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Abstract 

 

Background:  In temperate and sub-tropical climates, respiratory diseases exhibit seasonal peaks in 

winter.  In the tropics, with no winter, peak timings are irregular.  

 

Methods: To obtain a detailed picture of influenza-like illness (ILI) patterns in the tropics, we 

established an mHealth study in community clinics in Ho Chi Minh City (HCMC).  During 2009-

2015, clinics reported daily case numbers via SMS, with a subset performing molecular diagnostics 

for influenza virus.  This real-time epidemiology network absorbs 6,000 ILI reports annually, one or 

two orders of magnitude more than typical surveillance systems.  A real-time online ILI indicator was 

developed to inform clinicians of the daily ILI activity in HCMC. 

 

Results: From August 2009 to December 2015, 63 clinics were enrolled and 37,676 SMS reports 

were received, covering approximately 1.8M outpatient visits. Approximately 10.6% of outpatients 

met the ILI case definition.  ILI activity in HCMC exhibited strong non-annual dynamics with a 

dominant periodicity of 206 days.  This was confirmed by time-series decomposition, step-wise 

regression, and a forecasting exercise showing that median forecasting errors are 30%-40% lower 

when using a 206-day cycle.  In ILI patients from whom naso-pharyngeal swabs were taken, 31.2% 

were positive for influenza.  There was no correlation between the ILI time series and the time series 

of influenza, influenza A, or influenza B (all p > 0.15). 

 

Conclusion: This suggests, for the first-time, that a non-annual cycle may be an essential driver of 

respiratory disease dynamics in the tropics.  An immunological interference hypothesis is discussed as 

a potential underlying mechanism. 
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1 Introduction 

 

 One of the biggest challenges facing big data studies in all fields is that the larger the data set 

the less precisely targeted each data point is in answering a specific question.  Nowhere is this more 

apparent than in the big data approaches used in infectious disease surveillance, where the volume of 

data has allowed many types of associations to be investigated (1–6), but the distance between the 

source data (an online search, a news story, a social media post) and the presupposed condition 

(infection with a pathogen) is large enough to warrant additional inquiry into the validity of the 

association.  Indeed, this has been done by several research groups for Google’s flu prediction 

algorithm Google Flu Trends (7–10).  Critiques of the algorithm included its reliance on internet 

search behavior remaining constant, an overfitting effect that may have given too much weight to 

associations that were present in training data sets only, as well as specific examples of incorrect 

forecasts (9,11).  The challenge in big-data disease surveillance is to narrow the gap between the 

infection and the data point describing it, and to find a way to generate large data sets where the data 

points are grounded in the presence of virus, genetic material, an antibody profile, or a set of 

symptoms.  This study presents an attempt at narrowing this gap, and like the some of the early big-

data studies (1,12–15) is focused on respiratory disease and influenza virus. 

 In temperate countries, influenza virus is one of the most studied disease systems, exhibiting a 

predictable wintertime transmission season and a robust relationship between syndromic and 

molecular surveillance.  Little is known about the epidemiology of influenza virus in the tropics 

despite a renewed research interest in tropical influenza over the past decade resulting from increased 

availability of influenza surveillance and sequence data (16–20).  To date, research on tropical 

influenza has concentrated on whether influenza epidemics exhibit annual seasonality (21–29) and 

whether influenza viruses show patterns of year-round persistence (30–34).  A third question that has 

received less attention is whether syndromic influenza-like illness (ILI) surveillance has the same 

peaks and troughs as molecular surveillance for influenza virus in these regions.  In temperate 

countries, public health agencies are able to rely on ILI reporting to signal the onset of the influenza 

season (1,35,36), but it is not known if ILI and influenza correlate in tropical countries (37,38). 

 The majority of epidemiological studies looking at influenza and/or respiratory disease in the 

tropics have two major drawbacks.  The first is ignoring absolute case counts and reporting only the 

percentage of samples (nose/throat swabs) that test positive for influenza (26,29,38–41).  Ignoring 

case counts makes it impossible to determine if samples are being taken during an influenza season or 
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outside of it.  The second drawback is underpowering the analysis by using a short time series or 

monthly data or both (37–40,42–46).  Monthly data are normally too coarse to infer the presence of an 

annual transmission season or other periodic trends (if these exist) unless the time series is very long. 

In fact, this is one of the reasons for disagreement in the current literature as some studies on 

respiratory disease in the tropics claim support for an annual transmission season 

(21,26,29,39,40,42,47–49) while others show mixed or no evidence (22,27,46,50–54).  Among these, 

some of the more weakly supported results are being used in public health policy to advocate for 

particular vaccination timings based on incorrectly identified seasonal signals (29,49).  For influenza 

virus specifically, studies with sufficient data (27,28,55) have generally found that annual seasonal 

signals are not supported in the tropics.  

Understanding the dynamics of respiratory disease and influenza in the tropics – especially 

the presence or absence of annual seasonality – may allow the forecasting methods currently deployed 

in temperate countries (56–59) to be used for tropical influenza.  Current forecasting methods rely on 

mechanistic Susceptible-Infected-Recovered (SIR) models and known/inferred climate associations to 

accurately predict increases in influenza virus infections.  In the tropics, it is not known whether 

influenza dynamics obey classic SIR models, whether they are characterized by low-level persistence, 

or a combination of the two.  It is also not known which climate-influenza associations are expected 

to be present in tropical countries despite accumulating evidence that absolute humidity may be the 

most influential climate factor (28,60).  Essentially, the absence of winter in tropical countries makes 

respiratory disease forecasting much more difficult than in temperate or subtropical climates.  If the 

intrinsic epidemiological dynamics and the presence/absence of climate associations can be 

understood in the tropics, forecasting of influenza epidemics may be possible.  Thus far, the only 

attempt at influenza forecasting for the subtropics reported that the majority of forecast attempts (lead 

time greater than two weeks before epidemic peak or onset) had accuracies below 50% when 

predicting the timing, onset, magnitude, or duration of an influenza epidemic (61), and no forecasts 

have been developed for tropical regions. 

In addition, an accurate description of the basic epidemiology of tropical influenza is critical 

for inferring the likely routes of viral seeding from the tropics to temperate zones and vice versa 

(17,62).  Although there is abundant phylogeographic evidence linking tropical and temperate 

influenza sequences (20), very few analyses have investigated the epidemiological characteristics of 

tropical influenza and how these affect epidemics in temperate zones. Two exceptions can be seen in 

Brazil and China, both of which span multiple climatic zones. In Brazil, a pneumonia and influenza 
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mortality time series dating back to 1979 shows an annual influenza epidemic progressing from 

tropical to temperate parts of Brazil (30).  A second example can be seen in a study published using 

sentinel surveillance data from in China, showing the transition from large wintertime influenza peaks 

in the north to smaller less predictable peaks in the subtropics (63).  Beyond these two examples, 

epidemiological links between the tropics and other regions are hard to demonstrate due to the paucity 

of long-term consistent surveillance data in tropical regions. 

To investigate the fine-scale epidemiology of respiratory disease dynamics in the tropics and 

evaluate the potential for forecasting, in August 2009 we set up a real-time community-based 

participatory epidemiology network in Ho Chi Minh City, Vietnam.  Our hypothesis was that ILI 

trends in Ho Chi Minh City would not be annual.  Enrolled outpatient clinics across the city reported 

daily case numbers of ILI by standard mobile-phone SMS messages. A subset of the clinics provided 

molecular confirmations of influenza virus in order to assess the relationship between ILI and 

influenza.  Our goals were to make daily reporting of ILI as simple as possible in order to encourage 

frequent reporting and wide participation, and to create a real-time ILI surveillance system that could 

be used by health professionals in Ho Chi Minh City.  Our study is most similar to the clinic-centered 

mHealth systems set up in Senegal (45) and Madagascar (64), and the benefits of this type of real-

time, big-data epidemiology can be seen in the dengue hotline system recently described by Rehman 

et al (65).  The purpose of our study was to build a long-term consistent time series of both ILI reports 

and influenza molecular confirmations. We analyzed the data with traditional time series 

decomposition to detect periodic signals, with stepwise regression analyses to determine the 

importance of climate and other covariates, and with regression-based forecasting to determine the 

predictability of ILI trends in Ho Chi Minh City. 

 

 2 Materials and Methods 

 

ILI data.  In August 2009, a participatory epidemiology study was established in Ho Chi Minh City, 

Vietnam, in collaboration with the Hospital for Tropical Diseases in Ho Chi Minh City (HCMC) and 

with permission from the Ho Chi Minh City Department of Health.  Participating outpatient clinics 

report the daily number of total patients seen, the daily number of patients meeting the European CDC 

definition of influenza-like illness (66), and the number of hours each clinic was open.  To meet the 

ECDC definition of ILI, a patient must present with (1) sudden onset of symptoms within the past 3 or 

4 days; and (2) one or more of the following general symptoms (a) fever with axillary temperature 
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above 37.5°C, (b) malaise, (c) headache, (d) myalgia; and (3) one or more of the following respiratory 

symptoms (a) cough, (b) rhinorrhea, (c) sore throat, (d) dyspnea.  To encourage enrollment and reduce 

dropout, clinics are advised to send daily reports by standard mobile phone short messaging system 

(SMS) text messages; reporting with log books and email is also available. SMS messages are 

automatically passed to a text-parsing and data-cleaning system that was set up and is still actively 

managed by the Oxford University Clinical Research Unit (OUCRU) in HCMC. Every day, ILI 

reports are manually approved by a qualified project team member at OUCRU; on approval they are 

automatically entered into a mySQL database that holds all data points for the study. A small number 

of clinics (about 8%) did not use SMS reporting (by their request) and instead emailed ILI numbers to 

the project team or wrote them down in a daily logbook provided by OUCRU.  As part of the data 

processing pipeline, reports by email or logbook were regularly merged into the main mySQL 

database.  There was no obviously apparent difference in ILI numbers when comparing clinics that 

used SMS, email, and log-book reporting. 

Community engagement meetings were run for the first several years of the study to distribute 

and explain the study protocol, and a basic leaflet outlining the goals of the study and the reporting 

methodology was distributed to interested physicians.  All documents were translated into 

Vietnamese, and annual reports and ILI trends were fed back to the clinics on a regular basis.  A total 

of 63 clinics were enrolled in the initial study period (August 2009 – December 2015).  Clinics that 

reported frequent zeros (>50%), or withdrew too early (contributed <200 reports) were not considered 

for the analysis.  The clinics included mostly single-doctor clinics, some that were open early morning 

and late evening only (to accommodate a full-time working schedule for that doctor at a city hospital) 

and some that were open day-time hours as that clinician’s primary source of income.  A few of the 

clinics were larger polyclinics with several doctors (three to five) and several nurses (five to ten) on 

staff, a waiting area, one or two patient beds for day-time only inpatient stay, and the ability to see 

between 100 and 200 patients per day.  The presenting symptoms for patients attending the clinics in 

this study included ILI, fever, rash, skin infections, nausea, diarrhea, dehydration, conjunctivitis, 

muscle ache, joint pain, and physical cuts/scrapes/injuries from motorbike (or other) accidents. 

In May 2012 a new study component was launched for 24 clinics that agreed to periodic 

collection of naso-pharyngeal (NP) swabs so that a subset of ILI patients could be molecularly 

confirmed as positive or negative for influenza virus.  A swabbing schedule was made at random 

every year, so that each clinic would be visited an approximately equal number of times, with two 

clinics selected for swabbing each week. In other words, each clinic was visited two or three times per 
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year, and each week (excepting holidays, and the early months of the swabbing sub-study) there were 

two clinic visits lasting three days each; the schedule was designed in this way so that no single clinic 

would have too many visits, as some doctors viewed these as disruptive to the clinic’s normal patient 

flow.  Numbers of NP swabs collected each week depended on the numbers of ILI cases presenting at 

the clinics as well as patient consent.  

The research protocol was approved by the Oxford Tropical Research Ethics Committee at the 

University of Oxford and by the Scientific and Ethical Committee of the Hospital for Tropical 

Diseases in Ho Chi Minh City. 

 

Molecular Confirmation.  Respiratory specimens (nasal/throat swabs) were collected from ILI 

patients at outpatient clinics, transported the same day on ice to OUCRU, and stored in -80C freezers 

for a maximum of 3 months before RNA extraction and Influenza A and B PCR testing. All 

specimens were tested by real-time PCR using primers, probes, and reagents recommended by the 

World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC).  

Sequences of probes and primers used can be referred to in Table S1. 

Viral RNA was extracted from 140uL of a patient’s specimen to attain a final elution volume 

of 50uL. The extraction was carried out using a MagNA Pure 96 automated system (Roche Applied 

Science) with the MagNA Pure 96 DNA and viral NA Small Volume Kit (Roche; Cat ID. 

06543588001), and the MagNa Pure 96 System Fluid (Roche; Cat ID. 05467578001). 

Template RNA from the viral extract was used for cDNA synthesis using the LightCycler 480 

RNA Master Hydrolysis Probes (Roche; Cat ID. 04991885001). The cDNA products were then 

amplified in a real-time RT-PCR procedure carri ed out by a LightCycler instrument (Roche Applied 

Science). Each reaction had a total volume of 20uL containing 5uL of the viral RNA extract, 1X of 

RNA Master Hydrolysis Probes, 3.25mM of Mn(OAc)2, 1X of enhancer solution, 0.2uM of Influenza 

A/B probes, 0.8uM of Influenza A/B forward primers, 0.8uM of Influenza A/B reverse primers, and 

water. Equine Arteritis Virus (EAV) was used as an internal control, and included in each reaction 

with 0.04uM of EAV probes, 0.2uM of EAV forward primers, and 0.2uM of EAV reverse primers. 

Thermal cycling conditions were set up as follow: reverse transcription at 58C for 20 min, enzyme 

inactivation at 95C for 5 minutes, and 45 cycles of 95C for 15 seconds, 55C for 30 seconds, and 72C 

for 20 seconds. Fluorescent signals were measured by LightCyler software, at wavelengths between 

465 nm and 510 nm for Influenza A and B.   
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Climate Data.  Data on daily mean temperature (T) and relative humidity (RH) were collected from 

Weather Underground for Ho Chi Minh City, Vietnam (http://www.wunderground.com) from the 

beginning of 2000 till the end of 2015.  Absolute humidity (AH) was calculated using relative 

humidity and temperature: 

 

ܪܣ = 6.112 × exp ቀ17.67 × ܶ243.5 + ܶቁ × 2.1674 × 273.15ܪܴ + ܶ  (1) 

 

The series of daily climate data were smoothed with a 15-day moving average before being used in 

our analyses. 

 

Time series detrending and standardization.  A total of 28 regularly reporting clinics (those who 

reported at least 200 reports from 2010-2015 and reported positive ILI numbers at least half of the 

time) were included in the time series analysis.  A 29th clinic that met these inclusion criteria was 

removed for quality control reasons.  The ILI data of 2009 were not used in the analysis due to the 

small number of reporting clinics during the first five months of the study.  Each clinic’s time series 

was converted to a z-score scale by computing the z-score of each ILI percentage inside a 12-month 

moving window (centered at the calculated data point), thus removing long-term trends in the data; 

we verified that window sizes of 6, 9, 15, and 18 months did not have any qualitative effects on the 

overall ILI trends.  The daily z-scores were averaged across clinics and smoothed using a 15-day 

window to construct the ILI z-score time series that we used in our subsequent analysis (see Figure S1 

for effects of different smoothing windows).  

The time series was validated by verifying that is was not white noise (p-value < 10-15, Box-

Ljung test) and by showing that the majority of individual clinics had a higher correlation to the 

aggregate time series than would be expected if reporting were random (Figure S2).  

 

Statistical analysis and forecasting.  Periodicity and frequency decomposition in the smoothed 6-

year ILI trend were assessed with a standard auto-correlation function (ACF) and a Discrete Fourier 

Transform (DFT).  The ILI z-score time series was regressed (linear link function) onto linear and 

non-linear variants of the climate variables (T, RH, AH, √T, √RH, √AH, T2, RH2, and AH2)  to 

determine which non-linear effects were present, as there is some evidence of non-linear effects of 

climate on ILI  (67).  In addition, a time-dependent fixed effect αj mimicking the dominant periodicity 
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identified by the ACF (here, 206 days) was included on the right-hand side of the regression equation.  

Twenty-one αj were allowed for in the model, meaning that periodicity in the system is modeled with 

a piecewise constant function taking 21 different values during a full period of 206 days.  This is 

equivalent to having 21 fixed-effect terms in a regression, each multiplied by an indicator variable 

describing whether that data point belongs to that period, ensuring that only one fixed-effect term is 

added at a time.  The piecewise constant function has an advantage over the sinusoidal approach 

traditionally used in epidemiological analyses because the stepwise nature of the αj allows the 

periodicity in the system to take any shape determined by the data and does not require that the 

forcing function to be sinusoidal or continuous.  In exploring the shape of this function, it was found 

that more than seven pieces are needed to prevent the model forecasts from appearing too step-like. 

 The non-annual cycle, T, √RH, and RH were the explanatory terms according to the Akaike 

Information Criterion (AIC) using the stepwise regression approach in R (step() function).  The ILI z-

scores were then regressed onto the non-annual cycle, T, √RH, and RH, and lagged versions of these 

climate variables, extending back five weeks in the past.  The same stepwise regression approach 

(step() function in R) using the AIC was used to remove regression terms that did not add explanatory 

power.  The selected regression equation is 

ݖ  = ଵܶߚ + ܪଶܴߚ + ଷሺܶߚ × ሻܪܴ + ܪܴ√ସߚ + ହߚ ܶଷ + ߚ ܶସ + ߚ ܶହ + ହܪ଼ܴߚ
+ ହܪଽටܴߚ + ሿଶଵ	୮ୣ୰୧୭ୢ	୲୭	ୠୣ୪୭୬ୱ		ሾୢୟ୷ߙ

ୀଵ  
(2)

 

To determine if the regression approach offers any predictability in the system, we inferred the 

regression coefficients and the time-dependent fixed effects using the first three years of data from 

January 1st 2010 to December 31st 2012, and we compared the predicted and real ILI trends for 

2013–2015. The median prediction error was defined simply as the median of all of the absolute 

differences between the predicted z-score time series and the real z-score time series.  We varied the 

size of the training set to determine how many years of data would be needed to achieve robustness in 

predictability (Figure S4). 

 

Bootstrapping climate data.  To test the robustness of this prediction to changes in the annual 

climate cycle and the system’s intrinsic (dominant) cycle identified by the ACF (206 days), we 

removed the annual trend in the climate cycle with a smoothing-by-bootstrapping approach and we 
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artificially varied the length c of the intrinsic non-annual cycle.  To create a bootstrap-smoothed 

climate time series, we defined the climate variables for each time point at tbss in 2010-2015 as a 

random sample taken during 2000-2015 and within d calendar days of tbss (see Figure S5). As d 

increases, the annual structure of the climate cycle gradually vanishes.  Two hundred bootstrapped 

time series were created (for each climate variable), for each cycle length c, and for each climate 

subsampling window d.  For each (c, d) pair, regression (onto each of the 200 bootstrapped time series 

separately) and prediction (using each bootstrapped series of 2013-2015 separately) were re-

performed, and the median prediction error was plotted to determine if changing assumptions about 

the length of the intrinsic cycle or the strength/amplitude of the climate data had a detrimental effect 

on predictability in our system.  Mean prediction errors are shown in Figure S7.   

 

All sampling, bootstrapping and statistical analyses were done in R (version 3.2.1, Vienna, 

Austria). 

 

3 Results 

 

A total of 63 clinics were enrolled during the study, about half of which reported regularly, and 

37,676 daily reports were received from August 10, 2009 to December 31, 2015, corresponding to 

1,759,473 outpatients and 186,346 outpatients meeting the clinical definition of ILI.  The median 

clinic saw an average of 30 patients per day (IQR: 16–50 across clinics).  Approximately 10.6% of all 

patients were classified as ILI, and this percentage exhibited a decreasing trend during the first six 

years of the study (Table 1).  To create a single ILI time series for Ho Chi Minh City, we detrended 

and standardized each clinic’s ILI percentages to a z-score scale and then aggregated these into a 

single z-score time series. Several internal validations were done to ensure that the data followed 

certain expected behaviors for multi-site syndromic reporting and that arbitrary or random reports 

were not being sent during the course of the study (see Materials and Methods).  In particular, note 

that individual clinic time series correlated with each other, and replacing a single clinic with a white 

noise signal of equal variance reduced the correlation between that clinic and the aggregate ILI trend 

(Figure S2).  ILI trends in Ho Chi Minh City (Figure 1) suggest that there are typically multiple ILI 

peaks per year, as has been observed in other tropical and sub-tropical regions (28,30,61).  Visually, 

no seasonal or annual cycle appears in these data. 
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In a subset of the clinics, molecular confirmations on naso-pharyngeal samples (n = 2,217) 

were taken from May 2012 to December 2015. Compared to other tropical settings, these clinics had a 

rate of influenza positivity (21.5% positivity for influenza A and 9.7% positivity for influenza B) in 

the high range of previously published studies (26,37,42,50,51,68).  We compared the confirmed 

influenza cases to the ILI data and found that there was no correlation between the two time series 

(Figure 2; Pearson correlation coefficient: −0.02, p-value: 0.86) and that this did not differ for 

influenza A and B individually (both p-values > 0.15).  The time series showed periods of high ILI 

activity with a low level of influenza confirmation, likely representing epidemic waves of other 

respiratory viruses, as well as periods that were high influenza and low ILI, suggesting that influenza 

may not drive the overall trend of ILI incidence as clearly as it does in temperate regions (69-73). 

We identified a dominant periodicity in the data using an auto-correlation function and 

standard time series decomposition (see Materials and Methods).  The auto-correlation function 

(ACF) identified 206 days (ACF = 0.262; p-value < 10-15) whereas the discrete Fourier transform 

identified 199 days as the time series’ dominant periodic signal (ACF = 0.244 for a lag of 199 days; p-

value < 10-15); see Figure 3.  This non-annual signal is almost twice as strong as the annual cycle, with 

the 365-day lag exhibiting an auto-correlation value of 0.153 (p-value = 0.014); note that the large 

number of data points results in statistical significance for nearly all ACF values.  A dominant non-

annual signal is an unusual feature in disease incidence data. We verified that this result was not an 

artifact of our data renormalization and detrending methods by applying these same methods to 

temperate zone ILI data and showing that ILI time series in Europe and North America show their 

strongest periodic signals at 365 days, with no evidence of periodic signals shorter than one year 

(Figure S3).    

To determine the relative influence of annual and non-annual signals on the ILI trend, we 

performed a stepwise regression of the ILI trend onto both annual climatic variables and the system’s 

intrinsic non-annual cycle.  Lagged variables, interactions, and non-linear transformations of the 

climate variables were included; the non-annual cycle was constructed as a step-function with 

periodicity 206 days (see Materials and Methods).  The stepwise regression indicated that the terms 

with explanatory power were the daily temperature, relative humidity (RH and	√RH), the interaction 

term between RH and temperature, lagged climate terms, and the non-annual cycle (see Table 2).  

When factoring in interactions and non-linear terms, the effects of climate are not very strong.  At 

75% relative humidity, an increase in 1°C is associated with a 0.085 decrease in ILI on the z-score 

scale.  At 28°C and 75% relative humidity, a 10% increase in relative humidity is associated with a 
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0.034 increase in the ILI z-score.  The association between the non-annual cycle and the ILI trend is 

statistically significant, and the non-annual effect is identified using the Akaike Information Criterion 

as a component of the best fit model.  Nevertheless, it is important to remember that the number of 

data points (>37,000) results in statistical significance for a large number of annual and non-annual 

covariates. Thus, additional robustness analyses were performed. 

As a third validation of the existence of a non-annual cycle as a true feature of respiratory 

disease transmission in Ho Chi Minh City, we tested the sensitivity of the ILI forecast accuracy to the 

length of the non-annual cycle and to the amplitude of the trends of climate variables.  The rationale is 

that if an intrinsic non-annual cycle truly influences respiratory disease dynamics, then (1) forecasting 

of respiratory disease should be possible using the non-annual cycle, and (2) the forecasts should be 

less accurate if the non-annual cycle is not used or if an artificial non-annual cycle of a different 

periodicity is used.  Regressing the 2010-2012 portion of the time series onto the AIC-selected 

covariates (including the non-annual cycle of length c = 206), we were able to predict the 2013-2015 

ILI time series with a median absolute error of 0.129 on a z-score scale (Figure S6A).  A sensitivity 

analysis indicated that forecast accuracy is very sensitive to the intrinsic cycle length, and that 

forecast accuracy is reduced substantially if the length c of the non-annual cycle is changed by a small 

amount (Figure 4); the median prediction error is approximately 40% to 50% higher when forecasting 

is performed with a cycle length c < 195 or c > 215.  The increase in prediction error is small or non-

existent when the climate variables are smoothed to reduce their correspondence with the true climate 

time series (Figure 4).  Thus, the non-annual cycle is the key characteristic of this dynamical system 

that enables accurate forecasting. 

  Several robustness tests were performed.  Figure S6 shows that forecasting using a 202-day 

intrinsic non-annual cycle in combination with bootstrapped climate data gives the most accurate 

forecasts, and that a 211-day cycle was optimal when forecasting ILI trends using real weather data.  

These results are robust to whether mean or median prediction error is used as an evaluation criterion 

(Figure S7).  Using a simpler regression model with no lags and no non-linear climate terms, a 201-

day cycle gave the lowest prediction errors (Figures S8 and S9).  All analyses provided support for the 

existence of a non-annual cycle with periodicity of approximately 200 days. 

Our decomposition, stepwise regression, and prediction analyses provide strong evidence that 

an intrinsic non-annual cycle of around 200 days exists for respiratory disease transmission in Ho Chi 

Minh City.  This cycle is either unique to the dynamics of respiratory infections in tropical climates, 

or it is a natural part of respiratory disease epidemiology in all regions but not detectable in temperate 
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countries as a result of being overwhelmed by the strong winter seasonality of respiratory disease 

transmission. An ILI indicator, showing whether ILI percentages are above or below the mean trend, 

is updated daily and publicly available (www.ili.vn) providing a real-time surveillance system for 

patients and clinical providers. 

 

4 Discussion  

 

Our study demonstrates the value of community epidemiology studies for describing fine-scale 

dynamics of ILI in tropical settings where respiratory disease dynamics are non-annual and difficult to 

predict.  We were able to show that a network of community clinics can generate a high-quality 

syndromic time series that can be used to understand local transmission patterns of respiratory 

disease, and that such a network can generate a significantly larger data set (~6,000 data points per 

year) than traditional surveillance systems that report weekly or monthly measures of incidence. This 

volume of data increases statistical power to detect ILI associations, and in our study, the presence of 

non-annual forcing in the system.  The present study does not achieve the data volume seen in ‘big 

data’ study designs (1,4,5,74) which can have tens of millions of observations per year, but the 

specificity of our data signal is higher than in the aforementioned studies as each data point in our 

study corresponds to a patient, seen by a physician, determined to have met or not met the clinical 

criteria for influenza-like illness. 

The major quality control challenge we encountered was accounting for long-term trends in 

ILI (we had a downward trend in our data).  In a multi-site time series, detrending must be done 

carefully, and changes in a site’s reporting patterns must be investigated individually.  From 

discussions with the reporting physicians in our study, the putative causes of the decreasing trend in 

ILI were likely to have been (i) a more than doubling of patient visit costs that would have reduced 

the likelihood of reporting a minor respiratory illness, (ii) increased clinical specialization at some 

sites, or (iii) more conservative interpretation of ILI guidelines after molecular diagnostics were 

introduced in May 2012.  In addition, during 2011 and 2012 a few large clinics were enrolled in the 

study, and some of these had higher patient volumes but lower ILI percentages.  All of these features 

of community-based syndromic reporting systems need to be considered for both study design and 

surveillance purposes.  Detrending with a 12-month moving average appears to be the simplest way to 

detrend and preserve any potential annual structure in the data.   
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 The lack of correlation between influenza trends and ILI trends suggests that the transmission 

dynamics of respiratory disease differ between tropical and temperate zones, consistent with the past 

decade’s literature on this topic (24,27,28,30,60,63).  Given the observed pattern of multiple ILI peaks 

in our data, some of which are influenza epidemics and some of which are not, the natural hypothesis 

explaining this pattern is that multiple respiratory pathogens co-circulate and cause asynchronous 

epidemics. It is unknown if in such a system multiple respiratory pathogens should circulate 

independently or not. The putative mechanism that would create dependence or interference among 

waves of different co-circulating respiratory viruses would be post-infection raised antibody or 

cytokine concentrations (75–77) generated by one viral epidemic preventing an epidemic of a 

different virus from taking off immediately thereafter. Epidemiological interference among 

respiratory viruses has been observed in long-term time series in temperate (78,79) and tropical (80) 

regions, but there is still little direct evidence showing that near-term post-infection immune 

responses to one respiratory pathogen can affect the outbreak potential of another respiratory 

pathogen. In our community study, additional molecular confirmations for a range of respiratory 

pathogens are now underway to further describe this phenomenon. 

 The second major question that arises from the basic correlational analysis between ILI and 

influenza is why high influenza periods should be observed when ILI is low. To the best of our 

knowledge, this pattern has not been observed in other surveillance systems, as a wave of influenza 

infections is normally sufficient to generate a substantial uptick in the ILI signal. The likely 

explanation for a high-influenza low-ILI period is a larger than expected prevalence of other 

respiratory viruses among the reported ILI cases; this is possible as the community clinics in our study 

are almost exclusively outpatient and likely to see many mild cases of respiratory disease.  If 

influenza infection represents only a small fraction of respiratory disease among these outpatients, a 

wave of influenza alone would not generate an ILI peak.  In general, community-based studies of 

respiratory disease should aim to characterize the contribution of all respiratory viruses to the ILI 

trend to determine if it is a particular pathogen’s dominance or synchrony among certain pathogens 

that generates an ILI peak. 

 The major finding in our study is that the dominant periodicity observed in our ILI time series 

is non-annual.  This is the first report of a non-annual disease cycle in temperate or tropical 

respiratory disease data. The existence of an intrinsic non-annual cycle in the dynamics is supported 

by traditional time series decomposition, by a regression of the time series onto both annual and non-

annual covariates, and by an analysis of the system’s predictability showing that accurate forecasts of 
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ILI trends are highly dependent on the system’s non-annual cycle of ~200 days.  The presence of non-

annual periodicity is consistent with a mechanism of post-infection immunity conferred by one 

respiratory virus that affords near-term protection (3-6 months) against infection with other 

respiratory viruses.  Data on the rate of antibody decay after acute influenza infection are consistent 

with this hypothesis (75,76), but unfortunately no such data exist for other respiratory viruses. If the 

short-term immunity hypothesis can be shown to be true, then immunological interference among 

viruses may be the fundamental driver of the immuno-epidemiology of respiratory disease 

transmission in the tropics.  In temperate countries, where strong wintertime seasonality synchronizes 

respiratory disease transmission, the interference hypothesis may not be testable due to the short 

transmission season. In the tropics, where there is no winter to structure the dynamics of respiratory 

virus transmission, individual viral epidemics may create post-epidemic niches – unfavorable to other 

respiratory pathogens – by generating temporary waves of immunity. 

Although a complete forecasting evaluation will require a separate analysis, we can already 

detect one clear limitation of ILI forecasting methods: that they must be based on future weather 

predictions which, in our analysis, were bootstrapped from past weather data.  Nevertheless, this 

proved to be a small obstacle in our analysis as, for Ho Chi Minh City, the bootstrapped climate 

variables yielded accurate predictions of averages for temperature and relative humidity (Figure S5).  

In other words, it is more likely that higher levels of ILI during a particular period are affected by the 

average climate behavior during that period, and not by any particular days that have extremes in 

temperature or relative humidity. This contrasts with the climate mechanisms proposed in temperate 

zones where it is postulated that the onset of abnormally low absolute humidity is closely associated 

with the onset of the influenza season (57).  The larger question on climate effects and influenza — 

why AH, RH, and temperature appear to have different transmission effects in temperate and tropical 

regions (28,60,81) — remains to be answered.  In addition, the lagged effects found in our study (for 

temperature and relative humidity) should be investigated in other locations to determine if a period 

with particular climatic features can result in an increase or decrease in viral transmission that is 

detected by larger case numbers several weeks later.  Much work remains to be done before 

respiratory disease outbreaks in the tropics can be forecast accurately; our hope is that the non-annual 

signal identified in this study will help in this endeavor. 

A second limitation in the current study design is the lack of age information.  We 

experimented with several different reporting methods (SMS, email, log books) for this study, but 

only the log-book method was able to capture age information consistently.  Unfortunately, this 
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method was adopted by a minority of the clinics in our study, and it was not compatible with real-time 

reporting.  The age distribution of ILI cases represents a critical data gap in our study and in other 

mHealth studies that aim at real-time reporting, as the age distribution could tell us whether the major 

disease burden skews towards childhood respiratory diseases or general respiratory diseases like 

influenza.  As tropical countries have younger age distributions than temperate countries, this 

difference may have a profound epidemiological effect on differences in ILI dynamics between 

temperate and tropical zones, as well as the proportion of ILI cases that are caused by influenza versus 

other respiratory viruses. 

The public health value of our mHealth reporting system is that ILI results can be fed back in 

real time to participating physicians and the community of health professionals in Ho Chi Minh City.  

Real-time ILI trends from our study are publicly available and updated daily.  The two key questions 

raised by our study are (i) to what extent the transmission of non-influenza respiratory viruses in the 

tropics is a potential driver of complex multi-pathogen transmission system, and (ii) whether it is 

useful to attempt the timing of influenza vaccination in an epidemiological scenario where influenza 

epidemics occur irregularly.  We aim to investigate the first of these questions by introducing more 

respiratory virus diagnostics into our study.  The second question can be evaluated with a 

mathematical model of influenza epidemiology, but will necessitate a longer influenza time series and 

a better understanding of the key drivers of influenza virus dynamics in tropical settings. 
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Table 1: Summary of ILI reports for 2009-2015 
 

Year 
Clinics reporting at least Total 

Patients 
Reported
ILI Cases 

ILI Percentage 

1 day 50 days 150 days Median IQR 

2009* 19 10 0 35,115 10,163 24.40 19.36 , 35.89 
2010 27 15 7 103,396 24,922 15.42 3.82 , 26.89 
2011 28 24 20 275,033 35,176 14.73 4.13 , 25.86 
2012 35 28 25 375,077 42,373 13.30 6.25 , 26.49 
2013 30 28 23 385,300 30,183 9.99 2.47 , 20.61 
2014 32 27 20 300,223 19,461 10.64 2.67 , 16.14 
2015 35 26 21 252,932 21,318 11.69 6.86 , 17.58 

* Data collection in 2009 started on August 10th. 
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Table 2:  Estimates of coefficients from regressing the smoothed daily ILI z-scores (2010-2012) onto 
two climate variables, an interaction term, and the temporal indicator variables that were used to 
construct a periodic 206-day forcing function in the time series. Temperature was measured in 
Celsius. 
 

Coefficient Estimate Std. Error t statistic P-value 

Intercept 63.5198 6.1223 10.3751 4.31E-24 
Temperature -1.0446 0.0719 -14.5345 8.43E-44 

3-week Lagged Temperature 0.0004 0.0128 0.0338 9.73E-01 
4-week Lagged Temperature -0.0232 0.0180 -1.2894 1.98E-01 
5-week Lagged Temperature 0.0843 0.0120 7.0508 3.19E-12 

Rel. Humid. -0.0584 0.0375 -1.5569 1.20E-01 
Sq. Root Rel. Humid. -5.3047 0.7488 -7.0839 2.54E-12 

5-week Lagged Rel. Humid. (RH.lag5) 0.1656 0.0412 4.0184 6.27E-05 
Sq. Root RH.lag5 -2.8670 0.7278 -3.9393 8.70E-05 

Rel. Humid. × Temperature 0.0128 0.0009 13.5127 1.60E-38 
Temporal Interval     

2 0.0098 0.0275 0.3576 7.21E-01 
3 -0.0963 0.0274 -3.5128 4.62E-04 
4 -0.1900 0.0275 -6.9097 8.34E-12 
5 -0.2111 0.0275 -7.6857 3.44E-14 
6 -0.2178 0.0282 -7.7159 2.75E-14 
7 -0.1105 0.0274 -4.0262 6.07E-05 
8 -0.1036 0.0279 -3.7205 2.09E-04 
9 -0.1442 0.0275 -5.2471 1.86E-07 

10 -0.0867 0.0278 -3.1233 1.84E-03 
11 -0.1811 0.0293 -6.1726 9.53E-10 
12 -0.1949 0.0280 -6.9524 6.25E-12 
13 -0.2311 0.0279 -8.2917 3.33E-16 
14 -0.0828 0.0274 -3.0191 2.60E-03 
15 0.0290 0.0275 1.0569 2.91E-01 
16 -0.0563 0.0267 -2.1069 3.54E-02 

17 0.0047 0.0262 0.1790 8.58E-01 
18 0.0347 0.0265 1.3107 1.90E-01 
19 0.0072 0.0263 0.2750 7.83E-01 
20 -0.0101 0.0260 -0.3873 6.99E-01 
21 0.0548 0.0268 2.0440 4.12E-02 
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FIGURES   

 

 

Figure 1. Trends in ILI z-scores by year. The black lines show 15-day moving-average smoothed z-scores (after 

detrending).  The gray solid lines show the monthly mean z-score values.  The horizontal dashed lines represent 

the median ILI z-score for that year. 
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Figure 2.  Time series of ILI z-score and influenza PCR-positivity, in 3-week windows, for the period of time 

when PCR confirmations were being done in the clinics in the study.  Gray region around flu-positive percentage 

is the 95% confidence region computed using the exact binomial method. The Pearson’s correlation between the 

time series is shown in Table S2. 
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Figure 3.  (A) Autocorrelation function (ACF) for the z-score time series.  Horizontal dashed lines demark the 

statistically significant regions (p < 0.05).  Black dots represent the ACF values of lags of 365 and 730 days.  

The first peak in the ACF is at the lag of 206 days.  (B) Discrete Fourier transform (DFT) of the z-score time 

series.  The period length of each DFT can be calculated by dividing 2,191 (the number of days in the time series) 

by the corresponding number of cycles (the frequency of the DFT).  Frequencies whose power is lower than 6.93 

(i.e. periodic functions whose correlation with the z-score time series is lower than their correlation with a 

constant signal) are shown in gray.  The DFT reaches its highest power at 11 cycles, corresponding to a cycle 

length of 199 days. 



A
cc

ep
te

d
 A

rt
ic

le

For Review Only

26 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

.
 

Figure 4.  Forecasting ILI z-scores with bootstrapped weather data.   (A)  Annual average temperature trend 

(green) and relative humidity trend (blue) based on 2000-2015 weather data for Ho Chi Minh City.  

Bootstrapping is done in a 21-day window around each time point, which has the effect of smoothing the data 

with a 21-day window.  The shaded gray area shows the inferred periodic signal from equation (2) using the 

2010 to 2012 z-scores and assuming a 206-day cycle.  (B)  Predicted daily ILI z-scores from the regression 

model (red) and their 75% prediction range (yellow) are plotted alongside with the daily ILI z-scores (black).  

Model parameters were estimated by regressing ILI z-scores of 2010-2012 on the real weather data of 2010-2012.  

Predictions were calculated based on bootstrapped weather data (see Materials and Methods).  The median 

prediction error from January 1 2013 to December 31 2015 is 0.125 (z-score scale, IQR: 0.064, 0.203).  (C)  

Median prediction errors when varying both the width of the bootstrapping window d for the weather data and 

the duration of the intrinsic cycle c in the system (see Methods).  The minimum prediction error is achieved with 

a weather bootstrapping window of 199 days and an intrinsic cycle of 202 days.  


