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Cerebral malaria (CM) is a serious neurological complication caused
by Plasmodium falciparum infection. Currently the only treatment
for CM is the provision of anti-malarial drugs; however, such
treatment by itself often fails to prevent death or development of
neurological sequelae. To identify potential improved treatments
for CM, we performed a non-biased whole brain transcriptomic
time-course analysis of anti-malarial drug chemotherapy of murine
experimental CM (ECM). Bioinformatics analyses revealed IL33 as
a critical regulator of neuro-inflammation and cerebral pathology
that was down regulated in the brain during fatal ECM and in the
acute period following treatment of ECM. Consistent with this,
administration of IL33 alongside anti-malarial drugs significantly
improved the treatment success of established ECM. Mechanisti-
cally, IL33 treatment reduced inflammasome activation and IL1β
production in microglia and intracerebral monocytes in the acute
recovery period following treatment of ECM. Moreover, treatment
with the NLRP3-inflammasome inhibitor MCC950 alongside anti-
malarial drugs phenocopied the protective effect of IL33 therapy in
improving the recovery from established ECM. We further showed
that IL1β release from macrophages was stimulated by haemozoin
and anti-malarial drugs and that this was inhibited by MCC950. Our
results therefore demonstrate that manipulation of the IL33-NLRP3
axis may be an effective therapy to suppress neuroinflammation
and improve the efficacy of anti-malarial drug treatment of CM.
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Introduction

Cerebral malaria (CM) is a severe manifestation of Plasmodium
falciparum infection, which affects 2-3 million people each year,
mainly young children in Africa (1). The only treatment for CM is
anti-malarial drugs, typically in the form of parenteral artesunate
or quinine compounds. Such treatment fails to prevent mortality
in a quarter of CM patients, leading to the death of approxi-
mately 300,000 people each year (1-3). Moreover, up to 26%
of individuals develop residual neurological deficits following
anti-malarial drug treatment and recovery from CM (4-5). Thus,
CM remains a leading cause of mortality and neuro-disability in
tropical regions (1-5). Consequently, there is a critical clinical
need for development of more effective therapies for CM that
will enhance the protective effects of anti-malarial drugs.

The cerebral processes contributing to the pathophysiology
of CM and those that undermine recovery from the syndrome
after anti-malarial drug treatment are poorly understood (1, 6-
8). However, there is a growing consensus that targeting the
host pro-inflammatory immune response to infection may be
an effective strategy to enhance anti-malarial drug treatment
success of CM (7, 8). Indeed, serological and/or cerebral spinal
fluid (CSF) concentrations of pro-inflammatory cytokines and
chemokines, including TNFα, IL6, IL1β, IFN-γ and CXCL10,
frequently correlate with the development of CM and, in some
cases, severity of CM (7, 8). Pro-inflammatory processes may
disrupt CM recovery by activating the brain endothelium, causing
permeability of the blood brain barrier, activation of astrocytes

and microglia, disruption of neuronal signalling, and recruitment
of circulating leukocytes (1, 7-9). All of these events have been
observed in brains of individuals with fatal CM (1, 6-9). In par-
ticular, it is believed that cerebrovascular dysfunction is a critical
pathological process in CM development and fatal outcome (1,
7, 9). Therefore, intracerebral inflammatory responses at time
of treatment may prevent re-establishment of brain homeostasis,
leading to the failure of anti-malarial drug treatment.

In this study, to identify novel immune candidates for therapy
of CM, we optimised a pre-clinical model of P. berghei (Pb)
ANKA-induced murine experimental cerebral malaria (ECM)
(10) where anti-malarial drug treatment of established ECM
leads to sub-optimal recovery, associated with significant mor-
tality and development of severe cerebral pathology. Using this
infection-drug cure model of ECM, we have performed non-
biased whole brain RNA-seq time-course analysis during anti-
malarial drug chemotherapy. We subsequently identified IL33 as
a key regulator of cerebral inflammatory pathways during fatal
ECM, and in the acute period post-anti-malarial drug treatment.
Injection of IL33 alongside anti-malarial drugs significantly im-
proved the recovery of mice with established ECM, potentially
through reduction of NLRP3-dependent inflammasome activa-
tion. Consistent with this, direct inhibition of the NLRP3 inflam-
masome using the specific inhibitor MCC950 phenocopied the
protective capacity of IL33 in improving recovery from ECM.
Overall, these data indicate that pharmacological strategies tar-
geting the IL33-NLRP3 axis could potentially be beneficial for
the treatment of CM.

Significance

Cerebral Malaria (CM) is a neurological complication of malaria
infection that, despite anti-malarial drug treatment, results
in fatality or neuro-disability in approximately 25% of cases.
Thus, there is an urgent clinical need to develop therapies
that can improve the efficacy of anti-malarial drugs to prevent
or reverse cerebral pathology. Here, we show in an exper-
imental mouse model of CM (ECM) that IL33 administration
can improve survival and reduce pathology in the brain over
anti-malarial drugs alone. Mechanistically, we demonstrate
that IL33 enhances recovery from ECM by inhibiting NLRP3
inflammasome-induced inflammatory responses within the
brain. These results suggest that IL33 and NLRP3 inflamma-
some inhibitors may be effective adjunctive therapies for CM.
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Fig. 1. . Anti-malarial drug treatment promotes sub-optimal recovery from
ECM. Mice were infected with Pb ANKA GFP and treated with artesunate
and chloroquine (AC) or vehicle (Veh) at the onset of ECM. (A) Peripheral
parasitemia, (B) survival curves, and (C) RMCBS scores of mice after infection
(d0) and drug treatment (grey box). (D-I) Brains were examined 16-24 h after
treatment (d7) for: (D) GFP+ parasites (green), co-stained with lectin (red)
and DAPI (blue); (E) erythrocyte-congested vessels indicative of haemostasis
(H&E); (F) extravascular IgG indicative of vasogenic odema (DAB counter-
stained with haematoxylin); (G) haemorrhage (H&E); (H) β-APP accumulation
(green) indicative of axonal injury, co-stained with erythrocytes (red) and
DAPI (blue); (I) myelin damage (H&E). Data is presented as means ±SEM.
(A-C) n=12-97 from 2-10 infections, (D-I) n=6 from 2 infections. Scale bar:
25μm. #p<0.05 d0 versus d7 in AC treated. (A, C) Specified comparisons for
parasitemia and RMCBS were made by Mann-Whitney tests. (B) Comparison
made by log rank test (D-I) Comparisons made by Mann-Whitney or t-tests
as detailed in methods. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 (all
versus Veh), # *p<0.05 AC group day 7 versus day 0.

Results
Anti-malarial drugs promote sub-optimal recovery from estab-
lished ECM

In order to study the recovery from established malaria-
induced cerebral pathology, we adapted the conventional Pb
ANKA ECM model (10) to recapitulate the clinical settings
associated with the treatment of CM. C57BL/6 mice infected
with Pb ANKA were treated daily with the anti-malarial drugs
artesunate (the front line drug for treatment of severe malaria
[2]) and chloroquine (as a representative quinine compound),
both at 30 mg/kg, or vehicle alone. Treatment began at the onset
of neurological dysfunction, as defined by a rapid murine coma
and behaviour scale (RMCBS) score of ≤15 (11), on day 6 post
infection (d6) (Fig. S1).

Peripheral parasitemia developed exponentially before
rapidly reducing upon anti-malarial drug treatment (Fig. 1A).
Despite their potent parasiticidal activity, administration of anti-
malarial drugs (AC) failed to prevent mortality in approximately
25% of mice (Fig. 1B). Interestingly, in these cases where
anti-malarial drug treatment was unsuccessful, drug treated mice
succumbed more rapidly to ECM than vehicle treated controls
(80% compared with 20% of deaths on day 6, respectively)
(Fig. 1B). Anti-malarial drug treatment also failed to prevent
significant deterioration in neurological function in the critical
6-12 h period post-treatment (d6.5), with drug-treated mice
exhibiting comparable levels of neurological dysfunction as
vehicle treated mice (Fig. 1C). Drug-treated mice still exhibited
substantial neurological impairment at 24 h post-administration
(d7), although this was ameliorated compared with the level of
neurological dysfunction observed in untreated mice with fatal

ECM (Fig. 1C). We then compared the neuropathology between
mice that survived following treatment with anti-malarial drugs
(d7: 16-24 hr post treatment), with mice which were not drug-
treated and were therefore in the agonal stages of the disease (d7:
16-24 hr post vehicle treatment). Consistent with observations
of residual neurological deficits in drug-treated mice (Fig. 1C),
mice that survived following treatment with anti-malarial drugs
(d7) exhibited a reduction in, but not complete abrogation, of
various neuropathological features associated with CM (1, 6-10)
including: cerebrovascular parasitized red blood cell (pRBC)
accumulation (Fig. 1D), haemostasis (Fig. 1E), vascular leakage
(Fig. 1F), haemorrhage (Fig. 1G) axonal injury (Fig. 1H),
and myelin damage (Fig. 1I). None of the neuropathological
features were observed in naïve mice (as we have previously
shown in reference 10). Collectively, these data demonstrate that
administration of anti-malarial drugs to mice with established
ECM resulted in a similar mortality rate as anti-malarial drug
treatment of CM (2, 3), and did not fully prevent or reverse
associated neuropathology.

Whole brain transcriptomics identifies IL33 as a potential
therapy for ECM

As therapeutic strategies targeting only the parasite failed
to prevent substantial mortality or morbidity, we utilised a non-
biased systems approach to identify potential targets for addi-
tional therapy. We compared the cerebral (whole-brain) tran-
scriptomes of mice by RNA-seq prior to infection (d0), at the
onset of ECM (d6), in late-stage (agonal) ECM without drug
treatment (d7), and at various time points after drug treatment
(d7+AC, d10, d14, d30 and d60). Principal component analysis
(PCA) demonstrated that anti-malarial drug administration led
to a rapid change in the brain transcriptome (d7+AC and d10)
compared with that inmice with early onset ECM (d6) and agonal
ECM (d7), the latter two of which exhibited largely overlapping
PCA transcriptome signatures (Fig. 2A). The brain transcriptome
returned to homeostasis quickly post-resolution of ECM, with
d14, d30 and d60 samples clustering with d0 (Fig. 2A). Anti-
malarial drug administration did not reverse the majority of
the gene changes (< or > 1.5 fold change and q value <0.05,
compared with d0) that were established in the brain at onset of
ECM, and which were also observed in fatal ECM (Fig. 2B). Drug
treatment did, however, lead to segregated expression of many
genes compared with agonal ECM (Fig. 2B). Very few genes were
differentially expressed in brains at d14, d30 or d60 compared
with d0 (Fig. 2C).

We then sought to understand in more detail the tran-
scriptional responses that undermined the effectiveness of anti-
malarial drug treatment of established ECM. 4825 differentially
expressed genes (DEGs) were identified when all time points
were compared, separately, to d0. DEGs were clustered by k-
means into 8 clusters and ranked by hierarchical clustering (Fig.
2D, with gene expression pattern in each cluster visually repre-
sented in Fig. S2A).We then performed gene ontology analysis to
assess the biological processes significantly enriched within each
cluster (Fig. S2B). In general, anti-malarial drug treatment did
not acutely modify the expression of the majority of the biological
processes involved in inflammation and immunological activation
(cluster I, VI and VII) established at the onset of ECM at d6 (Fig.
2D). Instead, anti-malarial drug treatment altered the expression
of genes involved in nervous system development, metabolism
and axogenesis (cluster VIII), transcription, apoptosis and cell
adhesion (clusters II and IV) and DNA repair and regulation
of lymphocyte activation (cluster V) (Fig. S2B). Together, these
data show that anti-malarial drugs failed to rapidly alter the
intracerebral expression of large numbers of genes defining the
inflammatory signature of the brain during and post-ECM. In-
stead, in the surviving mice, anti-malarial drug administration
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Fig. 2. . Expression profiling and pathway analyses
indicate that IL33 is a potentially important gene
negatively regulating pathogenesis in the late-stages
of ECM. Whole-brain transcriptomic analyses were
performed prior to infection (d0), at the onset of
ECM (d6), in agonal ECM (d7), and after anti-malarial
treatment (d7+AC, d10, d14, d30, d60). (A) Principal
component analysis of whole brain transcriptomes. (B,
C) Venn diagrams defining overlap of differentially
expressed genes (DEGs) (<or> 1.5 fold change and q
value <0.05) (D) K-means and hierarchical clustering
of DEGs (normalised to d0) (E) Bipartite Cytoscape
network defining enriched (GO slim) biological pro-
cesses within the 13 filtered upstream regulators’
combined protein-protein interaction networks (DEGs
within protein-protein interactions network identi-
fied within d7 and / or d7+AC groups, compared
with d0). (F) IL33 gene expression in the brain com-
pared by one-way ANOVA (G) IL33 protein in brain
homogenates measured by BioLegend LEGENDPlex,
compared by t-test. Data presented as mean ±SEM.
**p<0.01, ***p<0.001, ****p<0.0001 all versus d0 or
naïve.

appeared to significantly modulate expression of genes involved
in brain function.

To define the key genes controlling the cerebral transcrip-
tional landscape during agonal ECM and following anti-malarial
drug treatment, we identified the upstream regulators (URs)
within each cluster (Fig. S2C). A transcription factor (TF) en-
richment analysis revealed that most of the URs were controlled
by a genetic regulatory network involving several TFs. Based on
this information, we filtered this list to identify 13 URs whose
expression were not regulated by TFs, as we hypothesised that
these genes were strong candidates for independently and rapidly
controlling the transcriptome of the brain during and following
treatment of ECM. Importantly, these 13 genes were predicted
to control multiple inflammation and immune-related processes
in the brain during agonal ECM (d7) and immediately following
anti-malarial drug treatment (d7+AC) (Fig. 2E).

Of the 13 identified independently-controlled master URs,
IL33, which was present in cluster VIII of the heat map (Fig.
2D), was of particular interest due its protective role in other
inflammatory neuropathologies, including Alzheimer’s disease,
stroke and spinal cord injury (12-15). IL33 gene expression was
significantly downregulated in the brain during agonal ECM
and in the acute phase post-anti-malarial drug treatment, before
returning to levels observed in naïve mice from day 10 (Fig. 2F).
IL33 protein levels were similarly reduced in the brain following
anti-malarial drug treatment of ECM (d7+AC) compared with
levels in naïve mice (Fig. 2G). These data identified IL33 as a
potential immunotherapy to dampen inflammation, re-establish

homeostasis in the brain, and improve the success of anti-malarial
drug treatment of established ECM.

IL33 enhances the effectiveness of anti-malarial drug treat-
ment of ECM

To investigate whether administration of IL33 could re-
duce the mortality and/or neuropathology associated with anti-
malarial chemotherapy of established ECM, we administered
anti-malarial drugs alone or together with IL33 to Pb ANKA
infected mice at the onset of neurological dysfunction (d6). IL33
was administered as a single dose (0.02 mg/kg, human equivalent
dose [HED] 0.0016mg/kg) alongside anti-malarial drugs (both
at 30 mg/kg) on the first day of treatment. IL33 administration
did not alter peripheral parasitaemia (Fig. 3A); however, IL33
treatment significantly improved survival over anti-malarial drugs
alone (100% with IL33, versus 71% without) (Fig. 3B). Fur-
thermore, IL33 significantly improved RMCBS scores of mice
compared with mice treated with anti-malarial drugs alone, at
both 6-12 (d6.5) and 16-24 (d7) h after treatment (Fig. 3C).
We then assessed the effects of IL33 on the neuropathology we
had previously observed in mice that survived following anti-
malarial drug treatment (Fig. 1). We compared neuropathology
between mice treated with anti-malarial drugs alone (d7), with
those which were treated with combined IL33 and anti-malarial
drugs (d7). IL33 administration significantly reduced a number of
indices of cerebral pathology, including: cerebrovascular pRBC
accumulation (Fig. 3D), haemostasis (Fig. 3E), vascular leakage
(Fig. 3F), haemorrhage (Fig. 3G), and axonal injury (Fig. 3H).
Myelin damage was unaltered (Fig. 3I). When IL33 treatment
was administered without anti-malarial chemotherapy (on d6), all

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

Footline Author PNAS Issue Date Volume Issue Number 3

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408



Submission PDFFig. 3. . IL33 improves efficacy of anti-malarial drug treatment of ECM.
Mice were infected with Pb ANKA (n=12-28 from 2-6 infections), and treated
with anti-malarial drugs, either alone (AC) or together with IL33 (AC+IL33),
at the onset of ECM. (A) Peripheral parasitemia, (B) survival curves, and (C)
RMCBS scores of mice after infection (d0) and drug treatment (grey box).
(D-I) Brains were examined at 16-24 h after treatment (d7) for: (D) GFP+

parasites (green), co-stained with lectin (red) and DAPI (blue); (E) erythrocyte-
congested vessels indicative of haemostasis (H&E); (F) extravascular IgG
indicative of vasogenic odema (DAB counterstained with haematoxylin); (G)
haemorrhage (H&E); (H) β-APP accumulation (green) indicative of axonal
injury, co-stained with erythrocytes (red) and DAPI (blue); (I) myelin damage
(H&E). Data is presented as means ±SEM. (A-C) n=12-28 from 2-6 infections.
(D-I) n=6 from 2 infections. Scale bar: 25μm. (A, C) Separate comparisons were
made between groups at d6.5 and d7 by Mann-Whitney test. (B) Comparison
made by log rank test (D-I) Comparisons made by Mann-Whitney or t-test as
detailed in methods. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 versus
AC

mice succumbed to ECM on d7, demonstrating that IL33 alone
was not able to promote recovery from established ECM (Fig.
S3). These results demonstrate that IL33 significantly improved
the effectiveness of anti-malarial drug treatment of established
ECM.

IL33 suppresses NLRP3 inflammasome formation and in-
hibits IL-1β production in the brain

We next examined the mechanism(s) through which IL33
improved the recovery from ECM. Analysing IL33’s protein-
protein interaction network revealed that a large number of IL33-
regulated genes significantly upregulated in the brains ofmice fol-
lowing anti-malarial drug treatment were directly or indirectly re-
lated to theNLRP3 inflammasome pathway (Fig. 4A and Fig. S4).
It has previously been shown that the malarial parasite product
haemozoin (Hz) can directly activate the NLRP3 inflammasome
to promote IL1β production (16, 17). Consistent with this, we
found thatHz induced release ofmature IL1β frombonemarrow-
derived macrophages (BMDMs) (Fig. S5A). We also found that
artesunate and chloroquine, as well as pyrimethamine, another
commonly used anti-malarial drug (18), induced IL1β release
fromBMDMs (Fig. S5B&C). The release of IL1β from BMDMs
induced by Hz and anti-malarial drug stimulation, individually
and in combination, was completely inhibited by MCC950, a
selective inhibitor of the NLRP3 inflammasome (19) (Fig. 4B
and Fig. S5D and E). These data, therefore, implied that anti-
malarial drugs and malaria-parasite products may directly induce
damaging inflammasome-induced neuroinflammation, possibly

Fig. 4. . IL33 suppresses NLRP3 and IL-1β responses that undermine anti-
malarial drug treatment of ECM. (A) Cytoscape network defining differen-
tially expressed genes (DEGs) in IL33 protein-protein interaction network in
brains 16-24 h post drug treatment (d7+AC) compared with d0. (B) BMDMs
were treated with anti-malarial drugs and haemozoin (AC+Hz) with or
without the NLRP3 inhibitor MCC950, with IL1 release measured by ELISA
(n=4), and mature IL1β in the supernatant confirmed by Western blot.
(C, D) Pb ANKA infected ASC-citrine reporter mice were treated at ECM
onset with AC alone (AC), or together with IL33 (AC+IL33). (C) Cortical
grey matter of AC-treated mice showing ASC specks associated with Iba1+

microglia, intravascular CD68+ monocytes, or lectin+ endothelial cells. (D)
ASC specks per field of view (20 fields total from n=2 for each group).
(E-F) Pb ANKA-infected C57BL/6 mice were treated at ECM onset with AC
alone (AC), or together with IL33 (AC+IL33), and brains examined by flow
cytometry (n=8 from 2 infections). (E) Total numbers of microglial cells and
intracerebral monocytes. (F) Production of IL1β by microglia and monocytes.
(G-I) Pb ANKA-infected C57BL/6 mice (n=12 from 2 infections) were treated
at ECM onset with AC alone (AC), together with IL33 (AC+IL33) or MCC950
(AC+MCC950). (G) Peripheral parasitaemia, (H) survival curves and (I) RMCBS
scores. Data is presented as means ±SEM. (B) Comparisons made by ANOVA.
(E, F) Comparisons made by Mann-Whitney tests. (G, I) Separate comparisons
were made between groups at d6.5 and d7 by Kruskal-Wallis test, with
Dunn’s correction for multiple comparisons. (H) Comparisons made by log-
rank test. (B) *p<0.05, **p<0.01, versus AC+Hz. (D-I) *p<0.05, **p<0.01,
***p<0.001, ****p<0.0001, all versus AC. #p<0.05 MCC950 vs AC.

undermining recovery from ECM. In agreement, ASC specks,
indicative of inflammasome activation, were observed extensively
within the brains of infected mice 16-24 h after anti-malarial drug
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treatment of ECM (Fig. 4C). ASC specks were visualised adja-
cent to, and within, microglial cells, intravascular monocytes and
endothelial cells (Fig. 4C). Critically, IL33 treatment significantly
reduced the number of ASC specks in the brain, compared with
mice treated only with anti-malarial drugs (Fig. 4D).

As our results indicated that IL33 administration reduced
numbers of monocytes and microglia expressing inflammasomes,
we examined whether IL33 treatment modified the polarisation
or activation of the cells. Both microglia and recruited monocytes
/ macrophages expressed the IL33 receptor ST2 following drug-
treatment of established ECM (Fig. S6A-C). IL33 administration
reduced the numbers of monocytes, but not microglia, at 16-24
h post-treatment, and significantly reduced IL1β production in
both cell types (Fig. 4E and F). This effect of IL33 was not medi-
ated through alteration in M1 (based on TNFα and CD40) or M2
(based upon CD36, PDL1, and Relmα expression) polarisation
in either monocytes or microglia (Fig. S6D). Collectively, these
data indicate that IL33 therapy selectively inhibited the NLRP3
inflammasome-IL1β axis in microglia and monocytes during the
acute recovery period following treatment of ECM.

CD8+ T-cells have been shown to play an important role in
the development of ECM (20). Although intracerebral CD8+ T
cells also expressed the ST2 receptor following anti-malarial drug
treatment of ECM (Fig. S7A), IL33 administration did not signif-
icantly alter CD8+ T-cells accumulation in the brain (Fig. S7B).
IL33 also had no effect on intracerebral CD8+ T cell effector
functions, as defined by intracellular levels of Granzyme B and
cell surface expression of the degranulation marker CD107a (Fig.
S7C-D).

NLRP3 inhibitor MCC950 improves anti-malarial drug
treatment success of ECM

We then assessed whether administration of a selective
NLRP3 inhibitor alongside anti-malarial drugs could improve
ECM recovery. MCC950 was administered as a single dose (50
mg/kg, HED 4.0541 mg/kg) alongside anti-malarial drugs (both
at 30 mg/kg) on the first day of treatment (d6). MCC950 did
not significantly alter peripheral parasitemia (Fig.4G). However,
comparable to IL33, MCC950 co-treatment along with anti-
malarial drugs significantly improved survival from established
ECM (Fig. 4H). Furthermore, MCC950 administration also sig-
nificantly improved the RMCBS scores of mice 6-12 h (d6.5)
after treatment, compared with mice treated with anti-malarial
drugs alone (Fig. 4I). Consistent with our findings regarding IL33
monotherapy, MCC950 administration alone (on d6) did not
promote improved recovery from ECM (Fig. S8). Thus, NLRP3
inhibitor treatment also significantly improved the efficacy of
anti-malarial drug treatment of ECM comparable to the effects
of IL33 treatment.

Discussion
In this study we have shown that anti-malarial drugs are unable
to prevent mortality in a quarter of mice with established ECM,
analogous to the failure rates for CM treatment (2, 3). Further-
more, even when anti-malarial drug treatment was successful and
animals survived, they were left with significant levels of residual
neuropathology. This is consistent with the long-lasting neurolog-
ical sequelae commonly found in drug-cured CM patients (4, 5).
Therefore, our experimental model effectively recapitulates both
the primary and secondary clinical challenges associated with the
anti-malarial drug treatment of CM.Using thismodel we assessed
the effectiveness of adjunctive therapies in improving existing
anti-malarial drug therapy. We have discovered that adjunctive
IL33 or NLRP3 inhibitor therapy dramatically improved the
survival and enhanced the recovery of mice that underwent anti-
malarial drug treatment.

Our analysis of the brain transcriptome following anti-malaria
drug treatment provided new insights intowhy anti-malarial drugs

fail to promote optimal recovery from ECM. Specifically, our
data highlights that the neuroinflammatory response associated
with agonal ECM is not rapidly downregulated by anti-malarial
drugs alone. Importantly, many of the inflammatory pathways
that continue to be upregulated in the brains of mice following
anti-malarial drug treatment of ECM (e.g. response to interferon
gamma, cytotoxic T-cell and macrophage activation, and blood
coagulation) likely converge to affect the activation of brain
endothelial cells (1, 6-9). Concordantly, significant vasculopathy
was still evident in mice 24 h after anti-malarial drug treatment of
established ECM. Thus, our data are consistent with the notion
that suboptimal recovery from CM is associated with excessive
levels of neuroinflammation and continued disruption to the
neurovascular unit (1, 6-9).

Analysis of the upstream regulators controlling the brain
transcriptional response during ECM identified 13 genes that
could potentially be targeted by additional therapies. We priori-
tised IL33 because exogenous administration of IL33 has been
shown to resolve inflammation and promote repair in other neu-
ropathologies, including Alzheimer’s disease, stroke, and spinal
cord injury (12, 13, 15). Moreover, we have previously shown that
IL33 administration (without concurrent anti-malarial treatment)
can attenuate ECM development when given at early stages of
infection (21). We hypothesised that the observed reduction in
cerebral IL33 during ECM allowed cerebral inflammation to be-
come dysregulated, and undermined the success of anti-malarial
drug treatment. Consistent with this, adjunctive administration
of IL33 significantly improved survival and reduced neurological
dysfunction in drug-treated mice, compared with anti-malarial
drugs alone. Importantly, in addition to reducing parasite levels
in the brain of surviving mice (examined 16-24 h post-treatment),
IL33 therapy protected against ECM-induced cerebrovascular
damage, as shown by reduced levels of vascular occlusion, oedema
and haemorrhage.

Our gene expression analysis from anti-malarial drug treated
animals suggested that there was an interaction between the
decrease in IL33 gene expression and an increase in expression
of genes in the NLRP3 inflammasome pathway (Fig. 4A). While
the NLRP3 inflammasome is reportedly not a contributor to the
development of ECM (22), its activation could account for the
mortality observed after drug treatment of CMandECM. Indeed,
high levels of IL1β have been observed in the brains of individuals
with fatal CM (23, 24). Moreover, the NLRP3-IL1β axis is a key
driver of acute cerebrovascular dysfunction (25) and progressive
neuroinflammation in a number of brain pathologies (26). We
observed that administration of IL33 reduced ASC speck forma-
tion and IL1β production in the brain compared with mice given
anti-malarial drugs alone. Furthermore, the selective NLRP3-
inflammasome inhibitor MCC950 also significantly improved re-
covery of mice following anti-malarial drug therapy (as with IL33,
MCC950 treatment by itself without anti-malarial drugs was not
protective). Together, our results therefore suggest that IL33 im-
proves anti-malarial drug treatment of ECM by altering the brain
transcriptome, resulting in suppression of NLRP3-dependent in-
flammation. Thismodel of protection is in agreement with reports
suggesting that administration of IL33 supresses the expression
of NLRP3-inflammasome components in an Alzheimer’s disease
model (12), and in a model of intracerebral haemorrhage (27).
Our results are, however, in contrast to a recent report that
oligodendrocyte-derived IL33 acts to promote production of IL1β
from microglia, subsequently causing cognitive deficits and ECM
development (28). Where we examined the NLRP3-supresssing
effects of IL33 in vivo, Reverchon et al (28) defined the IL33-IL1β
cycle in an in vitro mixed glial culture derived from naïve mice.
IL33 treatment may exert fundamentally different direct and/or
indirect activities in vivo within an established inflammatory brain
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environment than in in vitro mixed glial cultures in the absence of
any other inflammatory or pathogenic signal(s) (29, 30).

NLRP3 inflammasome activation in the acute recovery pe-
riod following treatment with anti-malarial drugs could be caused
by the drugs themselves, malaria parasite products, or damage-
associated signalling molecules. Consistent with previous stud-
ies (16, 17), haemozoin, which we postulate phagocytic cells
will be exposed to in significant amounts following anti-malarial
drug treatment and death of high numbers of parasites, in-
duced NLRP3-dependent release of mature IL1β from BMDMs.
A variety of anti-malarial drugs (chloroquine, artesunate, and
pyrimethamine) also induced predominantly NLRP3-dependent
mature IL1β release from BMDMs. Thus, we speculate that
anti-malarial drug treatment of CM may directly and indirectly
provoke inflammasome activation in intracerebral mononu-
clear phagocytes, impairing the effectiveness of anti-parasitic
chemotherapy to resolve malaria-induced cerebral pathology.
In support of this, we consistently observed accelerated neu-
rological dysfunction and mortality within the subset of mice
that succumbed to ECM following anti-malarial drug treatment,
compared with vehicle treated controls. Collectively, our data
therefore suggests that fatality and neurological sequelae in anti-
malarial drug treatment of CM may occur, at least partially, as
a result of related iatrogenic effects, which can be prevented
through IL33 or NLRP3 inhibitor administration.

Methods
Mice, infections and analyses

All animal work was approved following local ethical review by the
University of Manchester Animal Procedures and Ethics Committees and
was performed in accordance with the U. K Home Office Animals (Sci-
entific Procedures) Act 1986 (approved H.O. Project Licenses 70/7293 and

P8829D3B4). Female and male C57BL/6 mice (8-10 week old) were purchased
from Charles River. ASC-citrine reporter mice (31) mice were bred at the
University of Manchester. All mice were maintained in individually ventilated
cages. Cryopreserved Pb ANKA GFP parasites (32) or Pb ANKA parasites
(33) were thawed and passaged once through C57BL/6 mice before being
used to infect experimental animals. Animals were infected via intravenous
injection of 1x104 pRBCs. Peripheral parasite burdens of infected mice were
followed from day 3 by microscopic examination of giemsa-stained thin
blood smears. The development of, and subsequent recovery from, ECM was
assessed using the RMCBS (12). Mice exhibiting early signs of ECM (score
≤15 on the RMCBS, invariably d6) received up to 6 daily intraperitoneal
(i.p.) injections of 30 mg/kg artesunate (Sigma) and 30 mg/kg chloroquine
(Sigma) in PBS or, alternatively, PBS alone. In some experiments mice received
single doses of 0.02 mg/kg (HED 0.0016mg/kg, calculations based on ref.
34) recombinant IL33 (Biolegend), or 50 mg/kg (HED 4.0451mg/kg) MCC950
(Sigma) on day 6 via i.p. injection, concomitant with anti-malarial drug
administration. Detailed information describing protocols for microscopy of
brain pathology, RNA purification from whole brain and paired-end RNA-
seq analysis, and flow cytometry of intracerebral leucocytes are provided in
SI Appendix method.

BMDM activation and assessment of IL1β secretion
BMDMs, generated as described in SI Appendix method, were seeded

at 100,000 cells per well in 96-well plates then left to adhere overnight
before priming with 1 µg/ml lipopolysaccharide (LPS, 0127:B8, Sigma) for
4 h. Following priming, media was replaced with fresh DMEM containing
10% FBS for haemozoin (Hz, Invivogen) or serum-free for anti-malarial
drug treatments. MCC950 (CP-456773, Sigma) or vehicle control were pre-
incubated for 15 min prior to inflammasome activation. For Hz assays, cells
were treated with Hz or PBS for 24 h. Malaria drugs or appropriate vehicles
were incubated for 5 h. In the case of co-incubation of Hz and drugs, cells
were treated for 24 h. Supernatants were removed and analysed for IL1β
content by ELISA (DuoSet, R&D systems). IL-1β cleavage within activated
BMDMs was performed by Western blot as described in SI Appendix method.
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