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S U M M A R Y

S E T T I N G : Cape Town, South Africa.

O B J E C T I V E : To compare the diagnostic yield for smear/

culture and Xpertw MTB/RIF algorithms and to

investigate the mechanisms influencing tuberculosis

(TB) yield.

M E T H O D : We developed and validated an operational

model of the TB diagnostic process, first with the smear/

culture algorithm and then with the Xpert algorithm. We

modelled scenarios by varying TB prevalence, adherence

to diagnostic algorithms and human immunodeficiency

virus (HIV) status. This enabled direct comparisons of

diagnostic yield in the two algorithms to be made.

R E S U LT S : Routine data showed that diagnostic yield

had decreased over the period of the Xpert algorithm

roll-out compared to the yield when the smear/culture

algorithm was in place. However, modelling yield under

identical conditions indicated a 13.3% increase in

diagnostic yield from the Xpert algorithm compared to

smear/culture. The model demonstrated that the exten-

sive use of culture in the smear/culture algorithm and the

decline in TB prevalence are the main factors contrib-

uting to not finding an increase in diagnostic yield in the

routine data.

C O N C L U S I O N : We demonstrate the benefits of an

operational model to determine the effect of scale-up

of a new diagnostic algorithm, and recommend that

policy makers use operational modelling to make

appropriate decisions before new diagnostic algorithms

are scaled up.

K E Y W O R D S : TB diagnostic yield; modelling; simula-

tion; TB diagnosis

TUBERCULOSIS (TB) remains a major cause of

morbidity and mortality worldwide. Of the global

estimated 10.4 million incident TB cases in 2015, 1.2

million were infected with the human immunodefi-

ciency virus (HIV).1 The Africa region accounted for

26% of global TB cases, 31% of whom are estimated

to be HIV–co-infected. The main contributing factor

driving the TB epidemic is ongoing transmission due

to undiagnosed TB cases, diagnosed cases not

initiating treatment2–4 and diagnostic and treatment

initiation delays.5,6

Increased investment in recent years has resulted in a

number of new, more sensitive and rapid diagnostic

tests for TB, with the expectation that this would lead

to an increase in the number of cases diagnosed and

earlier diagnosis and initiation of treatment, thus

reducing transmission and, ultimately, the burden of

disease. One of these tests, the Xpertw MTB/RIF assay

(Cepheid, Sunnyvale, CA, USA), was endorsed by the

World Health Organization (WHO) and recommend-

ed as the initial diagnostic test for those with suspected

multidrug-resistant TB (MDR-TB) or HIV-associated

pulmonary TB (PTB).7 South Africa replaced smear

microscopy with Xpert as the first test in the diagnostic

algorithm for all presumptive PTB cases in 2011.8

The decision by policy makers about which new

test to implement in a diagnostic algorithm can be

complicated, and factors to be considered include the

best combination of diagnostic tests, the resources

required, who should be tested and the TB epidemi-

ology in the setting (prevalence of TB, HIV co-

infection and drug resistance). Often many of these

factors are not known, and expensive and time-

consuming clinical trials are required to make

informed decisions,9 or decisions are made without

all the necessary information.

The variable results reported from studies evaluat-

ing the implementation of Xpert highlight the com-

plexity in deciding if and how a new diagnostic test

should be implemented within a diagnostic algorithm.

For example, a population-level decision model

estimated that full Xpert coverage would identify
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30% more TB cases (with yield increasing from 15%
to 19%) in South Africa in 2013 compared to smear
and culture.10 A prospective cluster-randomised trial
of Xpert compared to smear microscopy and culture
conducted in a primary care clinic in Cape Town,
South Africa, showed an increase in TB yield from
17% with smear and culture to 26% with Xpert.11 A
study conducted in North Ethiopia among household
contacts of TB index cases showed an increase of
64.3% in TB detection between smear microscopy
(12.8%) and Xpert (35.9%).12 However, other studies
in South Africa and Zimbabwe have not found
increases in TB yield.13,14 Xpert is expensive to
implement and use, and the health system and patient
impacts and benefits under routine operational condi-
tions are still uncertain.

Modelling as a framework to help with decision
making is an attractive and viable option to guide
policy makers in implementing new diagnostic tests
and algorithms. Operational modelling could identify
gaps within a health system and options for addressing
these.15 Projections of the impact of interventions on
patient access and outcomes and health system costs
and infrastructure could help guide policy makers on
which new diagnostic tests and algorithms should be
implemented.

As part of an evaluation of new TB diagnostics in
South Africa (Policy Relevant Outcomes from Vali-
dating Evidence on ImpacT, PROVE IT), we devel-
oped an operational model using a discrete event
simulation approach for the previous smear/culture-
based TB diagnostic algorithm and the newly
introduced Xpert-based algorithm in Cape Town
and validated the model outputs by comparing these
with routine TB programme data.16

We used the operational model to investigate the
mechanisms influencing TB yield in our setting and to
better understand why we did not find the expected
increase in TB diagnostic yield in our own empirical
study.16 We used simulated model scenarios, includ-
ing a decrease in TB prevalence, varying adherence to
protocol in diagnostic algorithms and knowledge of
HIV status to make direct comparisons of the
proportion of presumptive cases diagnosed as TB
(TB yield), missed cases (false-negatives) and unnec-
essarily treated cases (false-positives) in the smear/
culture and Xpert-based algorithms.

METHODS

Setting

The model was developed (Appendix Tables A.1 and
A.2* and Figures 1 and 2) and validated (Appendix
Table A.3) using routine National Health Laboratory

Service (NHLS) data collected for the period from 2010
to 2013 over seven time points (T1 to T7) in Cape
Town,16 one of the larger cities in South Africa, with a
population of 3.7 million in 2011 (national census
2011) and 28 658 TB cases reported; 47% of TB cases
tested were co-infected with HIV (source: routine TB
programme data, Cape Town Health Directorate).

Municipal and provincial health authorities pro-
vided TB diagnostic services at 142 primary health
care (PHC) facilities. Sputum samples collected for
TB testing at PHC facilities were couriered to the
central NHLS on a daily basis for testing, and results
were returned via courier and fax.

Two diagnostic algorithms (Appendix Figure A.1)
were used in the study period. A smear/culture-based
TB algorithm was used before August 2011, with all
presumptive cases required to submit two spot
sputum samples taken at least 1 h apart. Both sputum
samples were examined using fluorescence microsco-
py after being chemically treated, centrifuged and
stained. Among previously treated presumptive cases,
the second sample was cultured using BACTECe

MGITe 960 (BD, Sparks, MD, USA) and tested for
drug suscept ibi l i ty us ing the GenoTypew

MTBDRplus (Hain LifeScience, Nehren, Germany)
line-probe assay (LPA). For new presumptive cases
who were smear-negative and HIV-infected, a third
sample was required for culture.

An Xpert-based algorithm was phased in from
August 2011 to February 2013, with Xpert replacing
smear microscopy for all presumptive cases. The first
of two sputum samples submitted was tested using
Xpert. If TB was detected, smear microscopy was
performed on the second sample. In HIV-infected
cases with negative Xpert results, the second sample
underwent culture and LPA. All definitions for terms
used throughout the article are given in Table 1.

Model development

The Witness package, a discrete event and continuous
process simulator,17 was used to develop a compre-
hensive model to represent the diagnosis of PTB in
Cape Town. The model incorporated TB diagnostic
algorithms (Appendix Figure A.1) as well as patient
pathways and sample flow (Appendix Figure A.2)
from specimen collection through laboratory test
procedures to a result being provided to the patient
and treatment initiation.

Table 2 summarises the model validation, and a
detailed account of model development (Appendix
Tables A.1 and A.2), more details about validation
(Appendix Table A.3) as well as model sensitivity
analysis, are available in the online Appendix.

Simulated scenarios: comparing the smear/culture and
Xpert-based algorithms

To determine why the expected increase in TB yield
was not observed in our setting with the roll-out of the

* The appendix is available in the online version of this article, at

http://www.ingentaconnect.com/content/iuatld/ijtld/2017/
00000021/00000004/art00006
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Xpert-based algorithm, we modelled both algorithms
with identical input parameters to eliminate any
differences in population characteristics (TB preva-
lence, HIV status, history of previous anti-tuberculosis
treatment) during the time the smear/culture-based
algorithm was in use and during the Xpert roll-out. We
used estimated prevalence data from the most recent
time point (T7) and an average of population
parameters (proportion of previously treated cases
and HIV status) over the seven time points. We ran the
model for a period of 3 years for each simulation.

In the base-case scenario (Scenario A), we set levels
of adherence to testing protocols in both algorithms
at 85%, and assumed that 50% of presumptive cases
knew their HIV status. Various other scenarios were
modelled (Table 3) and, unless otherwise specified,

the baseline parameters for Scenario A were main-
tained for all the following scenarios. In Scenario B,
the estimated TB prevalence among presumptive TB
cases was increased by 10%. In Scenario C, we
increased the number of cultures for smear-negative
and Xpert-negative presumptive TB cases to that
found in routine practice: smear/culture-based algo-
rithm: new HIV-negative 30% and HIV-positive
92%, previously treated HIV-negative 10% and
HIV-positive 95%; Xpert-based algorithm: new
HIV-negative 5% and HIV-positive 92%, previously
treated HIV-negative 10% and HIV-positive 95%.

In Scenario D, we assessed the effect of an increase
in known HIV status (from 50% to 85%) on outputs.
In Scenario E, we tested the effect of 100% adherence
to testing protocols in each algorithm, with 50% of
presumptive TB cases’ HIV status known. With
Scenario F, we increased both HIV status known
and adherence to testing protocols to 100%. With
Scenario G, the use of culture was removed from both
algorithms, as in most settings culture is not used as
extensively as in Cape Town or is not used at all as
part of the diagnostic algorithm. In Scenario H, we
lowered the test sensitivity of smear microscopy by
10%. Scenario input parameters are summarised in
Appendix Tables A.4 and A.5. For each scenario, we
compared TB yield between the algorithms for all TB
cases, and also assessed the proportion of missed
cases (false-negative or TB not detected but TB
present) and cases treated unnecessarily (false-posi-
tive or TB detected but no TB present). We undertook

Figure 1 Model output comparing observed yield and model
yield for all presumptive cases.

Figure 2 Model outputs from the scenarios comparing TB diagnostic yield (%) between
algorithms and sensitivity of input parameters. Diagnostic yield from routine data. Model with
routine data as input parameters. Scenario A: 85% adherence to algorithm and 50% of
presumptive cases know their HIV status; Scenario B: increase estimated TB prevalence among
presumptive cases by 10%; Scenario C: increase additional culture for smear or Xpert-negative
presumptive cases per routine practice; Scenario D: increased proportion (85%) of presumptive
cases know their HIV status; Scenario E: adherence (100%) to algorithms; Scenario F: increased
proportion (100%) of presumptive cases know their HIV status and adherence (100%) to
algorithms; Scenario G: remove culture as part of the sequence of tests required in each diagnostic
algorithm; Scenario H: lower the sensitivity of smear microscopy by 10%. TB¼ tuberculosis.
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the analysis for new and previously treated TB cases,
and for HIV-positive and HIV-negative TB cases
(Appendix Table A.6–A.13).

Analysis

All patient and laboratory test information was
written to a Microsoft SQL Server database (Micro-
Soft, Redmond, WA, USA). Model outputs were
aggregated by month over a 3-year period to produce
means and 95% confidence intervals (CIs) for
diagnostic yield and proportions that were false-
negative and false-positive. We used the t-test to

determine differences in means between observed and
modelled outputs for the model validation and
between algorithms for simulated scenarios. Differ-
ences are expressed as absolute values. All analyses
were undertaken using STATA version 14 (StataCorp,
College Station, TX, USA).

Ethics statement

The study was approved by the Health Research
Ethics Committee at Stellenbosch University, Tyger-
berg, South Africa (IRB0005239) (N10/09/308) and
the Ethics Advisory Group at the International Union

Table 2 Model validation comparing TB yield from routine data and model outputs (%)

T1 T2 T3 T4 T5 T6 T7
Weighted

mean 6 SD
Mean difference

% (95%CI) P value

All presumptive cases
Smear/culture-based algorithm

Routine data 23.6 20.4 18.0 18.8 20.6 NA* NA* 20.9 6 2.1 0.1 (�3.0 to 3.3)
Model outputs 23.4 20.8 18.7 17.3 17.4 NA* NA* 20.8 6 2.2 0.928

Xpert-based algorithm
Routine data NA* NA* 21.2 16.9 19.3 16.6 17.5 17.9 6 1.5 �0.1 (�1.8 to 1.6)
Model outputs NA* NA* 19.5 18.5 18.1 17.7 17.4 18.0 6 0.6 0.874

Overall
Routine data 23.6 20.4 19.4 17.4 19.5 16.6 17.5 19.2 6 2.2 0.0 (�2.4 to 2.5)
Model outputs 23.4 20.8 19.1 18.1 17.9 17.7 17.4 19.2 6 2.0 0.988

New presumptive cases
Smear/culture-based algorithm

Routine data 23.2 20.9 17.0 16.8 19.7 NA* NA* 20.4 6 2.5 0.8 (�2.6 to 4.3)
Model outputs 22.1 19.8 17.6 16.3 16.0 NA* NA* 19.6 6 2.1 0.581

Xpert-based algorithm
Routine data NA* NA* 21.7 15.7 18.7 15.8 16.2 17.1 6 1.9 0.0 (�2.1 to 2.0)
Model outputs NA* NA* 18.3 17.5 17.0 16.7 16.8 17.1 6 0.5 0.975

Overall
Routine data 23.2 20.9 18.8 16.1 18.9 15.8 16.2 18.5 6 2.5 0.4 (�2.3 to 3.0)
Model outputs 22.1 19.8 17.9 17.1 16.9 16.7 16.8 18.1 6 1.9 0.764

Previously treated presumptive cases
Smear/culture-based algorithm

Routine data 26.6 23.1 21.6 25.3 23.5 NA* NA* 24.4 6 1.9 0.2 (�2.7 to 3.1)
Model outputs 26.5 24.1 22.1 20.3 21.3 NA* NA* 24.2 6 2.1 0.897

Xpert-based algorithm
Routine data NA* NA* 23.6 21.7 22.6 19.8 24.2 22.1 6 1.7 0.9 (�0.9 to 2.9)
Model outputs NA* NA* 23.2 21.4 21.1 20.9 20.2 21.2 6 0.9 0.276

Overall
Routine data 26.6 23.1 22.5 22.8 22.7 19.8 24.2 23.2 6 2.0 0.7 (�1.7 to 3.1)
Model outputs 26.5 24.1 22.6 21.1 21.2 20.9 20.2 22.4 6 2.1 0.535

*The smear/culture-based algorithm was not in use in the TB programme during T6 and T7; and the Xpert-based algorithm was not in use during T1 and T2.
TB¼ tuberculosis; SD¼ standard deviation; CI¼ confidence interval; NA¼ not applicable.

Table 1 Definitions used throughout the study

Presumptive case Defined as an individual with pre-treatment sputum samples submitted for diagnostic purposes

TB prevalence among presumptive cases The proportion of true TB cases among presumptive cases. For model purposes, this is defined as
culture-positive cases

TB case An individual with one or more smears positive and/or culture positive for M. tuberculosis and/or
M. tuberculosis detected on Xpert (includes true-positive cases and false-positive cases)

New presumptive cases An individual with no previous anti-tuberculosis treatment or ,4 weeks of previous anti-
tuberculosis treatment

Previously treated presumptive cases An individual with .4 weeks of previous anti-tuberculosis treatment
TB testing protocol The sequence of tests required in each diagnostic algorithm
TB diagnostic yield The number of TB cases diagnosed (based on the full TB testing protocol performed) expressed

as a proportion of presumptive cases tested
TB diagnostic yield ¼ (True positive þ false positive)/Presumptive cases

False-positive The proportion of individuals with culture-negative TB who are incorrectly diagnosed with TB
False-negative The proportion of individuals with culture-positive TB in whom a TB diagnosis is missed
True-positive The proportion of individuals with culture-positive TB who are diagnosed with TB

TB¼ tuberculosis.
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Against Tuberculosis and Lung Disease, Paris, France
(59/10). A waiver for informed consent was granted
for use of routine data. The City Health Directorate,
Western Cape Health Department, Cape Town, and
the National Health Laboratory Services, Pretoria,
South Africa, granted permission to use routine
health data.

RESULTS

Model validation

The mean differences between observed yield from
routine data and model outputs over the seven time
points is shown in Figure 1 and Table 2. The TB yield
from the model closely approximated that from
routine data for both diagnostic algorithms. The
mean model yield was 0.1% (P¼ 0.928) lower than
observed values in the smear/culture-based algorithm
and 0.1% (P ¼ 0.874) higher in the Xpert-based
algorithm overall (Figure 1; Table 2).

Simulated scenarios: comparing the smear/culture and
Xpert-based algorithms

Figure 2 and Table 3 summarise the model outputs

from the scenarios comparing the TB diagnostic yield
from the smear/culture and Xpert-based algorithms.
In Scenario A (detail in Appendix Table A.6), with
85% adherence to the diagnostic algorithms and
where 50% of presumptive cases knew their HIV
status, the overall TB diagnostic yield was 15.8% in
the smear/culture-based algorithm compared to
17.9% in the Xpert-based algorithm (relative differ-
ence 13.3%), with respectively 3.3% and 2.1% of
presumptive cases having a missed TB diagnosis. A
lower proportion of cases were falsely diagnosed with
TB in the smear/culture-based algorithm (0.8%) than
in the Xpert-based algorithm (1.6%).

When the estimated TB prevalence among
presumptive cases was increased by 10% (absolute)
(Scenario B) (Appendix Table A.7), the yield was
24.0% and 26.7% in the respective algorithms.
The relative increase in yield between algorithms
was 11.3%. The proportion of missed cases was
respectively 5.1% and 3.1%.

When Scenario A was adjusted so that the
proportions of smear-negative and Xpert-negative
cases who received a culture test were set to reflect the
values found in routine practice (Scenario C), the

Table 3 Model outputs from the scenarios comparing TB diagnostic yield (%) between algorithms and sensitivity of input
parameters

Smear/culture-based
algorithm

Xpert-based
algorithm

Change in yield
between algorithms

(relative % difference)

Routine and modelled data across all time periods (i.e., smear/culture T1–T5 and Xpert T3–T7)
Diagnostic yield from routine data 20.9 17.9 �3.0 (�14.4)
Model with routine data as input parameters 20.8 18.0 �2.8 (�13.5)

Modelled scenarios: all input parameters
identical between algorithms

True TB Not TB Yield True TB Not TB Yield

Scenario A: 85% adherence to algorithm and 50% of presumptive cases know their HIV status*
TB detected 15.0 0.8 15.8 16.3 1.6 17.9 2.1 (13.3)
TB not detected 3.3 80.9 2.1 80.0

Scenario B: increase estimated TB prevalence among presumptive cases by 10%
TB detected 23.3 0.7 24.0 25.3 1.5 26.7 2.7 (11.3)
TB not detected 5.1 70.9 3.1 70.2

Scenario C: increase additional culture testing for smear or Xpert-negative presumptive cases to that found in routine practice†

TB detected 16.0 0.8 16.8 16.4 1.7 18.1 1.3 (7.7)
TB not detected 2.3 80.9 1.9 80.0

Scenario D: increased proportion (85%) of presumptive cases know their HIV status
TB detected 15.6 0.8 16.4 16.7 1.7 18.4 2.0 (12.2)
TB not detected 2.6 81.0 1.5 80.0

Scenario E: 100% adherence to algorithms; 50% know their HIV status
TB detected 15.3 0.8 16.1 16.5 1.8 18.3 2.2 (13.7)
TB not detected 3.0 80.9 1.8 79.9

Scenario F: 100% adherence to algorithms; 100% know their HIV status
TB detected 16.1 0.7 16.8 17.1 1.9 19.0 2.2 (13.1)
TB not detected 2.1 81.1 1.1 79.9

Scenario G: remove culture as part of the sequence of tests required in each diagnostic algorithm
TB detected 12.9 0.8 13.7 16.5 1.8 18.3 4.6 (33.6)
TB not detected 5.4 80.9 1.8 80.0

Scenario H: lower the sensitivity of smear microscopy by 10%
TB detected 13.9 0.8 14.7 16.3 1.6 17.9 3.2 (21.8)
TB not detected 4.4 80.9 2.1 80.0

* In Scenario A, 85% of cases in each algorithm received the initial tests as required and 85% of smear- or Xpert-negative cases who were HIV-infected underwent
culture; 50% of presumptive cases knew their HIV status. The same values for TB prevalence (18.8%), proportions of HIV�, HIVþ (status known and undiagnosed),
new and previously treated cases were used in each algorithm. All scenario changes are in relation to Scenario A. Yield¼ TB detected (true TBþ not TB).
† In Scenario C, culture in smear/culture-based algorithm increased new HIV� (0–30%), HIVþ (85–92%), previously treated HIV� (0–10%) HIVþ (85–95%); Xpert-
based algorithm: new HIV� (0–5%), HIVþ (85–92%), previously treated HIV� (0–10%), HIVþ (85–95%).
TB¼ tuberculosis; HIV¼ human immunodeficiency virus;�¼ negative;þ¼ positive.
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overall yield was 16.8% in the smear/culture-based
algorithm compared to 18.1% in the Xpert-based
algorithm, a relative increase of 7.7%. The propor-
tion of missed cases was 2.3% and 1.9% in the
respective algorithms (Appendix Table A.8). In
comparison to Scenario A, the relative increase in
TB yield was 6.3% in the smear/culture-based
algorithm and 1.1% in the Xpert-based algorithm
in Scenario C.

If HIV testing among presumptive TB cases was
increased and 85% knew their HIV status (Scenario
D) (Appendix Table A.9), the overall yield was 16.4%
in the smear/culture-based algorithm compared to
18.4% in the Xpert-based algorithm (relative differ-
ence 12.2%), with 2.6% and 1.5% missed cases in
the respective algorithms. In comparison to Scenario
A, an increase in HIV testing resulted in a relative
increase of 3.8% and 2.8% in TB yield in the
respective algorithms.

If adherence to the testing protocol in each
algorithm was increased to 100% but only 50% of
presumptive TB cases knew their HIV status (Scenar-
io E) (Appendix Table A.10), the TB yield was 16.1%
in the smear/culture-based compared to 18.3% in the
Xpert-based algorithm, with a relative increase of
10.9%. The proportion of missed cases was respec-
tively 3.0% and 1.8%. In comparison to Scenario A,
the relative increase in TB yield was 1.9% in the
smear/culture-based algorithm compared to 2.2% in
the Xpert-based algorithm.

If adherence to the testing protocol in each
algorithm was increased to 100% and 100% of
presumptive TB cases knew their HIV status
(Scenario F) (Appendix Table A.11), the TB yield
was 16.8% in the smear/culture-based compared to
19.0% in the Xpert-based algorithm, with a relative
increase of 13.1% between algorithms. The propor-
tion of missed cases was respectively 2.1% and
1.1%. In comparison to Scenario A, the relative
increase in TB yield was 6.3% in the smear/culture-
based algorithm compared to 6.1% in the Xpert-
based algorithm.

Removing culture as part of the testing protocol
from both algorithms (Scenario G) (Appendix Table
A.12) resulted in a TB yield of 13.7% and 18.3% in
the respective algorithms. The relative increase in
yield between algorithms was 33.6%. The propor-
tion of missed cases was 5.4% in the smear/culture
algorithm compared to 1.8% in the Xpert algo-
rithm.

If we assume the sensitivity of smear microscopy to
be 10% lower than that estimated in our model
(Scenario H) (Appendix Table A.13), the yield in the
smear/culture algorithm would be 14.7% (missed
cases 4.4%), with a relative increase in yield with the
Xpert algorithm of 21.8%.

DISCUSSION

A strength of this study was the availability of
detailed routine data and information collected on
health and laboratory processes, which allowed us to
develop a precise operational model to assess the
impact of different diagnostic algorithms in Cape
Town. The model input parameters were mostly
based on these detailed routine data, and only a few
assumptions were made. We assumed that prevalence
among presumptive cases was higher among HIV-
positive presumptive cases than among HIV-negative
cases,18,19 and among previously treated than among
new cases;20 we assumed a decrease in TB prevalence
among presumptive cases over time based on the
empiric yield data, which showed a decrease in yield
over time despite similar proportions of the popula-
tion being tested.16 The latter assumption is support-
ed by national data that showed a decrease in the
number of laboratory-confirmed cases since 2011
(nationally and across the Western Cape Province).21

The availability of routine TB NHLS data collected
through the PROVE IT study allowed us to validate
the model by comparing TB yield observed in routine
practice to model outputs using input parameters
from seven different time points during the period
when PHC facilities changed from the smear/culture
algorithm to the Xpert algorithm. This comparison
built confidence in the outputs from the model and
confirmed that the outputs were credible. Overall
model outputs closely resembled the TB yield
observed in Cape Town over the seven time points,
with a mean difference of 0.1% (P¼ 0.951) between
routine data and the model outputs.

A direct comparison of TB yield in the Xpert and
smear/culture-based algorithms in routine practice is
difficult due to the variability in the population
characteristic at each time point and different levels
of adherence to testing protocols. When the Xpert-
based algorithm was newly introduced, it took staff a
period of time to adapt their clinical practice and
become familiar with the new protocols. The global
stock-out of the Xpert test during the study period
also played a role in the extent to which testing
protocols were followed. The operational model
allows a direct comparison between the two algo-
rithms with identical population characteristics and
adherence to testing protocols. To understand the
mechanisms and the extent to which they influenced
TB yield in our setting, we used the validated model
to compare various scenarios.

In Scenario A, with 85% adherence to algorithm
and 50% of presumptive cases knowing their HIV
status, the yield in the Xpert-based algorithm was
higher than in the smear/culture-based algorithm,
with a relative increase of 13.3%. Although the TB
diagnostic yield was higher in the Xpert-based
algorithm, the increase was lower than the predicted
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increase with full roll-out of Xpert in South Africa10

and reported by other studies.11,12

Scenarios B and C provide insights into the findings
on TB yield from our empirical study. The TB yield in
the smear/culture-based algorithm in Scenario B,
where TB prevalence was 10% higher than in
Scenario A, was 25% higher than in the Xpert-based
algorithm in Scenario A, demonstrating the impact of
a decline in prevalence among presumptive TB cases
on TB yield. This helps explain findings from the
empirical study that reported yields of 20.9% in the
smear/culture-based and 17.9% in the Xpert-based
algorithm.16 It is likely that the change in prevalence
in our setting during the study period was lower than
the 10% value tested in the model.

Our model showed the impact of additional culture
testing on reducing the difference in TB yield between
algorithms. When the proportions of smear- and
Xpert-negative cases who received culture tests were
increased to reflect those found in routine practice
(Scenario C), the relative increase in yield between the
smear/culture and Xpert-based algorithms was re-
duced to 7.7%. This was attributable to a higher
proportion of smear-negative than Xpert-negative
cases undergoing culture. A cluster-randomised study
in four other provinces also found that culture was
more likely to be undertaken for smear-negative
(32%) than Xpert-negative (14%) HIV-infected
cases.22 It was proposed that a greater belief in the
efficacy of the Xpert test contributed to this.

Scenarios D to F provide insights into the potential
benefits of interventions that strengthen the health
system. Increasing the proportion of presumptive
cases who knew their HIV status from 50% to 85%
had a small influence on TB yield: the yield increased
by 3.8% in the smear/culture-based algorithm, and
by 2.8% in the Xpert-based algorithm in relative
terms from Scenario A. It is interesting to note the
modest benefits, considering the effort required to
increase HIV testing of presumptive cases to this
extent.

In Scenario E for the Xpert-based algorithm,
increasing adherence to the algorithm to 100%, but
with only 50% of presumptive TB cases knowing
their HIV status, produced a 2.2% relative increase in
yield compared to Scenario A. Increasing adherence
to 100% and with 100% knowing their HIV status
resulted in a relative increase in yield of only 6.1% in
the Xpert-based algorithm in Scenario F compared to
Scenario A. In addition to this disappointingly small
benefit, 100% adherence is not realistic in routine
practice due to the failure to request the correct test
(due to new or locum staff who are unfamiliar with
Xpert and costs concerns, for example), the avail-
ability of the Xpert test due to maintenance on Xpert
machines or stock-outs and clinical decisions over-
riding the use of the testing algorithm. It is important
to note that we started on a baseline of 85%

adherence to the algorithms and with 50% knowing
their HIV status; the increases in yield would be
greater if these baseline values were lower. In a future
study, we will model the effect of a more sensitive test
than Xpert to assess the extent to which this can
increase TB diagnostic yield.

We compared two scenarios that are pertinent to
other settings. In Scenario G, where culture was
removed from the algorithms, there was a 33.6%
relative difference in TB yield between the smear/
culture and the Xpert-based algorithm. The diagnos-
tic benefits of Xpert are thus likely to be greater in
areas that do not use or have very limited use of
culture. The performance of smear microscopy in our
central laboratory may also be much higher than
reported by peripheral microscopy units. This is
possibly due to greater proficiency and technical
aspects in the central laboratory. It has been shown
that an increase in yield for smear microscopy could
be achieved by chemical treatment, centrifugation
and fluorescence microscopy,23–25 as used in our
laboratory. If we did not have these benefits and
smear microscopy sensitivity was 10% lower, the
relative increase in TB yield in the Xpert-based
algorithm would have been 21.8% compared to that
in the smear/culture-based algorithm.

Limitations

We did not have data on TB prevalence for
presumptive cases. This was estimated with a range
of values tested in the model. The model was
validated against data from Cape Town, a well-
resourced urban setting where there is extensive use
of culture in both algorithms. This may limit the
generalisability of the findings to other settings.

As complete data are rarely available for any
modelling study, assumptions are required for some
input parameters. A model is also, by definition, a
simplification of real-life processes. In this study, our
model was validated by running the model with input
parameters based on routine data for seven individual
time points and comparing the output from the model
against corresponding routine data (Figure 1; Table
2). Cost implications, treatment delay and rifampicin
resistance were not addressed in the current study and
will be reported in future studies.

CONCLUSION

We have developed and validated an operational
model that can be used to directly compare the TB
diagnostic yield between different algorithms, i.e., a
smear/culture-based and an Xpert-based algorithm.
Our model accounted for the variability found in
routine practice and made it possible to eliminate the
effect of a difference in population characteristics and
adherence to testing protocols within algorithms on
the TB diagnostic yield.
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We were able to show that extensive use of culture
in the smear/culture-based algorithm and decline in
TB prevalence are the main factors likely to have
contributed to our not finding an increased TB yield
in the Xpert-based algorithm in our empiric study.
The Xpert-based algorithm is likely to yield greater
diagnostic benefits in areas without culture or with
less sensitive TB microscopy.

We have demonstrated the benefits of using an
operational model to determine the effect of scaling
up a new diagnostic algorithm and investigate the
mechanistic reasons that influence the yield of a new
TB diagnostic algorithm. We would therefore recom-
mend that policy makers use operational modelling to
make appropriate decisions before new diagnostic
algorithms are scaled up. The model could provide
evidence as to how the greatest benefits could be
obtained by using a new diagnostic test within a TB
diagnostic algorithm and in a specific setting.
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APPENDIX

Modelling as a framework to help with decision
making is an attractive and viable option to guide
policy makers in implementing new diagnostic tools
and diagnostic algorithms. Two modelling approach-
es previously used in tuberculosis (TB) control are
transmission (epidemiological) modelling and opera-
tional modelling.1 Transmission modelling can be
used to predict the long-term impact of interventions
on the community by projecting TB incidence,
prevalence and mortality. Operational modelling, on
the other hand, can be used to project the impact of
interventions on health system costs and infrastruc-
ture, as well as patient access and outcomes.
Operational modelling can also be useful in identify-
ing gaps within a health system and to identify ways
to address the gaps within the health system.2 An
operational model is a simplified representation of
complex real-life processes. The data sources usually
used to drive operational models are derived from
published literature (i.e., meta-analyses, randomised
control trials, cohort studies, global reports, unpub-
lished literature, expert opinion, field data), and from
assumptions. Models are therefore only as good as
the level of detail available to develop the logic of the
model and the availability and accuracy of the data to
drive the model.3

In industrial and commercial settings, operational
models are widely used to plan and assess the
performance and efficiency of processes.4 Operation-
al models have also increasingly been used to improve
performance of the health sector.5,6 The use of
operational models in health systems is common in
high-income countries, but not in middle- to low-
income countries at this stage. Many operational
models use a discrete event simulation approach,

where the system modelled is first defined in terms of

its most important elements, including the items or

people processed through the facility, resources,

activities, rules and the process flow. The required

outputs of the model are defined (e.g., productivity,

costs, identification of bottlenecks, capacity and

sensitivity to changes), along with the key input

parameters to be investigated. Once the system is

defined and appropriate parameter inputs are as-

signed (e.g., the number of items entering the system,

the quantity of resources and the time for completing

particular activities), then simulations can be run to

assess the relative effect of different input assump-

tions on the modelled outputs.7

Model development

The Witness package, a discrete event and continuous

process simulator,8 was used to develop a compre-

hensive model to represent the diagnosis of pulmo-

nary TB (PTB) in Cape Town, South Africa. The

model incorporated the TB diagnostic algorithms

(Figure A.1), as well as patient pathways and sample

flow (Figure A.2) from specimen collection, through

laboratory test procedures, to a result being provided

to the patient and treatment initiation.

The main elements in the model (Table A.1) were

entities (representing patients, sputum samples),

activities (representing patient reception, sputum

collection from the patient, sample transport, sample

registration at the laboratory, sample preparation and

test procedures, review and return of results to

primary health care [PHC] facilities), queues (repre-

senting delays before each activity, e.g., patient

waiting in reception prior to clinical evaluation and

sputum collection, batching and other processes in

Figure A.1 TB diagnostic algorithms. The simplified sequence of diagnostic tests in each algorithm and the action taken based on
test results is shown. TB¼ tuberculosis; MDR-TB¼multidrug-resistant TB; LPA¼ line-probe assay; MTB¼Mycobacterium tuberculosis;
RIF¼ rifampicin; HIV¼ human immunodeficiency virus; DST¼ drug susceptibility testing.
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the laboratory) and resources (representing health
facility and laboratory staff and equipment).

The model structure follows the patient and sample
pathways (Figure A.2), with the flow of entities
between activities and queues dictated by rules, which
are dependent on attributes for entities (patient or
sample).

Input parameters

A detailed list of the input parameters, including
processing times, patient and sample data as well as
test sensitivity and specificity, is shown in Table A.2.

Input data sources

Health system and laboratory processes were mapped
in three ways: through key informant interviews,
through the review of standard operating procedures
and through detailed observation and timing of clinic
and laboratory processes, all undertaken as part of
the PROVE IT study.

Characteristics of presumptive cases were derived
from electronic laboratory TB test data received from
the National Health Laboratory Services (NHLS)
Data Warehouse. Data included demographic infor-
mation, treatment history (new or previously treated
cases) human immunodeficiency virus (HIV) status
(HIV-negative, HIV-positive, status unknown), test
type (smear, culture or Xpertw MTB/RIF), test results
and date when sputum was collected, tested and
results available.

As there were no unique identifiers in the NHLS

data to link results belonging to an individual,
matching was performed on personal identifying
information (first name, family name, date of birth
and facility folder number). After record matching,
all personal identifying information was removed.
These data were used to assess adherence to testing
protocols in each algorithm and to calculate diagnos-
tic yield (the proportion of presumptive cases
diagnosed as TB).

Data on the sensitivity and specificity of tests were
obtained from systematic reviews and published
literature.9–11 We did not have data on the proportion
of true TB cases among presumptive cases (TB
prevalence), and we tested a range of prevalence
values, assuming that prevalence was lower among
HIV-negative than among HIV-positive,12,13 and
among new than among previously treated presump-
tive cases14; the outputs in comparison to observed
TB yield values from routine data were then assessed
(see below).15

Model outputs

The output from the model indicated the proportion
of cases diagnosed as TB (TB yield, i.e., true-positive
and false-positive cases) and the proportion of cases
missed (false-negative) using the diagnostic algorithm
in different scenarios.

Model calibration and validation

To have confidence in the model and the outputs
produced, the model was verified and validated.16

Figure A.2 A representation of the diagnostic pathway for the diagnosis of TB in Cape Town, South Africa.* * See Table A.2. TB¼
tuberculosis; LPA¼ lineprobe assay; DST¼ drug susceptibility testing; NHLS¼ National Health Laboratory Services.

ii The International Journal of Tuberculosis and Lung Disease



Model verification to ensure that the coding and logic

of the model and its execution were correct was

performed through incremental model building and

carefully scrutinising the structure and logic of the

model at each stage. The distribution of input

parameters was assessed against outputs to make

sure that the model assigned patient categories

correctly.

The model was validated using input parameters

from routine data and by comparing TB yield from

model outputs to routine data.15 As part of the

PROVE IT Study, NHLS data from presumptive

cases had previously been collected and analysed to

compare TB yield in the smear/culture-based

algorithm to that in the Xpert-based algorithm

over seven time periods (T1–T7), during which the

PHC changed from the former algorithm to the

latter.15 The model used probability distributions

derived from this analysis to assign patients to

categories: diagnostic algorithm used, HIV status

(known HIV-positive, undiagnosed HIV and HIV-

negative) and treatment history (new or previously

treated).

Data on HIV status were only available for time

points T6 and T7 (50% knew their HIV status), and

similar proportions were assumed for T1–T5. The

extent to which testing protocols was followed in each

diagnostic algorithm was derived from these data. As

we did not have data on TB prevalence among

presumptive cases, a range of values were tested. We

made the assumption that prevalence among presump-

tive cases was higher among HIV-positive presumptive

cases than among HIV-negative cases,12,13 and among

previously treated than among new cases.14 We

Table A.1 The key elements used in the model developed for this study

Model element type Representation of

Entities Patients, presumptive cases reporting to a TB diagnostic centre (clinic)
for TB diagnosis

Sputum sample

Attributes Number of sputum samples required
Number of sputum samples collected
Previous history of anti-tuberculosis treatment (new, previous TB)
HIV status (HIV�, HIVþ, HIVþ with status not known)
Test result

Activities Clinic
Reception
TB room
Sputum collection
Patient return home

Courier, transport of samples from clinic to central laboratory
Laboratory

Sample sorting/reception
Smear

Preparation
Microscopy
Review result
Fax result

Culture
Preparation
MGIT
ZN smear
Fax result

Xpert
Preparation
Xpert test
Review results
Fax result

Queues Clinic
Waiting room at reception
Waiting for sputum collection

Patient
Wait for result or provide further sputum samples

Laboratory
Sample waiting for preparation
Sample waiting for testing/batching

Microscopy
Culture
Xpert

Result waiting for review
Result waiting to be faxed

TB ¼ tuberculosis; HIV ¼ human immunodeficiency virus; �¼ negative; þ¼ positive; MGIT ¼Mycobacteria Growth
Indicator Tube; ZN¼ Ziehl-Neelsen.
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Table A.2 Main input parameters for operational model*

Input parameter Description Values Source

Processing times
TB diagnostic and

treatment facility
processing times

Duration of activities
within the diagnostic
centre for reception,
sputum collection and
returning results

Not defined for current model

Laboratory process
times
Duration of and
batching process
for microscopy,
culture and drug
susceptibility
testing. Preparation
and processing
times for Xpert

Sample collection times
by courier

First sputum delivery: between 2 and 3 pm Interviews with NHLS
staff, review of SOPs
and direct
observations of
laboratory procedures

Sample sorting time 25 min in batches of 96
Xpert preparation time 50 min in batches of 16
Xpert test time 1 h 50 min
Smear preparation time 2 h for 96 samples
Microscopy reading 1 h per batch of 96
Culture preparation 2 h per batch of 750
Culture test time 5–36 days

Patient data

Number of new
patients seeking
diagnosis
Number and arrival
rate of individuals
seeking diagnosis

Number of presumptive
cases per day

Uniform distribution: NHLS data warehouse
and sampled from a
uniform distribution

Minimum ¼ 11
Maximum ¼ 690
Mean ¼ 55

Arrival time of
patients4

The time during the day
that the patient arrives
at the diagnostic
centre

5 days: Monday to Friday Sampled from user-
defined distribution
starting at the
opening time of the
health facility with all
patients arriving by
closing time.

8 am to 5 pm
Working 540 min per day

Return probability5 The probability that an
individual returns to
the diagnostic centre
for the next stage of
the diagnostic process

Not defined for current model Published literature18,19

HIV status of
presumptive cases6

Proportion of
presumptive cases
who are identified as
HIVþ

New presumptive cases ¼ 18% Estimated from NHLS
Data Warehouse data
for 2013

Previous history of TB ¼ 35%

History of previous TB
treatment for
presumptive cases7

Proportion of
presumptive cases
with previous TB
treatment

Average over all observed time points ¼ 24%
(breakdown by time point in Table A.3)

Estimated from NHLS
Data Warehouse data
and stepped wedge
analysis15; 90% of
presumptive cases
with missing previous
TB treatment status
were assumed to be
new cases

Proportion of
presumptive cases
with diagnostic test
performed8

Average over all
observed time
points (breakdown
by time point in
Table A.3)

Smear/culture algorithm: New cases Previous history of TB Estimated from NHLS
Data Warehouse data
and stepped wedge
analysis15

Two smears 84% 82%
Smear-negative with

culture
36% 85%

Xpert algorithm:
Xpert 77% 65%
Xpert-negative with

culture
18% 41%

Diagnostic test accuracy
Accuracy of smear

microscopy9
Sensitivity and specificity

of LED fluorescence
microscopy

Two sputum samples Published literature9,10

HIV�: sensitivity 75%, specificity 99%
HIVþ: sensitivity 65%, specificity 99%

Accuracy of Xpert10 Sensitivity and specificity
of Xpert in identifying
TB from sputum
samples

HIV�: sensitivity 89%, specificity 98% Published literature11

HIVþ: sensitivity 80%, specificity 98%

Proportion of tests by
test type that give
no result11

Level of retesting
required for smear,
culture or Xpert

2% Estimated from NHLS
Data Warehouse data
and stepped wedge
analysis15
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assumed a decrease in TB prevalence among presump-
tive cases based on the routine yield data, which
showed a decrease in yield over time despite a similar
proportion of the population being tested.15 This is
supported by national data that show a reduction in
the number of laboratory-confirmed cases since 2011
(nationally and across the Western Cape Province).17

A summary of the population characteristics used for

model validation by time period is provided in Table
A.3.

The availability of TB test data collected through
the PROVE IT study allowed us to validate the model
by comparing TB yield observed in routine practice to
model outputs using the input parameters from seven
different time points during the period when PHC
facilities changed from the smear/culture algorithm to

Table A.2 (continued)

Input parameter Description Values Source

Number of sputum tests
required per patient
with suspected TB12

The number of sputum
samples required for
each diagnostic
algorithm

Two sputum samples South African National
TB Guidelines20

* See Figure A.2.
TB¼ tuberculosis; NHLS¼National Health Laboratory Services; SOPs¼ standard operating procedures; HIV¼human immunodeficiency virus;þ¼positive; LED¼
light-emitting diode;�¼ negative.

Table A.3 Population characteristics used for model validation by time period (%)

T1* T2* T3* T4* T5* T6* T7*

History of previous anti-tuberculosis treatment
Proportion of previously treated cases 29 24 24 25 25 24 19

HIV status
New presumptive cases

HIV-positive 36 36 36 36 36 36 36
HIV-negative 64 64 64 64 64 64 64

Previously treated presumptive cases
HIV-positive 53 53 53 53 53 53 53
HIV-negative 47 47 47 47 47 47 47

Proportion who know their HIV status
Estimated TB prevalence among presumptive cases

New presumptive cases
HIV-positive 26 23 21 19 19 18 17.8
HIV-negative 25 22 19 18 17.8 17 17

Previously treated presumptive cases
HIV-positive 27 24 23 21.5 21.5 21 20.8
HIV-negative 26 23 22 20 19.8 19.8 19.5

Proportion of presumptive cases tested using algorithm
Smear/culture-based 100 100 57 30 19 0 0
Xpert-based 0 0 43 70 81 100 100
Adherence to smear/culture-based algorithm

New presumptive cases with two smears 85 85 85 85 85 — —
Previously treated presumptive cases with culture 88 91 90 92 75 — —

Adherence to Xpert-based algorithm
All presumptive cases with Xpert test done — — 57 67 63 75 80

Proportion of patients who were smear or Xpert-negative with culture
Smear/culture-based algorithm

New presumptive cases
HIV-positive 92 92 92 92 92 92 92
HIV-negative 30 30 30 30 30 30 30

Previously treated presumptive cases
HIV-positive 95 95 95 95 95 95 95
HIV-negative 10 10 10 10 10 10 10

Xpert-based algorithm
New presumptive cases

HIV-positive 92 92 92 92 92 92 92
HIV-negative 2 2 2 2 2 2 2

Previously treated presumptive cases
HIV-positive 95 95 95 95 95 95 95
HIV-negative 10 10 10 10 10 10 10

*T1–T7 reflect the time points evaluated as part of a non-randomised stepped-wedge evaluation of TB yield with a transition from a smear/culture to an Xpert-
based algorithm in Cape Town.15 At T1 and T2, all facilities used the smear/culture-based algorithm; this decreased to 65% of facilities at T3, 38% at T4 and 23%
at T5. At T6 and T7, all facilities used the Xpert-based algorithm: T1, November 2010; T2, May 2011; T3, November 2011; T4, May 2012; T5, November 2012, T6,
May 2013; T7, November 2013. Values are derived from routine data.15

HIV¼ human immunodeficiency virus; TB¼ tuberculosis.
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the Xpert algorithm. This comparison built confi-
dence in the outputs from the model, and confirmed
that the outputs were credible. Overall model outputs
closely resembled TB yield observed in Cape Town
over the seven time points, with a mean difference of
0.0% (P ¼ 0.988) between the routine data and the
model outputs (Table 2).

Model sensitivity analysis

We selected five parameters to test the sensitivity of
our results to uncertainty in the parameter values.
The parameters evaluated were the estimated TB
prevalence among presumptive cases, the proportion
of presumptive cases with previous anti-tuberculosis
treatment, the test sensitivity of smear microscopy
and Xpert, the proportion of adherence to testing
algorithms and the extent of use of culture. These
parameters were selected because they have a direct
impact on the probability of being correctly tested
with TB, and therefore an impact on the primary
outputs, i.e., diagnosed as TB (TB yield), missed cases
(false-negative) and unnecessarily treated cases (false-
positive).

This analysis is summarised in Tables A.14 and
A.15 as well as in Figures A.3 and A.4. The analysis
shows that TB diagnostic yield is sensitive to TB
prevalence among presumptive cases and, to a lesser
extent, to test sensitivity and previous history of TB.
The proportion of HIV-positive cases among pre-
sumptive cases had more of an effect on the Xpert-
based algorithm, with a decrease in yield as the
proportion of HIV-positive cases increased.

Table A.4 Input parameters used in base-case (Scenario A)
comparing the smear/culture and Xpert-based algorithms (%)*

History of previous anti-tuberculosis treatment 25

HIV status
New presumptive cases

HIV-positive 36
HIV-negative 64

Previously treated presumptive cases
HIV-positive 53
HIV-negative 47

Proportion who know their HIV status 50
Estimated TB prevalence among presumptive cases

New presumptive cases
HIV-positive 17.8
HIV-negative 17

Previously treated presumptive cases
HIV-positive 20.8
HIV-negative 19.5

Adherence to smear/culture-based algorithm
New presumptive cases with two smears 85
Previously treated presumptive cases with culture 85

Adherence to Xpert-based algorithm
All presumptive cases with Xpert test done 85

Proportion smear or Xpert-negative with culture testing
Smear/culture-based algorithm

New presumptive cases
HIV-positive 85
HIV-negative 0

Previously treated presumptive cases
HIV-positive 85
HIV-negative 0

Xpert-based algorithm
New presumptive cases

HIV-positive 85
HIV-negative 0

Previously treated presumptive cases
HIV-positive 85
HIV-negative 0

* Input parameters used in all scenarios except where specific parameters are
changed for a scenario (Table A.6).
HIV¼ human immunodeficiency virus; TB¼ tuberculosis.

Table A.5 Input parameters used in other simulated scenarios comparing the smear/culture and Xpert-based algorithms (%)

Smear/culture-based algorithm Xpert-based algorithm

Scenario B: increase estimated TB prevalence among presumptive cases by 10%
Scenario A Scenario B Scenario A Scenario B

New presumptive cases
HIV-negative 17 27 17 27
HIV-positive 17.8 27.8 17.8 27.8

Previously treated presumptive cases
HIV-negative 19.5 29.5 19.5 29.5
HIV-positive 20.8 30.8 20.8 30.8

Scenario C: increase additional culture testing for smear or Xpert-negative presumptive cases
Scenario A Scenario C Scenario A Scenario C

New presumptive cases
HIV-negative 0 30 0 5
HIV-positive 85 92 85 92

Previously treated presumptive cases
HIV-negative 0 10 0 10
HIV-positive 85 95 85 95

Scenario D: increased proportion of presumptive cases know their HIV status
Scenario A Scenario D Scenario A Scenario D

Proportion of presumptive cases 50% 85% 50% 85%

Scenario E: adherence to algorithms
Scenario A (85%) Scenario E (100%) Scenario A (85%) Scenario E (100%)

New presumptive cases
HIV-negative 2 smear 2 smear Xpert test Xpert test
HIV-positive 2 smear 2 smear Xpert test Xpert test
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Table A.5 (continued)

Smear/culture-based algorithm Xpert-based algorithm

Previously treated presumptive cases
HIV-negative Culture test Culture test Xpert test Xpert test
HIV-positive Culture test Culture test Xpert test Xpert test

As part of follow-up testing if smear or Xpert is negative
New presumptive cases

HIV-negative 0 0 0 0
HIV-positive 85 100 85 100

Previously treated presumptive cases
HIV-negative 0 0 0 0
HIV-positive 85 100 85 100

Scenario F: increased proportion of presumptive cases know their HIV status (100%) and adherence to algorithm (100%)
Scenario A Scenario F Scenario A Scenario F

Proportion of presumptive cases 50% 100% 50% 100%
Scenario A (85%) Scenario F (100%) Scenario A (85%) Scenario F (100%)

New presumptive cases
HIV-negative 2 smear 2 smear Xpert test Xpert test
HIV-positive 2 smear 2 smear Xpert test Xpert test

Previously treated presumptive cases
HIV-negative Culture test Culture test Xpert test Xpert test
HIV-positive Culture test Culture test Xpert test Xpert test

As part of follow-up testing if smear or Xpert is negative
New presumptive cases

HIV-negative 0 0 0 0
HIV-positive 85 100 85 100

Previously treated presumptive cases
HIV-negative 0 0 0 0
HIV-positive 85 100 85 100

Scenario G: remove culture test as part of the sequence of tests required in each diagnostic algorithm
Scenario A Scenario G Scenario A Scenario G

New presumptive cases
HIV-negative 0 0 0 0
HIV-positive 0 0 0 0

Previously treated presumptive cases
HIV-negative 85 0 0 0
HIV-positive 85 0 0 0

As part of follow-up testing if smear or Xpert test is negative
New presumptive cases

HIV-negative 0 0 0 0
HIV-positive 85 0 85 0

Previously treated presumptive cases
HIV-negative 0 0 0 0
HIV-positive 85 0 85 0

Scenario H: lower test sensitivity of smear microscopy by 10%
Scenario A Scenario H

HIV-negative 75 65
HIV-positive 65 55

TB¼ tuberculosis; HIV¼ human immunodeficiency virus.
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Table A.6 Scenario A: comparison of smear/culture and Xpert-based algorithm model outputs (with 85% adherence to algorithms)*

Smear/culture-based algorithm Xpert-based algorithm
Change in yield between algorithms

% difference P value

HIV� HIVþ Overall HIV� HIVþ Overall HIV� HIVþ Overall

All presumptive cases
Yield† 14.8 17.3 15.8 17.1 19.2 17.9 2.3 (P , 0.001) 1.9 (P , 0.001) 2.1 (P , 0.001)
FP† 0.9 1.0 0.9 1.9 2.2 2.0 1 1.2 1.1
FN† 20.7 14.4 18.0 12.6 9.5 11.3 8.1 4.9 6.7

New presumptive cases
Yield† 13.6 15.2 14.2 16.5 17.9 17.0 2.9 (P , 0.001) 2.7 (P , 0.001) 2.8 (P , 0.001)
FP† 0.9 0.9 0.9 2.0 2.1 2.0 1.1 1.2 1.1
FN† 25.3 21.3 23.8 13.4 11.5 12.7 11.9 9.8 11.1

Previously treated presumptive cases
Yield† 19.5 21.5 20.6 19.1 21.7 20.5 0.4 (P ¼ 0.476) 0.2 (P ¼ 0.644) 0.0 (P ¼ 0.894)
FP† 0.9 1.0 0.9 1.8 2.3 2.1 0.9 1.3 1.2
FN† 3.9 2.2 3.0 9.5 6.1 7.6 5.6 3.9 4.6

* In Scenario A, 85% of cases in each algorithm received the initial tests as required and 85% of smear- or Xpert-negative cases who were HIV-infected underwent
culture; 50% of presumptive cases knew their HIV status. The same values for TB prevalence, proportions of HIV�, HIVþ (status known and undiagnosed), and new
and previously treated cases were used in each algorithm.
† TB diagnostic yield (yield)¼ (TPþ FP)/presumptive cases; TP¼ correctly diagnosed with TB/culture-positive TB cases; FP¼ incorrectly diagnosed with TB/culture-
negative TB cases; FN¼ incorrectly NOT diagnosed with TB (missed)/culture-positive TB cases.
HIV¼ human immunodeficiency virus;�¼ negative;þ¼ positive; FP¼ false-positive; FN¼ false-negative; TB¼ tuberculosis; TP¼ true-positive.

Table A.7 Scenario B: increase in estimated TB prevalence among presumptive cases by 10%*

Smear/culture-based algorithm
% (95%CI)

Xpert-based algorithm
% (95%CI)

Change in yield between algorithms
% difference P value

HIV� HIVþ Overall HIV� HIVþ Overall HIV� HIVþ Overall

All presumptive cases
Yield† 22.7 26.0 24.0 25.7 28.1 26.7 3.0 (P , 0.001) 2.1(P , 0.001) 2.7 (P , 0.001)
FP† 1.0 1.0 1.0 1.9 2.2 2.0 0.9 1.2 1
FN† 20.5 13.9 17.8 12.1 9.6 11.0 8.4 4.3 6.8

New presumptive cases
Yield† 21.1 23.4 21.9 25.1 26.6 25.6 4.0 (P , 0.001) 3.2 (P , 0.001) 3.7 (P , 0.001)
FP† 1.0 1.1 1.0 2.0 2.2 2.0 1 1.1 1
FN† 25.0 20.3 23.3 12.9 11.7 12.5 12.1 8.6 10.8

Previously treated presumptive cases
Yield† 29.2 31.4 30.4 28.3 31.2 29.9 0.9 (P ¼ 0.125) 0.2 (P ¼ 0.771) 0.1 (P ¼ 0.212)
FP† 0.9 0.9 0.9 1.8 2.2 2.0 0.9 1.3 1.1
FN† 3.6 2.4 3.0 8.8 5.8 7.1 5.2 3.4 4.1

* In Scenario B, the estimated TB prevalence among presumptive case was increased by 10; 50% of presumptive cases knew their HIV status. The same values for
proportions of HIV�, HIVþ (status known and undiagnosed), and new and previously treated cases were used in each algorithm.
† TB diagnostic yield (yield)¼ (TPþ FP)/presumptive cases; TP¼ correctly diagnosed with TB/culture-positive TB cases; FP¼ incorrectly diagnosed with TB/culture-
negative TB cases; FN¼ incorrectly NOT diagnosed with TB (missed)/culture-positive TB cases.
TB¼ tuberculosis; CI¼confidence interval; HIV¼human immunodeficiency virus;�¼negative;þ¼positive; FP¼ false-positive; FN¼ false-negative; TP¼ true-positive.

Table A.8 Scenario C: increased proportion of smear- or Xpert-negative presumptive cases with additional culture*

Smear/culture-based algorithm
% (95%CI)

Xpert-based algorithm
% (95%CI)

Change in yield between algorithms
% difference P value

HIV� HIVþ Overall HIV� HIVþ Overall HIV� HIVþ Overall

All presumptive cases
Yield† 15.9 18.2 16.8 17.2 19.3 18.1 1.3 (P , 0.001) 1.2 (P , 0.001) 1.3 (P , 0.001)
FP† 0.9 1.0 0.9 2.0 2.2 2.1 1.1 1.2 1.2
FN† 14.5 9.8 12.5 11.9 8.8 10.6 2.6 1 1.9

New presumptive cases
Yield† 15.0 16.4 15.5 16.7 18.1 17.2 1.7 (P , 0.001) 1.6 (P , 0.001) 1.7 (P , 0.001)
FP† 0.9 0.9 0.9 2.0 2.1 2.0 1.1 1.2 1.1
FN† 17.5 14.5 16.4 12.7 10.8 12.0 4.8 3.7 4.4

Previously treated presumptive cases
Yield† 19.6 21.6 20.7 19.4 21.9 20.7 0.2 (P ¼ 0.632) 0.3 (P ¼ 0.543) 0.0 (P ¼ 0.895)
FP† 0.9 1.0 0.9 1.9 2.4 2.1 1 1.4 1.2
FN† 3.5 1.6 2.4 8.7 5.2 6.8 5.2 3.6 4.4

* In Scenario C, 85% of cases in each algorithm underwent the initial tests as required; 50% of presumptive cases knew their HIV status. Additional culture was
based on values found in routine practice for each patient category (smear/culture algorithm by 14.3%, Xpert algorithm by 8%). The same values for TB
prevalence, proportions of HIV–, HIVþ (status known and undiagnosed), and new and previously treated cases were used in each algorithm.
†TB diagnostic yield (yield)¼ (TPþ FP)/presumptive cases; TP¼ correctly diagnosed with TB/culture-positive TB cases; FP¼ incorrectly diagnosed with TB/culture-
negative TB cases; FN¼ incorrectly NOT diagnosed with TB (missed)/culture-positive TB cases.
CI¼confidence interval; HIV¼human immunodeficiency virus;�¼negative;þ¼positive; FP¼ false-positive; FN¼ false-negative; TB¼ tuberculosis; TP¼ true-positive.
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Table A.9 Scenario D: increased proportion (85%) of presumptive cases who know their HIV status*

Smear/culture-based algorithm Xpert-based algorithm
Change in yield between algorithms

% difference P value

HIV� HIVþ Overall HIV� HIVþ Overall HIV� HIVþ Overall

All presumptive cases
Yield† 14.8 18.7 16.4 17.1 20.5 18.4 2.3 (P , 0.001) 1.8 (P , 0.001) 2.1 (P , 0.001)
FP† 0.9 0.9 0.9 1.9 2.4 2.1 1 1.5 1.2
FN† 20.7 5.9 14.4 12.6 2.7 8.4 8.1 3.2 6

New presumptive cases
Yield† 13.6 17.1 14.9 16.5 19.2 17.5 2.9 (P , 0.001) 2.2 (P , 0.001) 2.6 (P , 0.001)
FP† 0.9 0.9 0.9 2.0 2.4 2.1 1.1 1.5 1.2
FN† 25.3 8.9 19.3 13.4 3.4 9.7 11.9 5.5 9.6

Previously treated presumptive cases
Yield† 19.5 22.0 20.8 19.1 23.0 21.2 0.4 (P ¼ 0.476) 1.0 (P ¼ 0.043) 0.0 (P ¼ 0.297)
FP† 0.9 0.9 0.9 1.8 2.4 2.1 0.9 1.5 1.2
FN† 3.9 0.7 2.1 9.5 1.5 5.1 5.6 0.8 3

*Scenario D, 85% of cases in each algorithm underwent the initial tests as required and 85% of smear- or Xpert-negative cases that were HIV-infected underwent
culture; 85% of presumptive cases knew their HIV status. The same values for TB prevalence, proportions of HIV–, HIVþ (status known and undiagnosed), and new
and previously treated cases were used in each algorithm.
†TB diagnostic yield (yield)¼ (TPþ FP)/presumptive cases; TP¼ correctly diagnosed with TB/culture-positive TB cases; FP¼ incorrectly diagnosed with TB/culture-
negative TB cases; FN¼ incorrectly NOT diagnosed with TB (missed)/culture-positive TB cases.
HIV¼ human immunodeficiency virus;�¼ negative;þ¼ positive; FP¼ false-positive; FN¼ false-negative; TB¼ tuberculosis; TP¼ true-positive.

Table A.10 Scenario E: increased adherence to smear/culture and Xpert algorithm to 100%*

Smear/culture-based algorithm
% (95%CI)

Xpert-based algorithm
% (95%CI)

Change in yield between algorithms
% difference P value

HIV� HIVþ Overall HIV� HIVþ Overall HIV� HIVþ Overall

All presumptive cases
Yield† 14.9 17.7 16.1 17.5 19.5 18.3 2.5 (P , 0.001) 1.8 (P , 0.001) 2.2 (P , 0.001)
FP† 0.9 1.0 0.9 2.1 2.4 2.2 1.2 1.4 1.3
FN† 19.8 12.1 16.5 10.9 9.0 10.1 8.9 3.1 6.4

New presumptive cases
Yield† 13.6 15.6 14.4 17.1 18.4 17.6 3.5 (P , 0.001) 2.7 (P , 0.001) 3.2 (P , 0.001)
FP† 0.9 0.9 0.9 2.1 2.4 2.2 1.2 1.5 1.3
FN† 25.3 19.0 22.9 11.0 10.5 10.8 14.3 8.5 12.1

Previously treated presumptive cases
Yield† 20.3 21.9 21.2 19.0 21.8 20.5 1.3 (P ¼ 0.013) 0.2 (P ¼ 0.744) 0.7 (P ¼ 0.057)
FP† 0.9 1.0 0.9 1.9 2.5 2.2 1 1.5 1.3
FN† 0.0 0.0 0.0 10.6 6.2 8.2 10.6 6.2 8.2

*In Scenario E, adherence to the full range of tests required in each algorithm was set at 100% from 85%; 50% of presumptive cases knew their HIV status. The
same values for TB prevalence, proportions of HIV–, HIVþ (status known and undiagnosed), and new and previously treated cases were used in each algorithm.
†TB diagnostic yield (yield)¼ (TPþ FP)/presumptive cases; TP¼ correctly diagnosed with TB/culture-positive TB cases; FP¼ incorrectly diagnosed with TB/culture-
negative TB cases; FN¼ incorrectly NOT diagnosed with TB (missed)/culture-positive TB cases.
CI¼confidence interval; HIV¼human immunodeficiency virus;�¼negative;þ¼positive; FP¼ false-positive; FN¼ false-negative; TB¼ tuberculosis; TP¼ true-positive.

Table A.11 Scenario F: increased proportion of presumptive cases who know their HIV status to 100% and adherence to algorithms
to 100%*

Smear/culture-based algorithm
% (95%CI)

Xpert-based algorithm
% (95%CI)

Change in yield between algorithms
% difference P value

HIV� HIVþ Overall HIV� HIVþ Overall HIV� HIVþ Overall

All presumptive cases
Yield† 14.9 19.7 16.8 17.5 21.2 19.0 2.5 (P , 0.001) 1.5 (P , 0.001) 2.1 (P , 0.001)
FP† 0.9 0.8 0.9 2.1 2.7 2.3 1.2 1.9 1.4
FN† 19.8 0.0 11.5 10.9 0.0 6.3 8.9 0 5.2

New presumptive cases
Yield† 13.6 18.5 15.4 17.1 20.1 18.2 3.5 (P , 0.001) 1.5 (P , 0.001) 2.8 (P , 0.001)
FP† 0.9 0.9 0.9 2.1 2.8 2.3 1.2 1.9 1.4
FN† 25.3 0.0 16.0 11.0 0.0 7.0 14.3 0 9

Previously treated presumptive cases
Yield† 20.3 22.0 21.2 19.0 23.5 21.4 1.3 (P ¼ 0.013) 1.5 (P ¼ 0.004) 0.2 (P ¼ 0.623)
FP† 0.9 0.8 0.8 1.9 2.6 2.3 1 1.8 1.5
FN† 0.0 0.0 0.0 10.6 0.0 4.7 10.6 0 4.7

*In Scenario F, increase in the percentage of presumptive cases who knew their HIV status from 50% to 100% and adherence to the full range of tests required in
each algorithm to 100% from 85%. The same values for TB prevalence, proportions of HIV�, HIVþ (status known and undiagnosed), and new and previously
treated cases were used in each algorithm.
†TB diagnostic yield (yield)¼ (TPþ FP)/presumptive cases; TP¼ correctly diagnosed with TB/culture-positive TB cases; FP¼ incorrectly diagnosed with TB/culture-
negative TB cases; FN¼ incorrectly NOT diagnosed with TB (missed)/culture-positive TB cases.
CI¼confidence interval; HIV¼human immunodeficiency virus;�¼negative;þ¼positive; FP¼ false-positive; FN¼ false-negative; TB¼ tuberculosis; TP¼ true-positive.
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Table A.12 Scenario G: remove culture test as part of the sequence of tests required in smear/culture and Xpert algorithms*

Smear/culture-based algorithm
% (95%CI)

Xpert-based algorithm
% (95%CI)

Change in yield between algorithms
% difference P value

HIV� HIVþ Overall HIV� HIVþ Overall HIV� HIVþ Overall

All presumptive cases
Yield† 14.0 13.3 13.7 17.5 19.5 18.3 3.5 (P , 0.001) 6.2 (P , 0.001) 4.6 (P , 0.001)
FP† 0.9 1.0 0.9 2.1 2.4 2.2 1.2 1.4 1.3
FN† 25.3 35.2 29.4 10.9 9.0 10.1 14.4 26.2 19.3

New presumptive cases
Yield† 13.6 12.5 13.2 17.1 18.4 17.5 3.5 (P , 0.001) 5.9 (P , 0.001) 4.3 (P , 0.001)
FP† 0.9 0.9 0.9 2.1 2.4 2.2 1.2 1.5 1.3
FN† 25.3 36.1 29.3 11.0 20.3 10.5 14.3 15.8 18.8

Previously treated presumptive cases
Yield† 15.4 14.8 15.1 19.0 21.8 20.5 3.6 (P , 0.001) 6.9 (P , 0.001) 5.4 (P , 0.001)
FP† 0.9 1.0 0.9 1.9 2.5 2.2 1 1.5 1.3
FN† 25.2 33.6 29.9 10.6 6.2 8.2 14.6 27.4 21.7

*In Scenario G, culture testing was removed as part of the sequence of tests required in each algorithm; 50% of presumptive cases knew their HIV status. The same
values for TB prevalence, proportions of HIV�, HIVþ (status known and undiagnosed), and new and previously treated cases were used in each algorithm.
†TB diagnostic yield (yield)¼ (TPþ FP)/presumptive cases; TP¼ correctly diagnosed with TB/culture-positive TB cases; FP¼ incorrectly diagnosed with TB/culture-
negative TB cases; FN¼ incorrectly NOT diagnosed with TB (missed)/culture-positive TB cases.
CI¼ confidence interval; HIV¼ human immunodeficiency virus;�¼ negative;þ¼ positive; FP¼ false-positive; FN¼ false-negative; TB¼ tuberculosis; TP¼ true-
positive.

Table A.13 Scenario H: lower test sensitivity of smear microscopy by 10% in smear/culture algorithm*

Smear/culture-based algorithm
% (95%CI)

Xpert-based algorithm
% (95%CI)

Change in yield between algorithms
% difference P value

HIV� HIVþ Overall HIV� HIVþ Overall HIV� HIVþ Overall

All presumptive cases
Yield† 13.4 16.6 14.7 17.1 19.1 17.9 3.6 (P , 0.001) 2.6 (P , 0.001) 3.2 (P , 0.001)
FP† 1.0 1.0 1.0 1.9 2.2 2.0 0.9 1.2 1
FN† 28.6 18.0 24.1 12.6 9.5 11.3 16 8.5 12.8

New presumptive cases
Yield† 12.0 14.2 12.8 16.5 17.9 17.0 4.6 (P , 0.001) 3.7 (P , 0.001) 4.2 (P , 0.001)
FP† 1.0 1.1 1.0 2.0 2.1 2.0 1 1 1
FN† 35.1 26.8 32.0 13.4 11.5 12.7 21.7 15.3 19.3

Previously treated presumptive cases
Yield† 19.2 21.4 20.4 19.1 21.7 20.5 0.1 (P ¼ 0.881) 0.3 (P ¼ 0.493) 0.1 (P ¼ 0.681)
FP† 0.9 0.9 0.9 1.8 2.3 2.1 0.9 1.4 1.2
FN† 5.4 2.7 3.9 9.5 6.1 7.6 4.1 3.4 3.7

* In Scenario H, the test sensitivity of smear microscopy was reduced by 10%. The Xpert algorithm is set as per Scenario A; 50% of presumptive cases knew their
HIV status. The same values for TB prevalence, proportions of HIV�, HIVþ (status known and undiagnosed), and new and previously treated cases were used in each
algorithm.
† TB diagnostic yield (yield)¼ (TPþ FP)/presumptive cases; TP¼ correctly diagnosed with TB/culture-positive TB cases; FP¼ incorrectly diagnosed with TB/culture-
negative TB cases; FN¼ incorrectly NOT diagnosed with TB (missed)/culture-positive TB cases.
CI¼ confidence interval; HIV¼ human immunodeficiency virus;�¼ negative;þ¼ positive; FP¼ false-positive; FN¼ false-negative; TB¼ tuberculosis; TP¼ true-
positive.

Table A.14 Summary of input and output parameters for model sensitivity analysis*

Base value High value Low value

Estimated TB prevalence among presumptive cases
Input 18.9 28.9 8.9
Output

Smear/culture-based algorithm
Yield 15.8 24.0 7.6
FP 0.9 1.0 1.0
FN 17.6 17.4 16.9

Xpert-based algorithm
Yield 17.5 26.1 8.7
FP 1.9 1.9 1.9
FN 12.5 12.5 12.4

Proportion of presumptive cases with previous anti-tuberculosis treatment
Input 25 50 15
Output

Smear/culture-based algorithm
Yield 15.8 17.3 15.2
FP 0.9 1.0 1.0
FN 17.6 11.7 19.3
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Table A.14 (continued)

Base value High value Low value

Xpert-based algorithm
Yield 17.5 18.2 17.0
FP 1.9 2.0 1.9
FN 12.5 11.1 13.1

Test sensitivity of smear microscopy and Xpert
Input

Smear microscopy (two samples)
HIV-negative 75 85 65
HIV-positive 65 75 55

Xpert
HIV-negative 89 94 81
HIV-positive 80 88 67

Output
Smear/culture-based algorithm

Yield 15.8 17.0 14.7
FP 0.9 1.0 1.0
FN 17.6 11.4 23.6

Xpert-based algorithm
Yield 17.5 18.1 16.5
FP 1.9 1.9 1.9
FN 12.5 9.3 17.9

* TB diagnostic yield (yield)¼ (TPþFP)/presumptive cases; TP¼correctly diagnosed with TB/culture-positive TB cases; FP
¼ incorrectly diagnosed with TB/culture-negative TB cases; FN¼ incorrectly NOT diagnosed with TB (missed)/culture-
positive TB cases.
TB¼ tuberculosis; FP¼ false-positive; FN¼ false-negative; HIV¼ human immunodeficiency virus; TP¼ true-positive.
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Table A.15 Proportion of culture as part of the sequence of tests required in each diagnostic algorithm and 100% adherence to
algorithms*

Smear/culture-based algorithm Xpert-based algorithm

Base 0% culture Base 0% culture

Use of culture
Input

As part of the initial sequence of tests
New presumptive cases

HIV-negative 0 0 0 0
HIV-positive 0 0 0 0

Previously treated presumptive cases
HIV-negative 85 0 0 0
HIV-positive 85 0 0 0

As part of follow-up testing if smear or Xpert test is negative
New presumptive cases

HIV-negative 0 0 0 0
HIV-positive 85 0 85 0

Previously treated presumptive cases
HIV-negative 0 0 0 0
HIV-positive 85 0 85 0

Output
Yield 15.8 13.7 17.5 17.2
FP 0.9 0.9 1.9 2.0
FN 17.6 29.4 12.5 14.7

Adherence to algorithms
Input

As part of the initial sequence of tests
85% adherence 100% adherence 85% adherence 100% adherence

New presumptive cases
HIV-negative 2 smears 2 smears Xpert test Xpert test
HIV-positive 2 smears 2 smears Xpert test Xpert test

Previously treated presumptive cases
HIV-negative Culture test Culture test Xpert test Xpert test
HIV-positive Culture test Culture test Xpert test Xpert test

As part of followup testing if smear or Xpert test is negative
Base 0% culture Base 0% culture

New presumptive cases
HIV-negative 0 0 0 0
HIV-positive 85 100 85 100

Previously treated presumptive cases
HIV-negative 0 0 0 0
HIV-positive 85 100 85 100

Output
85% adherence 100% adherence 85% adherence 100% adherence

Yield 15.8 16.1 17.5 18.3
FP 0.9 0.9 1.9 2.2
FN 17.6 16.5 12.5 10.1

* TB diagnostic yield (yield)¼ (TPþ FP)/presumptive cases; TP¼ correctly diagnosed with TB/culture-positive TB cases; FP¼ incorrectly diagnosed with TB/culture-
negative TB cases; FN¼ incorrectly NOT diagnosed with TB (missed)/culture-positive TB cases.
HIV¼ human immunodeficiency virus; FP¼ false-positive; FN¼ false-negative; TB¼ tuberculosis; TP¼ true-positive.
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Figure A.3 Oneway sensitivity analysis with results on the effect of change in input parameters on TB diagnostic yield for the smear/
culturebased algorithm. HIV¼ human immunodeficiency virus; TB¼ tuberculosis.

Figure A.4 One-way sensitivity analysis with results on the effect of change in input parameters on TB diagnostic yield for the Xpert-
based algorithm. HIV¼ human immunodeficiency virus; TB¼ tuberculosis.

Modelling TB diagnostic algorithms xiii



R E S U M E

C O N T E X T E : Le Cap, Afrique du Sud.

O B J E C T I F : Comparer le rendement diagnostique des

algorithmes de frottis/culture et d’Xpertw MTB/RIF et

étudier les mécanismes influençant le rendement de la

tuberculose (TB).

M É T H O D E : Nous avons élaboré et validé un modèle

opérationnel du processus de diagnostic de la TB,

d’abord avec l’algorithme de frottis/culture et ensuite

avec l’algorithme de l’Xpert. Nous avons modélisé les

scénarios en variant la prévalence de la TB, l’adhésion

aux algorithmes de diagnostic et le statut du virus de

l’immunodéficience humaine. Ceci a permis de faire des

comparaisons directes du rendement diagnostique dans

les deux algorithmes.

R É S U LTAT S : Les données de routine ont montré que le

rendement diagnostique avait diminué pendant la

période de lancement de l’algorithme Xpert par

rapport à la période où l’algorithme frottis/culture

était en place. Cependant, le rendement de la

modélisation dans des conditions identiques a mis en

évidence une augmentation de 13,3% du rendement

diagnostique de l’algorithme Xpert comparé au frottis/

culture. Le modèle a démontré que l’utilisation extensive

de la culture dans l’algorithme frottis/culture et le déclin

de la prévalence de la TB étaient les principaux facteurs

contribuant à ne pas trouver d’augmentation du

rendement diagnostique dans les données de routine.

C O N C L U S I O N : Nous avons démontré les bénéfices

d’un modèle opérationnel afin de déterminer l’effet de

l’expansion d’un nouvel algorithme de diagnostic et de

recommander que les décideurs politiques utilisent la

modélisation opérationnelle pour prendre des décisions

appropriées avant que de nouveaux algorithmes de

diagnostic ne soient étendus.

R E S U M E N

M A R C O D E R E F E R E N C I A: La Ciudad del Cabo en

Suráfrica.

O B J E T I V O: Comparar el desempeño de un algoritmo

diagnóstico basado en la baciloscopia y el cultivo y un

algoritmo con la prueba Xpertw MTB/RIF e investigar

los mecanismos que influyen en su eficacia.

M É T O D O S: Se creó un modelo operativo del proceso

diagnóstico de la tuberculosis (TB) y se evaluó

inicialmente con el algoritmo de la baciloscopia y el

cultivo y luego con el algoritmo que incluı́a la prueba

Xpert. Se simularon modelos con diferentes hipótesis de

prevalencia de TB, adhesión a los algoritmos y situación

frente a la infección por el virus de la inmunodeficiencia

humana. Estos modelos permitieron una comparación

directa del rendimiento diagnóstico de ambos

algoritmos.

R E S U LT A D O S: Los datos de la práctica corriente

pusieron de manifiesto que el rendimiento diagnóstico

disminuyó durante el perı́odo de despliegue del

algoritmo con la prueba Xpert en comparación con el

rendimiento que se lograba cuando se aplicaba el

algoritmo de la baciloscopia y el cultivo. Sin embargo,

al utilizar la modelización en idénticas condiciones, se

obtuvo un aumento de 13,3% del rendimiento

diagnóstico del algoritmo con la prueba Xpert en

comparación con el algoritmo de la baciloscopia y el

cultivo. La modelización reveló que un uso extenso del

cultivo en el algoritmo de la baciloscopia y el cultivo y la

disminución de la prevalencia de TB fueron los

principales factores que explicaban el hecho de no

haber logrado un mejor rendimiento diagnóstico en los

datos de la práctica corriente con la prueba Xpert.

C O N C L U S I Ó N: En el presente estudio se demuestra la

utilidad de un modelo operativo diseñado con el

propósito de determinar el efecto de la ampliación de

escala de un nuevo algoritmo diagnóstico y se

recomienda que las instancias normativas apliquen la

modelización operativa a fin de adoptar las decisiones

apropiadas, antes de ampliar la escala de nuevos

algoritmos diagnósticos.
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