
RESEARCH ARTICLE

Adaptive geostatistical sampling enables

efficient identification of malaria hotspots in

repeated cross-sectional surveys in rural

Malawi

Alinune N. Kabaghe1,2*, Michael G. Chipeta2,3,4, Robert S. McCann2,5, Kamija S. Phiri2,

Michèle van Vugt1, Willem Takken5, Peter Diggle3, Anja D. Terlouw4

1 Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal

Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands, 2 Public Health

Department, College of Medicine, University of Malawi, Blantyre, Malawi, 3 Lancaster Medical School,

Lancaster University, Lancaster, United Kingdom, 4 Malaria Theme, Malawi-Liverpool Wellcome Trust,

Blantyre, Malawi, 5 Laboratory of Entomology, Wageningen University and Research, Wageningen,

Netherlands

* akabaghe@medcol.mw

Abstract

Introduction

In the context of malaria elimination, interventions will need to target high burden areas to

further reduce transmission. Current tools to monitor and report disease burden lack the

capacity to continuously detect fine-scale spatial and temporal variations of disease distribu-

tion exhibited by malaria. These tools use random sampling techniques that are inefficient

for capturing underlying heterogeneity while health facility data in resource-limited settings

are inaccurate. Continuous community surveys of malaria burden provide real-time results

of local spatio-temporal variation. Adaptive geostatistical design (AGD) improves prediction

of outcome of interest compared to current random sampling techniques. We present find-

ings of continuous malaria prevalence surveys using an adaptive sampling design.

Methods

We conducted repeated cross sectional surveys guided by an adaptive sampling design to

monitor the prevalence of malaria parasitaemia and anaemia in children below five years

old in the communities living around Majete Wildlife Reserve in Chikwawa district, Southern

Malawi. AGD sampling uses previously collected data to sample new locations of high pre-

diction variance or, where prediction exceeds a set threshold. We fitted a geostatistical

model to predict malaria prevalence in the area.

Findings

We conducted five rounds of sampling, and tested 876 children aged 6–59 months from

1377 households over a 12-month period. Malaria prevalence prediction maps showed spa-

tial heterogeneity and presence of hotspots—where predicted malaria prevalence was
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above 30%; predictors of malaria included age, socio-economic status and ownership of

insecticide-treated mosquito nets.

Conclusions

Continuous malaria prevalence surveys using adaptive sampling increased malaria preva-

lence prediction accuracy. Results from the surveys were readily available after data collec-

tion. The tool can assist local managers to target malaria control interventions in areas with

the greatest health impact and is ready for assessment in other diseases.

Introduction

In the context of malaria elimination, limited resources, significant decline in malaria inci-

dence and prevalence [1, 2], interventions will need to target high disease burden areas to fur-

ther reduce transmission [3–5]. Malaria exhibits spatial and temporal heterogeneity in both

stable and endemic transmission settings [4, 6]. Current tools for monitoring or reporting

malaria burden lack the capacity to detect high malaria transmission areas, often called “hot-

spots”, and to report continuous changes of disease burden over time [7]. National malaria

control programmes rely on national surveys such as Malaria Indicator Surveys (MIS) and

Demographic and Health Surveys (DHS), or use health facility malaria case reports and/or reg-

isters to monitor malaria burden and the progress of malaria control [8]. The surveys generally

are cross sectional, use random population samples, do not report real-time results and are

repeated after long periods of time (at least two years). These routine surveys lack fine scale

spatial heterogeneity information for malaria prevalence, and only produce data at national

and regional level rather than sub district level. In limited-resource settings, facility case regis-

ters, where available, provide unreliable data [9, 10], under-represent the burden of disease in

the community, are incomplete, prone to errors, and may misreport the number of cases due

to lack of diagnostic capacity [9, 11–13]. Although District Health Information System

(DHIS2) allows mapping of disease burden and intervention coverage at regional and district

levels based on the routine data, precise geolocation are unavailable at sub-district level and

also, the available data depend on proportion of the community utilising the health services.

Continuous disease surveys allow continuous monitoring of changes in spatial and tempo-

ral disease distribution at national, regional and district levels; the surveys are potential tools to

accurately monitor disease control progress in low resource settings where surveillance sys-

tems are weak [14]. Continuous malaria prevalence surveys allow continuous analysis of data,

mapping of malaria prevalence, and reporting short term changes in disease prevalence and

intervention coverage [15]. Monthly cross sectional prevalence surveys report results within a

short duration [16]. Use of such surveys would assist district managers to identify high disease

burden areas (“hotspots”) for early targeted intervention [3].

Recent developments in geostatistical modelling offer opportunities to develop more accu-

rate predictive methods for disease burden [17, 18]. Geostatistical modelling can be used to

map disease risk and visualise spatial and temporal changes of disease burden and intervention

coverage. The random sampling of clusters used currently in surveys, lacks the accuracy for

detecting fine scale spatial heterogeneity of disease burden. These sampling methods may

under-represent heterogeneously distributed and hard to reach populations in limited

resource settings [19]. An adaptive geostatistical design (AGD), would allow gain in statistical

sampling efficiency by focusing on areas where prediction of the measure of interest is
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imprecise. AGD allow sampling to focus on sub-regions where precise prediction is needed to

inform public health action. Chipeta et al. [20] previously demonstrated AGD on simulated

data and reported potential for improved prediction of malaria prevalence compared to non-

adaptive (random) sampling.

We describe the first field application of AGD sampling in continuous malaria prevalence

surveys for a 12 month period, and we present malaria prevalence maps from the study site in

Chikwawa district, Malawi.

Materials and methods

Study setting

We conducted the study in villages surrounding Majete Wildlife Reserve (MWR) in Chikwawa

district, southern Malawi from April 2015 to April 2016. Malaria transmission is intense and

peaks from December to March during the rainy season [21]. The study area is within the

catchment of the Majete Malaria Project (MMP), a five-year, community-based malaria con-

trol project. The surveys were conducted in 61 villages with approximately 6,600 households,

and a total population of approximately 25,000. The area was divided into three administrative

units, which, for convenience purposes are referred to as focal areas: A, B and C; see Fig 1 from

which villages and households within villages were sampled.

Fig 1. Map of Majete wildlife reserve and surrounding communities. Majete Wildlife Reserve (brown) is surrounded by 19 community

based organisations—CBOs (grey and green) comprising the Majete perimeter. Three focal areas (green), labelled as A, B, and C mark

the communities selected for malaria indicator surveys. The rest of the CBOs (grey) are outside the projects catchment area.

doi:10.1371/journal.pone.0172266.g001
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Study design

The sampling unit in the study was the household. We used repeated cross-sectional house-

hold surveys for malaria parasitaemia (rolling Malaria Indicator Survey—rMIS) data guided

by AGD. rMIS involves collecting and analysing data from a sampled set of households, then

repeating the process for subsequent sampled sets of households. In this design, on any sam-

pling occasion, the choice of sampling households was informed by prevalence results from

spatial predictive modelling of data collected on earlier occasions; a different set of households

was chosen on each occasion from locations where uncertainty of the estimate was highest.

The adaptive design problem consisted of deciding which households to sample in each round

of sampling to optimise the precision of the resulting sequence of area-wide prevalence maps.

Note that each household that meets the AGD constraints has a non-zero probability of being

sampled at each round of sampling. Also, once a household was sampled in a round, it was

excluded from subsequent sampling frame and hence subsequent sampling rounds.

Participants

We invited children 6–59 months and women 15–49 years old who slept in the sampled house-

hold the previous night to participate. If the head of household consented we interviewed,

tested for malaria and anaemia and recorded temperature, weight, height and mid upper arm

circumference measurements. Households that did not have any eligible participants were

only interviewed; no clinical assessment or blood tests were done.

Procedures

We developed electronic forms and training material adapted from the global malaria indica-

tor survey toolkit [22]. Research teams comprising a research nurse and 2 to 4 research assis-

tants invited sampled household members to central locations where consent was obtained

from the head of household. Teams followed up household members who did not present to

the central location to conduct the survey. Sampled households that were unoccupied, or had

been demolished, were replaced by the nearest household. The teams administered a question-

naire and tested eligible participants for malaria and anaemia using a rapid diagnostic test

(RDT; SD Bioline Ag P.f (HRP)) and hemocue 301 (Haemocue, Angelholm, Sweden), respec-

tively. Participants with RDT positive results or low hemoglobin reading (less than 11g/dl)

were managed according to Malawi national treatment guidelines or referred to a health facil-

ity, respectively.

Household sampling

The first stage in the geostatistical design of the study was a complete enumeration of house-

holds in the study region from August to November 2014; Geo-location data were collected

using Global Positioning System (GPS) devices on Samsung Galaxy Tab 3 running Android

4.1 Jellybean Operating System, accurate to within 5 meters on open data kit (ODK) platform.

We used the enumeration data to sample the first 100 households in each of the three focal

areas using a spatially inhibitory random sampling design [23], to achieve approximately uni-

form coverage of each of the focal areas in the study-area. The second round of sampling also

followed a spatially inhibitory sample. At the end of these two initial and each subsequent sam-

pling period, a standard operating procedure was followed in checking data for consistency

and completeness before uploading them to an off-site database server. The accumulating data

up to that period were analysed immediately and the prevalence prediction results fed into an

adaptive sampling algorithm to inform the choice of new sampling locations in the next
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sampling round (after excluding already sampled households). We sampled 90 households per

two months per focal area in each of the subsequent sampling rounds. Fig 2 shows a map of

focal area B with an inset to demonstrate adaptive sampling in practice. Adaptive geostatistical

designs are explained in more details by Chipeta et al [20].

Statistical analysis

The primary outcome from each individual was a binary indicator for a positive or negative

malaria test by malaria RDT in children aged 6–59 months. Malaria transmission hotspots

were areas with predicted parasitaemia prevalence above 30% in children aged 6–59 months;

the national malaria RDT prevalence estimate in this age-group was 37.1% in Malawi MIS

2014 [8]. Age of each individual, availability of at least one ITN and socio-economic status

(SES) were considered, as defined in the results. For SES, an indicator of household wealth tak-

ing discrete values from 1 (poor) to 5 (wealthy), was derived by an application of principal

component analysis as discussed in Vyas et al [24]. Data for elevation were derived using the

Fig 2. Adaptive sampling in practice, initial spatially inhibitory design samples augmented with adaptive design samples. The

map illustrates adaptive sampling in practice. All households in the study area are shown as grey dots. Results from the initial inhibitory

random samples households (blue dots) and subsequent samples were used to generate the next adaptive samples (red, green and black

dots). Each subsequent sample, used accruing data from previous sample results. Inset shows a zoomed-in subset of locations.

doi:10.1371/journal.pone.0172266.g002
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Advanced Space-borne Thermal Emission and Reflection Radiometer Global Digital Elevation

Model (ASTER GDEM) version 2, which has a spatial resolution of 30 meters. The data were

downloaded from the United States Geological Survey (USGS, http://gdex.cr.usgs.gov/gdex/).

Normalised difference vegetation index (NDVI) data were calculated based on images from

the Landsat 8 satellite, also downloaded from the USGS (http://earthexplorer.usgs.gov/). For

NDVI measure, we calculated and used mean values for the above sampling period. Data from

all rounds were combined for this analysis, such that we did not account for seasonal differ-

ences across the year; this was due to few sampling rounds within the study duration.

We implemented estimation and predictive modelling in a Bayesian framework, using

Bayesian geostatistical binary probit model. The model allows specifying a two-level model to

include individual-level and household-level (or any other unit comprising a group of individ-

uals) variables. We used the geostatistical binary probit model for binary response data in the

following manner. Let i and j denote the indices of the i-th household and j-th individual

within that household. The response variable Yij is a binary indicator taking value 1 if the indi-

vidual has been tested positive for malaria and 0 otherwise. Conditionally on a zero-mean sta-

tionary Gaussian process S(xi), Yij are mutually independent Bernoulli variables with probit

link function F−1(�),

Yijjdij; SðxiÞ � BernoulliðpijÞ

F � 1ðpijÞ ¼ d0ijb þ SðxiÞ ð1Þ

where dij is a vector of covariates, both at individual- and household-level, with associated

regression coefficients. For details see Rue and Held [25]; Beron and Vijverberg [26]; Berrett

and Calder [27]. The Gaussian process S(x) has isotropic Matern covariance function [28] with

variance σ2, scale parameter φ and shape parameter κ.

The target for predictive inference is T = T(S), i.e. malaria prevalence prediction for unob-

served locations in the study region. Additionally, we delineate sub-regions of the study region

where prevalence p(x) is likely to exceed a policy intervention/national threshold, exceedence

probability, in which case the target becomes T = {x: p(x)> c} for pre-specified c. All analyses

were done in R statistical environment version 3.3.0 [29].

Ethical consideration

Ethical clearance for the study was obtained from the University of Malawi, College of Medi-

cine Research Ethics Committee (COMREC) in Malawi (P.09/14/1631). Permissions were

obtained from the Ministry of Health and the district health authorities in Chikwawa District.

Prior to the start of the study, a series of meetings were held in participating communities to

explain the nature and purpose of the study. We obtained individual written informed consent

and in the case of children, from their parents or legal guardians.

Results

We conducted five sampling rounds within 12 months and completed data-collection from

1,377 (87.8%) of the 1,568 sampled households (Table 1). Consent was refused from 41 (2.6%)

households. Data-collection was not completed in a further 149 (9.5%) households, mainly

because the house was vacated between the initial enumeration and the time of household

sampling. From the total sampled households, 1,044 (67.5%) had either children 6–59 months,

women 15–49 years or both eligible children and women. A total of 876 children aged 6–59

months were tested for malaria and anaemia; we excluded results from women of child-bear-

ing age in the analysis as malaria prevalence surveys are based on children. It took an average
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of 4–8 weeks to complete data collection per sampling round; results of each sampling round

were available within 1–2 weeks after completion of data collection and cleaning.

For covariate selection we used ordinary probit regression, retaining covariates with nomi-

nal p-values less than 0.05 (S1 Table); these ignore the effects of spatial correlation and are

likely to be anti-conservative, thereby avoiding false exclusion of potentially important covari-

ates. This resulted in the set of covariates shown in Table 2, with terms for social economic sta-

tus (SES), availability of at least one ITN, NDVI, and elevation. The σ2 and φ are variance of

the Gaussian process and scale of the spatial correlation respectively. We then fitted the geosta-

tistical binary probit model (1) to obtain the Bayesian estimates of the parameters and associ-

ated 95% highest posterior density (HPD), as also shown in Table 2. Each evaluation of the

Markov chain Monte Carlo used 2,000 simulated values, obtained by conditional simulation of

21,000 values and sampling every 10th realisation after discarding a burn-in of 1,000 values.

From Table 2, an increase in SES, age and ownership of at least one ITN are all associated

with a reduction in the probability of a positive RDT. Elevation was negatively associated with

probability of a positive RDT whereas NDVI shows a positive, but non-significant, association.

Here, we present maps of malaria prevalence in children aged 6–59 months in focal area B.

Prevalence maps for focal areas A and C are provided in the supplementary material (S2 and

Table 1. Characteristics for sampled households within Majete wildlife reserve perimeter.

N %

Total sampled households 1,568 -

Households completed 1,377 87.8

Refused consent 41 2.6

Children 6–59 months in sampled households 1,016

Children 6–59 months enrolled 876 86.2*

Household wealth quintile

Lowest 390 28.3

Second 196 14.2

Middle 258 18.7

Fourth 267 19.4

Top 266 19.3

* Percentage of eligible children from sampled households who actually took part in the survey.

doi:10.1371/journal.pone.0172266.t001

Table 2. Bayesian estimates and 95% highest posterior density intervals for the model fitted to the

Majete malaria data for children 6–59 months.

Term Estimate 95% HPD

Intercept 0.6647 (0.1538, 1.0850)

SES -0.0737 (-0.1087, -0.0337)

ITN -0.1829 (-0.3166, -0.0337)

Age -0.4921 (-0.6045, -0.3903)

Elevation -0.0009 (-0.0015, -0.0004)

NDVI 0.0524 (-1.1358, 0.9811)

σ 2 0.4693 (0.2154, 0.8109)

φ 2.3869 (0.7629, 4.9778)

HPD = Highest Posterior Density, ITN = Insecticide-Treated Net (availability of at least one in household),

NDVI = Normalised Difference Vegetation Index, SES = Social Economic Status.

doi:10.1371/journal.pone.0172266.t002
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S3 Figs). Overall, prevalence is higher in focal area B compared to focal areas A and C; how-

ever, Fig 3 (left panel) shows that prevalence is generally low in the south-west of the region,

whereas the north-east has pockets of comparatively high malaria prevalence. Hotspots in

focal areas A and C are mainly localised (S2 and S3 Figs). Fig 3 (right panel) shows the map of

exceedance probabilities that prevalence is over the national threshold of 30%. Fig 4 shows the

contributions of the linear regression to the predicted log-odds of prevalence at each of the

observed locations in focal area B.

Discussion

We have modelled malaria prevalence in children aged 6–59 months in a rural area of south-

ern Malawi using individual, household, and environmental data as covariates, and allowing

for spatial correlation. Adaptive sampling prior to each round of data collection was used to

identify areas where increased sampling effort should be focused to maximise the increase in

overall predictive accuracy. Malaria prevalence predictions at observed locations show disease

burden at the finest scale possible, and we detected multiple malaria hotspots across the study

regions. To our knowledge this is the first time an adaptive sampling technique has been

implemented to monitor spatial distribution of malaria or any disease in a human population.

Fig 3. Malaria prevalence and exceedance probabilities maps. Left panel shows malaria prevalence in children 6–59 months in focal

area B. The right-hand panel shows the map of exceedance probabilities P(x; 0.3) for the Bayesian prediction.

doi:10.1371/journal.pone.0172266.g003
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Fig 4. Unexplained spatial variation map. Contributions of the linear regression and of the unexplained

spatial variation to the predicted log-odds of malaria prevalence in children 6–59 months at each of the

observed locations in focal area B.

doi:10.1371/journal.pone.0172266.g004
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Other studies map disease prevalence heterogeneity using national and community surveys

(conducted at different time points), expert opinion, facility data or a combination of these

data sources [30–34]. With an adaptive sampling technique, we avoided reporting results

based on multiple data sources which differ in accuracies, collection times, and sampled areas.

Health facility disease registers in resource limited settings contain low quality, incomplete

and unreliable data [9, 11, 13]. These data are inadequate to monitor fine changes in spatial

and temporal malaria prevalence variations. Using continuous surveys based on AGD readily

provides results of representative cross-sectional surveys soon after data collection. The con-

tinuous surveys monitor short-term spatial and temporal changes of disease burden to enable

managers to detect and target areas that need scaling up of interventions. The uptake and

impact of malaria control interventions can also be monitored.

Compared to the recommended national MIS, the continuous prevalence surveys using

AGD are not as logistically demanding. The surveys can potentially be conducted by district

personnel throughout a prolonged period to complement the 2-yearly MIS. The actual data

collection required small teams and took a short period of time to complete. Cost effectiveness

of implementing continuous surveys using AGD will be assessed and discussed in a separate

paper, though a previous study in the same geographic area reported continuous malaria sur-

veys using random sampling was affordable and logistically simple compared to national MIS

[16].

The current recommended 2-yearly national MIS are cross sectional surveys using a two

stage sample design based on geographical clusters known as enumeration areas. The sampling

process is: a) random probability sampling of clusters, b) household enumeration of sampled

clusters, c) then random probability sampling of households in the sampled clusters. Cluster

sampling under-represents disease burden for heterogeneously distributed diseases and hard

to reach populations [19]. The national MIS reports univariate malaria prevalence at national

or regional level and without a confidence interval; the surveys are not designed to produce

estimates at district or sub-district levels. Comparing disease prevalence between surveys

would be inaccurate as sampled points are different and the proportions are crude (unadjusted

without confidence intervals). Furthermore, the national MIS reports data from a single time

point though malaria prevalence exhibits spatial and temporal variations.

By combining AGD and continuous malaria prevalence surveys, we maximise the precision

of malaria prevalence predictions at local level. Adaptive samples add value to continuous

prevalence surveys. Rather than continuously selecting random samples, subsequent samples

depend on previous prevalence results calculated from contributions of individual, household

and environmental predictors; this allows for models to be refined as data becomes available.

The subsequent samples focus on areas of relatively high uncertainty to enable more precise

delineation of areas where disease prevalence is above or below a given threshold c; for exam-

ple, predictive probabilities of the exceedance of policy relevant or national thresholds. AGDs

also provide a more complete picture of spatial variations [20]. This approach can potentially

empower both local and national programme managers to invest limited resources and efforts

on high priority areas for elimination [3–5, 16].

Our innovative approach for the discovery of malaria hotspots can be further fine-tuned by

estimates of Plasmodium transmission intensities through monitoring of mosquito popula-

tions. The combined result is instrumental for effective application of malaria interventions

[3].

We demonstrate the first application of adaptive sampling for continuous spatial diseases

surveillance in this small study population. This approach is ideal for measuring disease het-

erogeneity at sub-district and potentially district levels. A significant challenge in implement-

ing rMIS using AGD at a larger scale (national or regional levels) in most resource-limited
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settings is the unavailability of geo-referenced households for the sampling frame. In our

study, all households were enumerated and geo-referenced to create the sampling frame. At

national level, national MIS use a 2-stage cluster sampling approach based on clusters from

most recent population census. Similarly, if practical constraints dictate a 2-stage sampling,

then AGD sampling must be done in the second stage, within each sampled cluster. Using a

cluster as a sampling unit, a national or regional AGD rMIS potentially measures disease het-

erogeneity, and identifies hotspots at cluster level. This then guides household AGD rMIS.

Large scale implementation also requires technical expertise to manage data collection, analy-

sis, and the continuous sampling process.

Algorithms are being developed and will be available as an R package on the comprehensive

R archive network (CRAN) website. The modules can be developed for real time monitoring

of disease prevalence. For example, the Meningitis Environmental Risk Information Technolo-

gies (MERIT) initiative developed such a module for meningitis epidemics prediction [35, 36].

AGD enables more efficient estimation of spatial variation than traditional simple random

sampling strategies [20], whilst retaining the objectivity of probability-based sampling. In

AGD the initial sample is a probability sample [20], albeit one that is restricted to induce a

degree of spatial regularity into sampled locations, and therefore achieves its increase in effi-

ciency without risk of introducing subjective bias.

The repeated cross-sectional AGD methods are generally versatile and may apply to dis-

eases with similar heterogeneity patterns [37, 38]. For example, high disease burden for

neglected tropical diseases areas such as onchocerciasis, schistosomiasis etc. can be identified

and targeted for interventions such as mass drug administration.

Conclusion

AGD are automated algorithms that help in sampling optimisation decisions for prevalence

surveys. Applying AGD to continuous disease surveys provides fine-scale disease prevalence

prediction in limited-resource settings and can be a reliable surveillance tool for both district

and national level programme managers. AGD results were readily available during the survey

and identified several hotspots in each of the focal areas. This disease monitoring approach is

ready to be assessed at a larger scale and for other diseases.

Supporting information

S1 Fig. Map of malaria prevalence and exceedance probability for focal area A. The top

panel show malaria prevalence in children 6–59 months in focal area A. The bottom panel

shows the map of exceedance probabilities P(x; 0.3) for the Bayesian prediction.

(TIF)

S2 Fig. Map of malaria prevalence and exceedance probability for focal areas C. The top

panel show malaria prevalence in children 6–59 months in focal area C. The bottom panel

shows the map of exceedance probabilities P(x; 0.3) for the Bayesian prediction.

(TIF)

S3 Fig. Unexplained spatial variation map for focal area A. Contributions of the linear

regression and of the unexplained spatial variation to the predicted log-odds of malaria preva-

lence in children 6–59 months at each of the observed locations in focal area A.

(TIF)

S4 Fig. Unexplained spatial variation map for focal area C. Contributions of the linear

regression and of the unexplained spatial variation to the predicted log-odds of malaria
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prevalence in children 6–59 months at each of the observed locations in focal area A.

(TIF)

S1 File. Data. CSV file containing data used in the analysis.

(CSV)

S1 Table. Parameter estimates from non-spatial probit model for malaria prevalence in

children 6–59 months. ITN: insecticide treated bed nets, NDVI: normalized difference vegeta-

tion index, SES: socio-economic status.

(DOCX)

Acknowledgments

We thank the participants, Chikwawa District Health Office, and Majete integrated malaria

control project staff involved in the ongoing data collection of the presented household preva-

lence surveys, part of which is here.

Author Contributions

Conceptualization: AT MC AK.

Formal analysis: MC PD.

Investigation: AK MC RM AT.

Methodology: MC AK RM.

Software: MC.

Writing – original draft: AK MC.

Writing – review & editing: AK MC RM KP MvV PD WT AT.

References
1. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control

on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015; 526(7572):207–11. Epub

2015/09/17. doi: 10.1038/nature15535 PMID: 26375008

2. WHO. World malaria report 2015. France: 2015.

3. Bousema T, Griffin JT, Sauerwein RW, Smith DL, Churcher TS, Takken W, et al. Hitting Hotspots: Spa-

tial Targeting of Malaria for Control and Elimination. PLoS medicine. 2012; 9(1):e1001165. doi: 10.

1371/journal.pmed.1001165 PMID: 22303287

4. Alemu K, Worku A, Berhane Y. Malaria Infection Has Spatial, Temporal, and Spatiotemporal Heteroge-

neity in Unstable Malaria Transmission Areas in Northwest Ethiopia. PloS one. 2013; 8(11):e79966.

doi: 10.1371/journal.pone.0079966 PMID: 24223209

5. Walker PGT, Griffin JT, Ferguson NM, Ghani AC. Estimating the most efficient allocation of interven-

tions to achieve reductions in Plasmodium falciparum malaria burden and transmission in Africa: a

modelling study. The Lancet Global Health. 4(7):e474–e84. doi: 10.1016/S2214-109X(16)30073-0

PMID: 27269393

6. Baidjoe AY, Stevenson J, Knight P, Stone W, Stresman G, Osoti V, et al. Factors associated with high

heterogeneity of malaria at fine spatial scale in the Western Kenyan highlands. Malaria Journal. 2016;

15(1):1–9.

7. WHO. Global technical stategy for malaria 2016–2030. United Kingdom: 2015.

8. National Malaria Control Programme (Malawi) and ICF international. Malawi Malaria Indicator Survey

(MIS) 2014. Lilongwe Malawi: 2014 2014. Report No.

9. Chilundo B, Sundby J, Aanestad M. Analysing the quality of routine malaria data in Mozambique.

Malaria Journal. 2004; 3(1):1–11.

Adaptive geostatistical sampling for repeated malaria prevalence surveys in rural Malawi

PLOS ONE | DOI:10.1371/journal.pone.0172266 February 14, 2017 12 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172266.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172266.s006
http://dx.doi.org/10.1038/nature15535
http://www.ncbi.nlm.nih.gov/pubmed/26375008
http://dx.doi.org/10.1371/journal.pmed.1001165
http://dx.doi.org/10.1371/journal.pmed.1001165
http://www.ncbi.nlm.nih.gov/pubmed/22303287
http://dx.doi.org/10.1371/journal.pone.0079966
http://www.ncbi.nlm.nih.gov/pubmed/24223209
http://dx.doi.org/10.1016/S2214-109X(16)30073-0
http://www.ncbi.nlm.nih.gov/pubmed/27269393


10. Snow RW, Craig M, Deichmann U, Marsh K. Estimating mortality, morbidity and disability due to malaria

among Africa’s non-pregnant population. Bulletin of the World Health Organization. 1999; 77(8):624–

40. Epub 1999/10/12. PMID: 10516785

11. Rowe AK, Kachur SP, Yoon SS, Lynch M, Slutsker L, Steketee RW. Caution is required when using

health facility-based data to evaluate the health impact of malaria control efforts in Africa. Malaria Jour-

nal. 2009; 8(1):1–3.

12. Amexo M, Tolhurst R, Barnish G, Bates I. Malaria misdiagnosis: effects on the poor and vulnerable.

Lancet (London, England). 2004; 364(9448):1896–8. Epub 2004/11/24.

13. Afrane YA, Zhou G, Githeko AK, Yan G. Utility of Health Facility-based Malaria Data for Malaria Surveil-

lance. PloS one. 2013; 8(2):e54305. doi: 10.1371/journal.pone.0054305 PMID: 23418427

14. Rowe AK. Potential of integrated continuous surveys and quality management to support monitoring,

evaluation, and the scale-up of health interventions in developing countries. The American journal of

tropical medicine and hygiene. 2009; 80(6):971–9. Epub 2009/05/30. PMID: 19478260

15. Giorgi E, Sesay SSS, Terlouw DJ, Diggle PJ. Combining data from multiple spatially referenced preva-

lence surveys using generalized linear geostatistical models. Journal of the Royal Statistical Society:

Series A (Statistics in Society). 2015; 178(2):445–64.

16. Roca-Feltrer A, Lalloo DG, Phiri K, Terlouw DJ. Rolling Malaria Indicator Surveys (rMIS): a potential dis-

trict-level malaria monitoring and evaluation (M&E) tool for program managers. The American journal of

tropical medicine and hygiene. 2012; 86(1):96–8. Epub 2012/01/11. doi: 10.4269/ajtmh.2012.11-0397

PMID: 22232457

17. Reid H, Haque U, Clements AC, Tatem AJ, Vallely A, Ahmed SM, et al. Mapping malaria risk in Bangla-

desh using Bayesian geostatistical models. The American journal of tropical medicine and hygiene.

2010; 83(4):861–7. Epub 2010/10/05. doi: 10.4269/ajtmh.2010.10-0154 PMID: 20889880

18. Patil AP, Gething PW, Piel FB, Hay SI. Bayesian geostatistics in health cartography: the perspective of

malaria. Trends Parasitol. 2011; 27(6):246–53. doi: 10.1016/j.pt.2011.01.003 PMID: 21420361

19. Kondo MC, Bream KD, Barg FK, Branas CC. A random spatial sampling method in a rural developing

nation. BMC Public Health. 2014; 14(1):1–8.

20. Chipeta MG, Terlouw DJ, Phiri KS, Diggle PJ. Adaptive geostatistical design and analysis for preva-

lence surveys. Spatial Statistics. 2016; 15:70–84. http://dx.doi.org/10.1016/j.spasta.2015.12.004.

21. Mzilahowa T, Hastings IM, Molyneux ME, McCall PJ. Entomological indices of malaria transmission in

Chikhwawa district, Southern Malawi. Malaria Journal. 2012; 11(1):1–9.

22. Roll Back Malaria Partnership. Malaria Indicator Surveys Toolkit 2016. Available from: http://www.

malariasurveys.org/toolkit.cfm.

23. Chipeta M, Terlouw D, Phiri K, Diggle P. Inhibitory geostatistical designs for spatial prediction taking

account of uncertain covariance structure. Environmetrics. 2016:n/a–n/a.

24. Vyas S, Kumaranayake L. Constructing socio-economic status indices: how to use principal compo-

nents analysis. Health Policy Plan. 2006; 21(6):459–68. Epub 2006/10/13. doi: 10.1093/heapol/czl029

PMID: 17030551

25. Rue H, Held L. Gaussian Markov Random Fields: Theory and Applications. London: Chapman & Hall;

2005.

26. Beron KJ, Vijverberg WPM. Advances in Spatial Econometrics: Methodology,Tools and Applications.

Berlin: Springer Berlin Heidelberg; 2004.

27. Berrett C, Calder CA. Data augmentation strategies for the Bayesian spatial probit regression model.

Computational Statistics & Data Analysis. 2012; 56(3):478–90. http://dx.doi.org/10.1016/j.csda.2011.

08.020.

28. Matérn B. Spatial Variation. 2nd ed. Berlin: Springer; 1986.

29. CRAN. R statistical environment. 2016.

30. Gosoniu L, Msengwa A, Lengeler C, Vounatsou P. Spatially Explicit Burden Estimates of Malaria in

Tanzania: Bayesian Geostatistical Modeling of the Malaria Indicator Survey Data. PloS one. 2012; 7(5):

e23966. doi: 10.1371/journal.pone.0023966 PMID: 22649486

31. Kazembe LN, Kleinschmidt I, Sharp BL. Patterns of malaria-related hospital admissions and mortality

among Malawian children: an example of spatial modelling of hospital register data. Malaria journal.

2006; 5:93. Epub 2006/10/28. doi: 10.1186/1475-2875-5-93 PMID: 17067375

32. Kazembe LN, Kleinschmidt I, Holtz TH, Sharp BL. Spatial analysis and mapping of malaria risk in

Malawi using point-referenced prevalence of infection data. Int J Health Geogr. 2006; 5:41. Epub 2006/

09/22. doi: 10.1186/1476-072X-5-41 PMID: 16987415

Adaptive geostatistical sampling for repeated malaria prevalence surveys in rural Malawi

PLOS ONE | DOI:10.1371/journal.pone.0172266 February 14, 2017 13 / 14

http://www.ncbi.nlm.nih.gov/pubmed/10516785
http://dx.doi.org/10.1371/journal.pone.0054305
http://www.ncbi.nlm.nih.gov/pubmed/23418427
http://www.ncbi.nlm.nih.gov/pubmed/19478260
http://dx.doi.org/10.4269/ajtmh.2012.11-0397
http://www.ncbi.nlm.nih.gov/pubmed/22232457
http://dx.doi.org/10.4269/ajtmh.2010.10-0154
http://www.ncbi.nlm.nih.gov/pubmed/20889880
http://dx.doi.org/10.1016/j.pt.2011.01.003
http://www.ncbi.nlm.nih.gov/pubmed/21420361
http://dx.doi.org/10.1016/j.spasta.2015.12.004
http://www.malariasurveys.org/toolkit.cfm
http://www.malariasurveys.org/toolkit.cfm
http://dx.doi.org/10.1093/heapol/czl029
http://www.ncbi.nlm.nih.gov/pubmed/17030551
http://dx.doi.org/10.1016/j.csda.2011.08.020
http://dx.doi.org/10.1016/j.csda.2011.08.020
http://dx.doi.org/10.1371/journal.pone.0023966
http://www.ncbi.nlm.nih.gov/pubmed/22649486
http://dx.doi.org/10.1186/1475-2875-5-93
http://www.ncbi.nlm.nih.gov/pubmed/17067375
http://dx.doi.org/10.1186/1476-072X-5-41
http://www.ncbi.nlm.nih.gov/pubmed/16987415


33. Noor AM, Kinyoki DK, Mundia CW, Kabaria CW, Mutua JW, Alegana VA, et al. The changing risk of

Plasmodium falciparum malaria infection in Africa: 2000–10: a spatial and temporal analysis of trans-

mission intensity. The Lancet. 383(9930):1739–47. http://dx.doi.org/10.1016/S0140-6736(13)62566-0.

34. Burton DC, Flannery B, Onyango B, Larson C, Alaii J, Zhang X. Healthcare-seeking behaviour for com-

mon infectious disease-related illnesses in rural Kenya: a community-based house-to-house survey. J

Health Popul Nutr. 2011; 29.

35. Stanton MC, Lydiane Agier, Taylor BM, Diggle PJ. Towards realtime spatiotemporal prediction of district

level meningitis incidence in sub-Saharan Africa. Journal of the Royal Statistical Society: Series A (Sta-

tistics in Society). 2014; 177(3):661–78.

36. MERIT Inititative. Meningitis Environmental Risk Information Technologies (MERIT) 2016 [cited 2016 5

July]. Available from: http://merit.hc-foundation.org/ProgramActivities2012.html.
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