopulation/sample denote, respectively, the 
estimated and the population/sample haplotype fre-
quency of i haplotype. This measure incorporates all h 
haplotype frequencies and thus captures the overall dif-
ference between estimated and population/sample fre-
quencies. It varies between one, when population/sample 
and estimated haplotypes frequencies are identical, and 
zero, when estimated haplotypes frequencies tending to 
zero.

The mean squared error (MSE) [20] was calculated as:

Pestimated and Ppopulation/sample denote, respectively, the 
estimated and the population/sample haplotype fre-
quency of i haplotype, h is the number of haplotype fre-
quencies in the population.

Since these indexes (IF, and R2) gives more weight to 
high frequency haplotypes the change coefficient C [21] 
assess the scaled change in haplotype frequencies and 
was calculated as:

The coefficients were computed for each possible hap-
lotype across statistical methods and presented as plot 
difference of estimation (%) on Y-axis against the haplo-
type frequency for each estimate on the X-axis. This met-
ric is useful as it indicate that the haplotype frequency 
estimated and the haplotype frequency population/
sample is the same. The value of the coefficient C ranges 
from 1 to −1, the value 0 indicating that the haplotype 
frequency estimated and the haplotype frequency popu-
lation/sample are identical. Positive values indicate that 
haplotype frequency estimates tend to be larger than the 
population/sample frequency.

The validity of the methods measure how often the 
“population” and “sampled” frequencies fall within 
the 95  % confidence intervals (CI) of the estimated fre-
quency. It would expect ~5  % of “population” values to 
fall outside the CI and ≤5  % of “sampled” values to fall 
outside the CI.

(2)

IF =

h
∑

i=1

min
(

Piestimated ,Pipopulation/sample

)

= 1−
1

2

h
∑

i=1

∣

∣Piestimated − Pipopulation/sample

∣

∣

(3)

MSE =

[

∑h
i=1

(

Piestimated − Pipopulation/sample

)2
]

h

(4)Ci =

(

Piestimated − Pipopulation/sample

)

Max
[

Piestimated , Pipopulation/sample

]

The speed of the analyses which is self explanatory 
recorded and presented as a line charts.

Results
Three hyper-variable genetic markers msp1, msp2 and 
ta109 are used to estimate MOI. The observed MOI 
misclassifies (underestimates) population MOI by 
~5  % even when the LoDSNP and LoDMOI are zero; this 
occurs when genetic profiles match purely by chance. 
Increasing LoDMOI misclassifies the population MOI by 
increasing amounts i.e. by 8, 11 and 14 % when assum-
ing LoD(SNP/MOI) 10 %/5 %, 20 %/10 %, 30 %/15 %, respec-
tively. Similarly errors arise when, increasing LoDSNP as 
the observed genotypes are not necessary the true ones. 
Samples that are pure mutant or pure wildtype at SNPs 
will always be correctly classified (there are no minor 
genotyping signals at these SNPs) but genotypes at SNPs 
that are mixed mutant/wildtype may be misclassified as 
pure mutant or pure wildtype if the minor signal is lost. 
The mixed mutant/wildtype genotype was misclassified 
as pure mutant or pure wildtype by 5, 11 and 17 % among 
LoD(SNP/MOI) 10  %/5  %, 20  %/10  %, 30  %/15  %, respec-
tively (as expected the true and observed SNP genotypes 
are identical when the LoDSNP are zero). These underesti-
mated MOI values and misclassified genotypes caused by 
LoD potentially affect many of the subsequent estimates 
of haplotype frequencies as will be described below.

The estimated haplotype frequency between the five 
statistical methods i.e. MHF (MalHaploFreq), R-EM 
(malaria EM), Bayesian (Bayesian statistic), EM (EM-
algorithm), MCMC (Markov Chain Monte Carlo) and 
the population/sample haplotype frequencies among 
four combinations of LoD(SNP/MOI) showed high con-
cordance. Figure  1 shows the absolute deviation of the 
estimated haplotype frequency from population/sample 
haplotype frequency. The correlation coefficient (R2) is 
slightly higher by 0.49–0.85  % in the sample haplotype 
compared to the population haplotype among all sta-
tistical methods. Increasing both LoDMOI and LoDSNP 
decreases the correlation coefficient by 0.20–0.36  % 
among MHF, Bayesian and EM methods. Conversely, 
increasing both LoDMOI and LoDSNP increased the cor-
relation coefficient by 3.06–3.29 % among R-EM method 
and by 0.20–0.15 % among MCMC method (Additional 
file  1: Figures S1–S3). The difference between correla-
tion coefficients among statistical methods is less than 
3.7 %. The data points lie close to the force line the diag-
onal through [0, 1]. There was also a tendency for the 
estimates to cluster more closely around the force line 
at high frequencies, showing that there is a tendency 
for high-frequency haplotypes to be more accurately 
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estimated. Figure  1 reveals the presence and extent of 
bias as systematic deviations from the force line. The 
R-EM and MCMC methods both show some bias with 
high frequencies being slightly underestimated and low 
frequencies being slightly overestimated. However the 
bias is slight and changes with limits of detection. Addi-
tional file  1: Figures S1–S3 are analogous to Fig.  1 but 
illustrate the effect of increasing LoD. At higher lim-
its (Additional file 1: Figure S3) the MHF and Bayesian 
methods appear to overestimate high frequency haplo-
type and under-estimate low frequency haplotypes.

The data on Fig. 1 can be processed to show the change 
coefficient C which incorporates both the direction and 
the percentage change between the estimated and popu-
lation/sample frequencies (this deviation is known as 
“change” in the haplotype literature [21] although it would 
elsewhere generally be called “error”). In this literature 
a “small change” is conventionally denoted as C ≤  0.15 
[21]. Figure 2 demonstrates that dramatic values of C i.e. 
≥90  % occur at the lowest haplotype frequencies. The 
worst estimates (C ≈  1) occur when haplotype frequen-
cies are less than around 7 % using MHF. In addition, poor 
estimates occurs at haplotype frequency <6  % among 
R-EM and Bayesian statistical methods. A single example 
of C ≈  1 occurred at haplotype frequency 2.7  % among 

MCMC statistical methods. No such examples of C ≈  1 
occur at the EM statistical methods. Increasing both LoD-
SNP and LoDMOI (Additional file 1: Figures S4–S6) slightly 
decreases the lowest haplotype boundary at which C ≈ 1 
occurs i.e. to <5 % among MHF, <4 % among R-EM and 
Bayesian statistical method, <2  % among EM statisti-
cal method and <1 % among MCMC statistical method. 
Approximately two-thirds (68  %) of the haplotype fre-
quency estimates show either no change or small change 
(defined as C < 15 %) at LoDSNP of 0.00 and LoDMOI of 0.00 
among MHF, EM statistical method and MCMC statisti-
cal method. On the other hand only 47  % among R-EM 
and 64 % among Bayesian statistical method of the haplo-
type frequency estimates show either no change or small 
change. Increasing both LoDSNP and LoDMOI to 0.30 and 
0.15, respectively decreased the haplotype frequency esti-
mates that show either no change or small change to 48 % 
among MHF, 49  % among Bayesian statistical method 
and 64 % among EM and MCMC statistical methods. On 
the other hand, increase the haplotype frequency esti-
mates that show either no change or small change to 68 % 
among R-EM statistical method (Additional file 1: Figure 
S6). Figure 2 confirms the bias shown on Fig. 1, i.e. that 
R-EM and MCMC tend to underestimate high frequency 
haplotypes and over-estimate the low frequency ones.

Fig. 1 The correlation (R2) between population/sample and estimated haplotype frequency across statistical methods among  
LoDSNP/MOI = 0.00/0.00



Page 8 of 15Ken‑Dror and Hastings  Malar J  (2016) 15:430 

Figure 3 show the similarity index (IF) of the estimates 
haplotype frequency compared population/sample hap-
lotype frequency. The five statistical methods provided 
similarity index (IF) values very close to each other. The 
similarity index is higher by 0.05–1.0  % in the sample 
haplotype compared to the population haplotype among 
all statistical methods and decreased with increasing 
LoDSNP (30, 20, 10, 0 %) and LoDMOI (15, 10, 5, 0 %) show 
in the Fig.  3. The difference between similarity indexes 
among statistical methods is less than 4  %. Increasing 
both the LoDSNP and LoDMOI decreases the similarity 
index between 2 and 3 % in MHF, and Bayesian methods, 
by 1 % in EM method; conversely, R-EM shows increas-
ing values of IF while the MCMC analyses is more com-
plex, IF increasing slightly then decreasing slightly. The 
similarity index gives more weight to common haplo-
types whose frequencies are the most accurately esti-
mated. This tendency is reflected in the MSE statistics 
shown. Figure 4 shows the mean squared error (MSE) of 
the estimated haplotype frequencies around the popula-
tion/sample haplotype frequency. The MSE is lower by 
0.0002–0.0004 in the sample haplotype compared to the 
population haplotype among all statistical methods. The 
difference between MSE between statistical methods is 

less than 0.002. Increasing both the LoDSNP and LoDMOI 
increased the MSE by 0.001 in MHF, and Bayesian meth-
ods, and slightly in EM methods (0.0005); conversely 
R-EM and MCMC methods decrease the MSE values by 
0.002 and 0.0002, respectively.

The validity of the methods can be quantifies as how 
often the “population” and “sampled” frequencies fall out 
of the 95  % confidence intervals (CI) generated by the 
analyses. It would expect ~5 % of “population” values to 
fall outside the CI and <5  % of “sampled” values to fall 
outside the CI. Figure 5 shows that, when LoD = 0 then 
the EM and MCMC methods all produce very narrow CI, 
while MHF is about correct (containing 95 % of the val-
ues) while the R-EM and Bayesian methods produces CI 
that are too wide with only about 85 and 90 % respectively 
of true values being contained within the CI. One expla-
nation for the differences in performance is the way the 
CI was calculated. The MHF statistical methods calcu-
late 95 % CI boundaries as occurring when the likelihood 
is less than 2 log units below the maximum-likelihood. 
The R-EM methods calculate 95 % CI from the standard 
error of the estimated haplotype frequencies. The Bayes-
ian methods calculate 95  % CI as quintiles from haplo-
type frequency matrix. The EM and MCMC statistical 

Fig. 2 The change coefficient (C) between population/sample and estimated haplotype frequency across statistical methods among  
LoDSNP/MOI = 0.00/0.00



Page 9 of 15Ken‑Dror and Hastings  Malar J  (2016) 15:430 

methods calculate 95  % CI base on exact binomial tail 
areas (Eq.  1). A more fundamental difference between 
the methods is that Bayesian and R-EM did not incorpo-
rate MOI into the calculations; worryingly, both methods 
produced haplotype estimates that often lay outside the 
CI even when molecular detection was perfect. The per-
centage of results falling outside of the 95 % CI is slightly 
lower, by 2–5 %, in the sample haplotype frequency com-
pared to the population haplotype frequency among 

MHF, R-EM, and Bayesian methods. Increasing both the 
LoDSNP and LoDMOI increased dramatically the error 
rates produced by Bayesian and MHF approaches with 
27.4–26.3 %, and 15.6–17.4 % of estimates lying outside 
the 95 % CI among. EM methods were robust to changes 
in LoD with variation in the percentage falling outside 
the 95  % CI being <1.6  % across the four LoD assump-
tions. The R-EM and MCMC methods were similarly sta-
ble with variation being <2.1 and <2.8 % respectively. In 

Fig. 3 The similarity index of the estimates haplotype frequency compared population/sample haplotype frequency across statistical methods
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summary, the difference between the missed CI between 
statistical methods is almost 30 %.

Figure  6 shows the computational time for the statis-
tical methods. There is a big difference between the sta-
tistical methods of almost 39  s. Increasing LoDMOI and 
LoDSNP decreased the time of the analysis by 74 % among 
MHF, 50  % among R-EM, 92  % among Bayesian, 77  % 
among EM, and 75  % among MCMC. The most likely 
explanation for the reduction in time taken to run the 
analyses is that as LoD increases, the observed MOI and 

genetic diversity within patients tends to decrease; con-
sequently the datasets become slightly simpler and their 
analysis faster.

The haplotype frequency estimations for real data 
among five statistical methods are shown in Table 2. This 
was anonymized data kindly provided by colleagues at 
the Swiss Tropical and Public Health Institute; it has not 
yet been published so details cannot be provided here 
except to note that the data came from a sub-Saharan 
country in an area of intense transmission. The data set 

Fig. 4 The MSE of the estimated haplotype frequencies compared to population/sample haplotype frequency across statistical methods
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containing two biallelic SNPs for 82 individual with high 
MOI was used to check the applications of five statistical 
methods (MHF, R-EM, Bayesian, EM and MCMC). The 
results obtained from different methods were very similar 
with the mean difference of estimated haplotype frequen-
cies between the statistical methods is about 3  %. The 
lowest difference of estimated probability is 1.5 % present 
between R-EM and MCMC methods and the highest dif-
ference of estimated probability is 6  % present between 
Bayesian and EM methods. These small differences were 

observed for all the data sets so only one set of results is 
shown.

Discussion
This study proposed two statistical methods EM-algo-
rithm and MCMC for haplotype reconstruction for 
multiply infected human blood samples. These meth-
ods have three major advantages over existing statistical 
methods: increased accuracy, validity (i.e. the percent-
age of true frequencies falling within the 95 % credibility 

Fig. 5 The validity of the methods, calculated “population/sampled” frequencies fall out of the 95 % CI
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limits) and their ability to return the probabilities of pos-
sible haplotype combination in each individual in the 
EM-algorithm or the uncertainly probability of the hap-
lotype frequencies in the MCMC. Unfortunately, real 
data sets do not exist with known haplotypes to allow 
statistical comparisons of different methods. This study 
used simulation data to test the accuracy of the esti-
mated haplotype frequencies, assuming different levels 
of LoDSNP and LoDMOI. These reflect realistic conditions 
of molecular detection in blood samples obtained from 
malaria patients. Since the simulation data represent the 
true situation among malaria patients, simulation results 
provide evidence that there is high confidence in the 
haplotype frequency estimation produced by any one of 
the statistical methods. However, there are differences 
between the statistical methods especially with increas-
ing LoDMOI and LoDSNP that occur in real data. Even if 
the LoDMOI are zero there is an impact on the observed 
MOI caused purely by chance when clones share the 
same MOI allele: the population MOI in misclassified 

(under-estimated) in around 5 % of patients. This directly 
effects the estimation of the haplotype frequency. That is 
the main limitations for the efficient use of haplotype fre-
quency estimation in current, large scale, genetic epide-
miology data among malaria patient.

The main difference between the statistical methods 
is how they deal with the number of infections, num-
ber of copies of haplotype (haplotype combination). The 
MHF (MalHaploFreq) cycles through all the combina-
tions of haplotypes that can occur within that multi-
plicity of infection. The EM-algorithm implemented as 
R-EM (malaria.em) is based on the assumption that each 
patient has a fixed MOI. The Bayesian algorithm (Bayes-
ian statistic) is based on model specification the selects 
a prior distribution of MOI based on one of four possi-
ble distributions (Uniform, Poisson, negative Binomial, 
and Geometric). The novel methods (EM and MCMC) 
used MOI estimates that were assumed to be provided 
for each patient and that clones within the MOI were 
acquired at random, so that the distribution of infections 

Fig. 6 Computational time for five methods

Table 2 The haplotype frequency estimations for real data set (Swiss TPH), n = 82 individual

SNP 1 = wildtype alone, 2 = mutant alone, MHF MalHaploFreq, R-EM malaria.em, Bayesian Bayesian statistic, EM EM algorithm, MCMC Markov chain Monte Carlo

SNP 1 SNP 2 MHF R-EM Bayesian EM MCMC

1 1 0.928 (0.892–0.955) 0.914 (0.858–0.970) 0.936 (0.907–0.960) 0.908 (0.821–0.961) 0.914 (0.828–0.965)

1 2 0.011 (0.002–0.030) 0.016 (0.000–0.041) 0.017 (0.006–0.037) 0.013 (0.000–0.070) 0.021 (0.002–0.083)

2 1 0.004 (0.000–0.017) 0.005 (0.000–0.018) 0.007 (0.001–0.017) 0.009 (0.000–0.064) 0.008 (0.000–0.061)

2 2 0.057 (0.033–0.089) 0.065 (0.008–0.121) 0.038 (0.017–0.064) 0.069 (0.024–0.150) 0.058 (0.017–0.135)
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within patients is multinomial with the sample size of 
the MOI and frequencies of haplotype provided by their 
current estimates within the algorithm. The differences 
between the methods directly affect their results. The Hill 
climbing algorithm (MalHaploFreq) is accurate and valid 
when the LoDMOI and LoDSNP are zero, but increased 
LoD dramatically decreased the accuracy and the valid-
ity of the result (Fig. 5). The EM-algorithm implemented 
in R-EM (malaria.em) with the fixed MOI presents the 
opposite i.e. its accuracy and the validity increases when 
the LoDSNP and LoDMOI increases. The Bayesian (Bayes-
ian statistic) with the prior distribution of MOI appears 
exhibits accurate and valid when the LoDSNP and LoDMOI 
are zero, but increasing the LoDs dramatically decreases 
the accuracy and the validity of the results. The novel 
EM-algorithm method obtains highly accurate and valid 
results irrespective of the LoDSNP and LoDMOI values. 
The MCMC method obtains results that are sensitive to 
LoD levels: its accuracy and validity both decrease as the 
LoDSNP and LoDMOI increase. Adding the constant k (1/
MOI) to the algorithm preferentially weights the low-
frequency haplotypes which should be reflected in slight 
overestimates of their frequency. Additional file 1: Figure 
S7 demonstrates the impact of several values of k i.e. 0, 
0.01, 0.05, 0.1, 0.2, and 0.5 among the EM-algorithm. The 
correlation coefficient (R2) is slightly higher by the k = 1/
MOI. Additional file 1: Figure S8 limits the X-axis scale to 
show the deviation of the estimated haplotype frequency 
among RAF <0.15 from population or sample haplotype 
frequency. The correlation coefficient (R2) is higher in 
the EM estimated haplotype frequency with correction 
k = 1/MOI compared to using EM without correction i.e. 
6.24 % compared to 10.71 %.

The same basic approach is used in this EM-algorithm 
and that used in MalHaploFreq i.e. all possible combina-
tions of haplotypes within a genotype are examined to 
obtain a likelihood of observing the dataset given cur-
rent estimates of haplotype frequencies. Consequently, 
the results are very similar: correlation coefficient of the 
1000 estimates obtained by the two methods is R2 = 0.98. 
However the EM-algorithm is much faster because the 
combinations are only generated once prior to the esti-
mation steps, plus the 95  % CI are calculated algebrai-
cally in the EM-algorithm (Eq. 1) whereas MalHaploFreq 
uses a rather crude (and slow) hill-descending algorithm 
to define the CI as −2 LL units less than the maximum 
LL. The speed of the EM-algorithm is considerably faster 
than MHF (although MHF could be made considerably 
faster if it estimated only haplotype frequencies then cal-
culated 95 % CI using Eq. 1, rather than its hill-descend-
ing algorithm). Speed becomes important because both 
methods suffer from one potential problem: they seek 
to identify the haplotype frequencies that provide best 

prediction of observed data using an interactive pro-
cess that gradually increases the likelihood of observing 
the data. The problem is that this “hill climbing” process 
may converge onto a local “peak” of likelihood and miss 
a peak of higher likelihood located some distance away 
in parameter space. The consequence is that both meth-
ods need to be started from a large number of different 
parameter values to check that a single peak of likeli-
hood is always identified and, if not, to ensure the analy-
sis returns the haplotype frequency estimates obtained 
at the maximum peak. This potential problem was inves-
tigated by Hastings and colleagues [1, 4] who analysed 
datasets and reported this problem of multiple peaks 
existed in the analyses. The problem of multiple peaks is 
unpredictable so users are urged to analyze their dataset 
using a large number (1000 seems reasonable) of initial 
haplotype frequency estimates. This problem not exist 
in the EM-algorithm presented here, it can start from 
any set of initial starting frequencies, use random start-
ing frequencies to check the algorithm converged on the 
same final estimates and runs quickly so the time penalty 
should be negligible.

The EM-algorithm examines each possible haplotype 
combination in an individual that could plausibly give 
rise to his/her observed genotype. This mean that once 
the haplotype estimates are obtained it would be possi-
ble to use them to obtain the probability that any given 
patient harbours a “drug resistant” haplotype and make 
clinical decisions on this basis. Whether data could be 
collected and analysed in a sufficiently timely manner for 
this to occur is debatable but consider it a point worth 
making. More plausibly, the presence of putative “resist-
ant” haplotype can be inferred in individual patients and 
the probability of their presence used as a weighting in 
a logistic regression predicting the therapeutic outcome 
(cure/fail) of drug treatment. A positive impact of the 
putative-resistant haplotype on therapeutic outcome 
would be indicative that it truly does affect resistance 
levels.

Given the potential importance of MOI estimates, it is 
unfortunate that some surveys do not collect it [24–26]. 
The R-EM, Bayesian, EM and MCMC can calculate the 
haplotype frequency when MOI information on a patient 
was unknown (i.e. unmeasured or missing). Every one of 
the methods makes a prior assumption on the probability 
distribution on the number of infections per individual. 
The R-EM algorithm assumes MOI follows a Poisson 
distribution with mean = 2, the Bayesian algorithm can 
assume one of four possible distributions (Uniform, Pois-
son, negative Binomial, and Geometric). The EM and the 
MCMC algorithm described here, analyses datasets that 
were simulated assuming the frequency distributions that 
given by Jaki et al. [8]. The EM and the MCMC algorithm 
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(Additional file 1: Figures S9, S10) obtain more accurate 
frequency estimates, and are slightly less affected by LoD 
of the SNPs and the MOI than compared to the related 
statistical approaches. Another option of the MCMC 
algorithm includes update to the MOI could be proposed 
when patient MOI is unknown and accepted/rejected 
during the updating stage. Four different algorithms runs 
with changing the MOI, present in the Additional file 1 
MCMC algorithm  2, 3 and 4. Initial analyses suggested 
updating the MOI during MCMC made little or no dif-
ference to the resulting haplotype frequency estimates 
(Additional file  1: Figures S11–S14). A potential addi-
tional advantage is that the MOI distribution would be 
updated each iteration and hence the MCMC algorithm 
naturally provides an estimated distribution of MOI fre-
quencies. However, the estimated MOI distribution did 
not reliable recover the population MOI and the analyses 
suggested more weight was given to MOI = 2 (60–80 % 
of the MOI distribution) in those algorithm which did 
update MOI (i.e. algorithms 2, 3 and 4; Additional file 1: 
Figures S15–S18). In retrospect this is not surprising: all 
the methods seek to provide the simplest explanation of 
the data and any heterozygous genotype can always be 
explained most parsimoniously by two haplotypes in the 
blood sample; the fact that some estimates of MOI are 
greater than 2 presumably reflects the situation a “2-hap-
lotype” explanation is untenable due to the low frequency 
of the two plausible haplotypes. One consequence of 
this is that it appears impossible to analyse SNP data to 
obtain a MOI distribution using the MCMC Algorithms 
described here. This is unfortunate as MOI distributions 
are useful epidemiological indicators, high MOI values 
tending to reflect higher transmission intensities, and 
may be useful to asses, for example, the impact of malaria 
control measures on malaria transmission rate. It may be 
possible to recover more accurate MOI distribution by 
forcing a distribution onto the data, typically a Poisson 
or Negative Binomial. This was done by previous authors 
but was not attempted here as the intention was to avoid 
having to pre-specify a MOI distribution and simply let 
the MCMC algorithm find the best explanation for the 
data. It did this with considerable success, the haplotype 
frequency estimates showing excellent correlation with 
the population/sample values even in the absence of MOI 
information.

The study was conducted within a number of con-
straints imposed to ensure they appropriately address 
key questions in malaria research. The simulations were 
limited to two and three SNPs to simplify the compari-
son (results from haplotypes defined at three SNPs are 
presented in Additional file 1: Figures S19–S23, the same 
pattern irrespective of whether haplotypes are defined at 

two or three loci). This is consistent with previous analy-
ses: MHF (MalHaploFreq) is limited to analysing up to 
three SNPs, the R-EM (malaria.em) can analyse more 
than three SNPs but required a considerable amount of 
computational time, and the Bayesian (Bayesian statis-
tic) method, as implemented by Taylor et  al. [6] is lim-
ited to handling up to seven SNPs. The novels methods 
described above did not have to limit the number of SNPs 
analysed but the examples were limited to three SNPs 
because the complexity of calculations rises exponentially 
with the number of SNPs and it is rarely necessary in 
practice to analyse more than three SNPs simultaneously 
[4] when investigating drug resistance haplotypes. How-
ever, calculating the frequencies of haplotypes that are 
defined at a large number of SNPs increases the compu-
tational time, the magnitude of this increase depending 
on the computer memory. It was considered important to 
recognize the technical limitations of genotyping so three 
values for levels of detection (LoDSNP and LoDMOI) were 
investigated. The MOI distribution reflected the default 
frequency distributions given by Jaki et al. [8] and repre-
sents an area of relatively intense malaria transmission 
where MOI tends to be high and where the statistical 
problems of correctly estimating haplotype frequencies 
are most severe.

Conclusion
In summary, the two novel methods proposed here have 
advantages over previous methods of inferring haplotype 
frequency. If MOI is known the EM algorithm appears 
the most natural way to analyse the data. It is explicitly 
set up to incorporate MOI data on individual patients 
(in contrast to EM-R and Bayesian) and is much faster 
than MHF. It also appear robust to chance misclassifi-
cation of MOI and to genotyping detection limits (e.g. 
Figure 5) If MOI information is absent, the MCMC algo-
rithm seems a more natural way of analysing data as it 
allows the algorithm to fit individual MOI to each patient 
rather than, as in R-EM and Bayesian, forcing a pre-
determined distribution (Poisson or negative Binomial) 
onto the MOI; it appears that, at least in the simulations 
analysed here, that MOI is underestimated (Additional 
file 1: Figure S15) but the accuracy of haplotype estimates 
is maintained and is comparable to the other methods 
(Additional file  1: Figures S11, S12). In addition, isolat-
ing MCMC from its usual Bayesian context means that 
decisions on prior distributions of haplotype frequency 
and MOI distribution can be avoided as the MCMC con-
verges on accurate estimates of haplotype frequencies 
irrespective of initial assumptions of haplotype and MOI 
frequencies. The R code used for these simulations and 
analyses are freely available on request to GKD.
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