Publication Charges and Reprints

There has been a change in our author billing and reprint ordering system. Publication charges and reprint orders are now handled by Dartmouth Journal Services using a web-based system.

Within the next 24 hours you will receive an e-mail from aubilling.djs@sheridan.com. This e-mail will include a link to an online reprint order form and to an estimate of your publication charges. From this secure website you will be able to review the estimated charges for your article and order reprints. Please log in to this website as soon as possible to ensure that there will be no delay to your article being published.

Please note that this is a change in procedure. If you have questions regarding this change, about the e-mail you will receive, or about the website, please contact aubilling.djs@sheridan.com or call 802-560-8518.
1. Update to Adobe Acrobat Reader DC
The screen images in this document were captured on a Windows PC running Adobe Acrobat Reader DC. Upgrading to the newest version is not always necessary, but it is preferable, and these instructions apply only to Adobe Acrobat Reader DC. You can also create annotations using any version of Adobe Acrobat. Adobe Acrobat Reader DC can be downloaded at no cost from http://get.adobe.com/reader/

2. What are eProofs?
eProof files are self-contained PDF documents for viewing on-screen and for printing. They contain all appropriate formatting and fonts to ensure correct rendering on-screen and when printing hardcopy. SJS sends eProofs that can be viewed, annotated, and printed using either Adobe Acrobat Reader or Adobe Acrobat.

3. Show the Comment Toolbar
The Comment toolbar isn’t displayed by default. To display it, choose View > Tools > Comment > Open.

4. Using the PDF Comments menu
To insert new text, place your cursor where you would like to insert the new text, and type the desired text. To replace text, highlight the text you would like to replace, and type the desired replacement text. To delete text, highlight the text you would like to delete and press the Delete key.

Acrobat and Reader will display a pop-up note based on the modification (e.g., inserted text, replacement text, etc.). To format text in pop-up notes, highlight the text, right click, select Text Style, and then choose a style. A pop-up note can be minimized by selecting the X button inside it. When inserting or replacing text, a symbol indicates where your comment was inserted, and the comment is shown in the Comments List. If you do not see the comments list, you are editing the live text instead of adding comments, and your changes are not being tracked. Please make certain to use the Comments feature instead.

5. Inserting symbols or special characters
An insert symbol feature is not available for annotations, and copying and pasting symbols or non-keyboard characters from Microsoft Word does not always work. Use angle brackets < > to indicate these special characters (e.g., <alpha>, <beta>).

6. Editing near watermarks and hyperlinked text
eProof documents often contain watermarks and hyperlinked text. Selecting characters near these items can be difficult using the mouse. To edit an eProof which contains text in these areas, do the following:

- Without selecting the watermark or hyperlink, place the cursor near the area for editing.
- Use the arrow keys to move the cursor beside the text to be edited.
- Hold down the shift key while simultaneously using arrow keys to select the block of text, if necessary.
- Insert, replace, or delete text, as needed.

7. Reviewing changes
To review all changes, open the Comment menu and the Comment List is displayed.

Note: Selecting a correction in the list highlights the corresponding item in the document, and vice versa.

8. Still have questions?
Try viewing our brief training video at https://authorcenter.dartmouthjournals.com/Article/PdfAnnotation
This PDF needs to be proofread and annotated.

Note: these annotations will not actually change the content of the PDF – they just point out the areas where corrections are needed. The actual corrections will be made to the native article files.

1. **Insert Text Tool:** Text needs inserted into this sentence.
2. **Replace Text Tool:** Some of the text in this paragraph needs to be replaced.
3. **Delete Text Tool:** Some of the text in this overly long sentence needs to be deleted.
4. **Sticky Note Tool:** This image needs to be reduced:

A. Inserted text
B. Replaced text
C. Deleted text
D. Sticky Note
Insertion of N-Terminal Hinge Glycosylation Enhances Interactions of the Fc Region of Human IgG1 Monomers to Glycan-Dependent Receptors and Blocks Hemagglutination by the Influenza Virus

Patricia A. Blundell,* Dongli Lu,† Mark Wilkinson,* Anne Dell,‡ Stuart Haslam,§ and Richard J. Pleass*

In therapeutic applications in which the Fc of IgG is critically important, the receptor binding and functional properties of the Fc are lost after deglycosylation or removal of the unique AsnN-galactosyltransferase (T/S) sequon. A population of Fcs bearing sialylated glycans has been identified as contributing to this functionality, and high levels of sialylation also lead to longer serum retention times advantageous for therapy. The efficacy of sialylated Fc has generated an incentive to modify the unique N-linked glycosylation site at AsnN, either through chemical and enzymatic methods or by mutagenesis of the Fc, which disrupts the protein–AsnN carbohydrate interface. In this study, we took an alternative approach by inserting or deleting N-linked attachment sites into the body of the Fc to generate a portfolio of mutants with tailored effector functions. For example, we describe mutants with enhanced binding to low-affinity inhibitory human Fcγ and glycan receptors that may be usefully incorporated into existing Ab engineering approaches to treat or vaccinate against disease. The IgG1 Fc fragments containing complex sialylated glycans attached to the N-terminal AsnN sequon bound influenza virus hemagglutinin and disrupted influenza A–mediated agglutination of human erythrocytes.

The Journal of Immunology, 2019, 202: 000–000.

Multiple lines of evidence have shown that glycosylation is critical to driving either the anti- or proinflammatory capability of IgG (1). Glycosylation of the only available carbohydrate attachment site (AsnN) in the Fc is essential for interactions with type 1 receptors (Fcγ) and type 2 receptors (glycan dependent) but also for driving interactions with the complement cascade (2–5).

In humans, infusion of Fc fragments is sufficient to ameliorate idiopathic thrombocytopenic purpura in children, demonstrating the therapeutic use of the Fc in vivo (6). These anti-inflammatory properties of the Fc are lost after deglycosylation of IgG, and a population of IgG-bearing sialylated Fcs has been identified as making a significant contribution to the control of inflammation in animal models (7, 8). Higher levels of sialylation also leads to longer serum retention times (9, 10), and studies in humans and mice have shown that influx and efflux of IgG into the CNS is glycans and sialic acid dependent (11–16).

Consequently, the efficacy of sialylated Fc has generated an incentive to modify the existing glycans on AsnN, either by chemical means or through mutagenesis programs in the Fc protein backbone that disrupt the protein–AsnN carbohydrate interface (17–19). However, chemical modification of pre-existing glycans is expensive and reliant on a sustainable source of human Fc, whereas mutagenesis approaches on the Fc, or expression in glycosidase-deficient/transgenic cell lines, have yielded little improvement in AsnN sialylation to the levels required for significant enhancements in the affinity of binding to FcγRs (18, 19). Recently, coadministration of two glycosyltransferase Fc-fusion proteins has been shown to convert endogenous IgG into sialylated anti-inflammatory IgGs that attenuate autoimmune disease in animal models in a platelet-dependent manner (20). Although in vivo enzymatic sialylation may circumvent many technical issues concerning with chemical or mutagenic approaches to generating sialylated IgG, it may not be appropriate in all clinical settings, for example in neurologic diseases (e.g., neuromyelitis optica) in which the target site is mostly devoid of platelets and in which two different Fc fusions would need to traverse the blood–brain barrier simultaneously. This approach also runs the risk of off-target glycan modifications and known immunogenicity of long-term administration of Fc fusions (21).

Mutagenesis studies to date have also been limited in two further respects. Side-chain changes have typically been restricted to alanine or serine, and functionality studies have mostly been confined.
to FcR-binding studies (22, 23). It is therefore of academic interest and potential clinical value to explore more thoroughly how the introduction of additional N-glycan sites into the Fc might affect changes in binding to FcR and other atypical Fc glycan receptors, including sialic acid–binding Ig-type lectin (Siglecs) and C-type lectins.

We recently published two complementary approaches that radically increase the sialic acid content of the Fc (24) first by insertion of the 18-aa tailpiece from IgM onto the C terminus of the IgG1–Fc into which a cysteine-to-alanine substitution is made at Cys\(^{575}\) and second by the addition of an extra N-glycan to the N terminus at position Asn\(^{221}\). This approach resulted in both multimeric and monomeric molecules that are 75% sialylated (compared with 2% for the IgG–Fc control) that bind to sialic acid–dependent receptors, including Siglec-1 and myelin-associated glycoprotein (MAG) (24), which are clinically implicated in the control of neuropathology (15, 25). As many pathogens rely on glycans to infect host cells, these reagents may also be useful as inhibitors of infection (26).

The human IgG1–Fc typically does not bind glycan receptors because the glycan attached to Asn\(^{297}\) is largely buried within the cavity formed by the CH2-CH3 homodimer (27, 28). The location and content of glycans attached at Asn\(^{297}\) also modulates the affinity of the Fc for binding to the classical FcRs through conformational changes imparted to the FcR-binding region located in the lower hinge (29). In this article, we show that these limitations to Asn\(^{297}\)-directed receptor binding can be overcome through a program of mutagenesis aimed at disrupting disulfide bonding while enhancing N-linked glycosylation within the IgG1 Fc (Figs. 1, 2).

To this end, we created two panels of human IgG1 Fc mutants (Figs. 1, 2) by deleting critical disulfide bonds and/or by inserting or deleting N-linked asparagine attachment sites located within the previously described IgG1–Fc multimer (2, 5, 24, 30). This approach not only yielded molecules with enhanced binding to low-affinity FcγRs but also showed interactions with receptors not previously known to bind the IgG1 Fc, including Siglec-1, Siglec-2, Siglec-3, Siglec-4, CD23, Dectin-1, Dectin-2, CLEC-4A (C-type lectin dendritic cell immunoreceptor [DCIR]), CLEC-4D,
Macrophage mannose receptor (MMR), mannose-binding lectin (MBL), and DEC-205. Finally, we were able to identify monomeric Fc glycan mutants with enhanced binding to influenza A virus hemagglutinin (HA) that inhibited viral-mediated agglutination of human erythrocytes.

Materials and Methods

Production of mutants

The generation of glycan mutants in all combinations has been described previously for the hexa-Fc that contains cysteines at both positions 309 and 575 (24). To make the new mutants described in Fig. 1 in which Cys575 was mutated to alanine, PCR overlap extension mutagenesis was used with a pair of internal mismatched primers 5'-ACCCTGCTTGCTCAACTCT-3' / 3'-GGCCAGCTAGCTCAGTAGGCGGTGCCAGC-5' for each plasmid vector coding for a designated glycan modification. The parental plasmids used for these new PCR reactions have been described previously (24). The resulting C575A mutants were then further modified to remove Cys309 using primer pair 5'-TCACCGTCTTGCACCAGGACT-3' / 3'-AGTCTCTGGTGCAAGACGGTGA-5' to create the panel of double cysteine knockouts described in Fig. 2. To verify incorporation of the desired mutation and to check for PCR-induced errors, the open reading frames of the new mutants were sequenced on both strands using previously described flanking primers (24). CHO-K1 cells (European Collection of Authenticated Cell Cultures) were transfected with plasmid using FuGene (Promega), and Fc-secreting cells were cloned, expanded, and the proteins purified as previously described (2, 30).

Receptor and complement binding assays

Methods describing the binding of mutants to tetrameric human dendritic cell-specific intercellular adhesion molecule-3–grabbing nonintegrin (DC-SIGN; Elicityl), Siglec-1, Siglec-4, and Siglec-3 (Stratech Scientific) have all been described previously (2, 30). The same ELISA protocol was used for Siglec-2, CD23, dec-1, dec-2, clec-4a, clec-4d, MBL, and MMR (Stratech Scientific or Bio-Techne). Binding of C1q and C5b-9 have been described previously (2, 30). ELISAs were used to investigate binding of Fc glycan mutants to human Fc\textsubscript{gRI}, Fc\textsubscript{gRIIA}, Fc\textsubscript{gRIIB}, Fc\textsubscript{gRIIIA}, and Fc\textsubscript{gRIIIB} (Bio-Techne). Receptors were coated down on ELISA plates (Nunc) in carbonate buffer (pH 9) (Sigma-Aldrich) at 2 mg/ml overnight at 4°C, unless otherwise specified. The plates were blocked in PBS/0.1% Tween-20 containing 5% dried skimmed milk. Plates were washed three times in PBS/0.1% Tween-20 before adding Fc mutant proteins at the indicated concentrations and left at 4°C overnight. Plates were washed as

<table>
<thead>
<tr>
<th>Fc-construct</th>
<th>Heavy chain composition</th>
<th>State by SDS-PAGE</th>
<th>State by SEC-HPLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexa-Fc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C309L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C309L/C575A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C309L/N297A/C575A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C309L/N563A/C575A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D221/N309L/N927A/C575A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D221/N309L/N927A/N563A/C575A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D221/N309L/C575A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D221/N309L/N297A/C575A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 2. Schematic showing the C575A panel of glycan mutants from Fig. 1 in which Cys575 and Leucine310 is additionally changed to leucine and histidine as found in the native IgG1 Fc sequence to create the C309L/C575A panel of mutants. Red stars indicate the hinge Asn221, the C\textg{2} Asn297, and the tailpiece Asn563 glycan sites.
characterization of mutant Fc proteins by SDS-PAGE. (A) N563A/C575A and N297A/N563A/C575A form laddered multimers (red arrows) with folding intermediates (blue arrows) that are different to those formed by the hexa-Fc control. The C575A and N297A/C575A mutants run as monomers, with dimers and trimers also seen. Removal of Asn 663 favors multimerization in the presence of Cys 575 but the absence of Cys 575. The addition of a N-X-(T/S) glycan sequon to generate N-terminally glycosylated hinges (the D221N series of mutants) did not affect multimerization but increased the molecular mass of all mutants. (B) The same mutants as in (A) but run under reducing conditions. (C) The same mutants as in (A) but stained with Coomassie reagent. The decreasing molecular masses seen in the Fc represent sequential loss of V-linked glycans. The N297A/N563A/C575A mutant has the smallest molecular mass because it has no glycans attached to the Fc, and D221N/C575A has the largest molecular mass because it has three glycans attached. The types of glycans attached at Asn 297, Asn 563, and Asn 663 for all mutants are shown in Supplemental Figs. 2–4. (Supplemental Fig. 1A). Plates were washed and developed with 100 μl of alkaline phosphatase–conjugated F(ab')2 fragment-specific detection Ab diluted 1 in 500 in TMS buffer. Glycosylated Fc fragments that bound to the glycan receptors were left to bind the conjugated Ab for 1 h at room temperature on a rocking platform. Plates were washed as above and developed for 10 min with 100 μl/well of p-Nitrophenyl phosphate. Plates were read at 405 nm using a LT-4500 Microplate Absorbance Reader (Labtech), and the data were plotted with GraphPad Prism.

Hemagglutination inhibition assay

To determine the optimal virus-to-erythrocyte ratio, 2-fold virus stock (2B Scientific) dilutions were prepared in U-shaped 96-well plates (Thermo Fisher Scientific). The same volume of a 1% human O Rh± RBC suspension (Innovative Research) was added to each well and incubated at room temperature for 60 min until erythrocyte pellets had formed in the negative control. After quantifying the optimal virus-to-erythrocyte concentration (4HA units), serial 2-fold dilutions of Fc, control IVIG (GAMMAGARD, Baxter Healthcare), or polyclonal goat anti-influenza H1N1 (Bio-Rad Laboratories) were prepared, starting at a concentration of 2 μM, and q 21 mixed with 50 μl of the optimal virus dilution. After a 30 min incubation at 4°C, 50 μl of the human erythrocyte suspension was added to all wells for 60 min, and the plates were read at 4°C with a 4 hi n1 5 0.
and plates incubated at room temperature for 1 h, after which erythrocyte pellets could be observed in the positive controls.

N-glycomic analysis

N-glycomic analysis was based on previously developed protocol with some modifications (31). Briefly, the N-glycans from 50 μg of each sample were released by incubation with New England BioLabs Rapid PNGase F and isolated from peptides using Sep-Pak C18 cartridges (Waters). The released N-glycans were permethylated, prior to MALDI mass spectrometry analysis. Data were acquired using a 4800 MALDI-TOF/TOF mass spectrometer (Applied Biosystems) in the positive ion mode. The data were analyzed using Data Explorer (Applied Biosystems) and GlycoWorkbench (32). The proposed assignments for the selected peaks were based on composition together with knowledge of the biosynthetic pathways.

Binding to FcyRs by Biacore

Binding to FcyRs was carried out using a Biacore T200 biosensor (GE Healthcare). Recombinant expressed Fcys (R&D systems and Sino Biological) were captured via their histidine tags onto CM5 chips pre-coupled with 9000 RU anti-His Ab (GE Healthcare) using standard amine chemistry. Fc mutants were injected over captured receptors at a flow rate of 20 μl/min, and association and dissociation were monitored over indicated time scales before regeneration with two injections of glycine (pH 1.5) and recalibration of the sensor surface with running buffer (10 mM HEPES, 150 mM NaCl [pH 7]). Assays were visualized with Biacore T200 evaluation software v 2.0.1.

Results

Disulfide bonding and glycosylation influence the multimerization states of hexa-Fc

To determine the contribution of two N-linked glycosylation sites (Asn²⁹⁷ and Asn⁵⁶³) and two cysteine residues (Cys³⁰⁹ and Cys⁵⁷⁵) in the multimerization of hexa-Fc (2), we created two panels of glycosylation- and cysteine-deficient mutants by site-directed mutagenesis, using the previously described hexa-Fc as the template (Figs. 1, 2). We also inserted an N-linked attachment site at the N terminus of the Fc (D221N) to investigate the impact of additional glycosylation on Fc function (Figs. 1, 2). Following transfection of these mutated IgG1–Fc DNAs into CHO-K1 cells, stable clonal cell lines were established, and the secreted Fcs were purified by protein G affinity chromatography. The purified proteins were analyzed by SDS-PAGE (Fig. 3) and size-exclusion chromatography (SEC)-HPLC (Supplemental Fig. 1D).

When analyzed under nonreducing conditions (Fig. 3A, 3C and Supplemental Fig. 1C), the C575A mutant migrated mostly as monomers (∼55 kDa), with a very small proportion of dimer (∼110 kDa) and trimer (∼165 kDa). Insertion of a glycan at Asn²²¹ into the C575A mutant (to create D221N/C575A) resulted in reduction of the trimer fraction and a decrease in the proportion of dimers observed, although the molecular weights of each of the species increased as a consequence of the additional N-terminally attached Asn²²¹ sugar (Fig. 3A–C, Supplemental Fig. 1C).

Because we had previously shown that removal of the tailpiece glycan (Asn⁶⁶³) in hexa-Fc led to the formation of dodecamers (24), we reasoned that a similar mutation introduced into the C575A mutants would also lead to enhanced dodecamer formation. Surprisingly, removal of Asn⁶⁶³, as in N563A/C575A, N297A/N563A/C575A, D221N/N563A/C575A, and D221N/ N297A/N563A/C575A, led to the formation of a laddering pattern of different molecular masses from ∼50 to >500 kDa (Fig. 3A, red arrows, 3C), representing monomers, dimers,
trimers, tetramers, pentamers, hexamers, etc. Weaker bands between these species may represent 25 kDa folding intermediates that include Fc halfers (Fig. 3A, blue arrows). All proteins in which the tailpiece Asn\(^{563}\) glycan was substituted for alanine run as multimers in solution when examined by SEC-HPLC (Supplemental Fig. 1C).

By running these mutants under reducing conditions, we were able to determine the relative sizes and occupancy of the glycans attached at each position, showing that the Asn\(^{221}\) and Asn\(^{563}\) glycans are larger than that at Asn\(^{297}\) and that fully aglycosylated null mutants such as N297A/N563A/C575A are \(-10\) kDa lighter than either hexa-Fc or C575A glycan-competent molecules (Fig. 3B).

As Cys\(^{309}\) is present in these mutants (Figs. 1, 3A–C), the ladders may arise through disulfide bond formation between the only freely available sulfhydryl at Cys\(^{309}\) in two adjacent monomers. We reasoned that the loss of the tailpiece glycan in these four N563A mutants allows the hydrophobic amino acid residues (Val\(^{564}\), Leu\(^{566}\) and His\(^{567}\)) also located in the tailpiece to cluster, thereby permitting disulfide bonding at Cys\(^{309}\).

To test the hypothesis that Cys\(^{309}\) was indeed responsible for the laddering seen with the N563A-deficient mutants, we generated a second panel of C575A mutants in which Cys\(^{309/310}\) are mutated to Leu\(^{309/310}\) as found in the wild-type IgG1 Fc sequence (Fig. 2F). We also generated the mutant CL309-310LH (C309L) in which the tailpiece Cys\(^{295}\) was still present. This mutant ran similarly to hexa-Fc under nonreducing conditions, albeit with the presence of intermediates (Fig. 3D, blue arrows) that were notably absent in hexa-Fc, showing that Cys\(^{309}\) stabilizes the quaternary structure in the presence of Cys\(^{295}\).

Importantly, the loss of Cys\(^{309}\) also resulted in the loss of the ladders previously seen in the Cys\(^{309}\)-competent mutants (Fig. 3D, 3F versus 3A, 3C), with all the double cysteine mutants now running principally as monomers by SDS-PAGE. The C309L/N297A/C575A mutant runs as four different monomeric species (Fig. 3D) that resolve as two bands under reduction (Fig. 3E). These bands may represent glycan variants arising at Asn\(^{563}\). Given that these variants are absent in the C309L/C575A mutant, we conclude that the presence of Asn\(^{297}\) glycan also controls glycosylation efficiency at Asn\(^{563}\). To a degree, the presence of the Asn\(^{221}\) glycan also limits the occurrence of these Asn\(^{563}\) glycoforms because under reduction, only a single band is seen in the D221CN/C309L/N297A/C575A mutant (Fig. 3E).

Although the panel of double cysteine knockouts run mostly as monomers on SDS-PAGE (Fig. 3D, 3F), the double cysteine knockouts containing the N563A substitution run as a mixture of monomers and multimers in solution (Supplemental Fig. 1C). Thus, removal of the bulky Asn\(^{563}\) glycan exposes hydrophobic amino acid residues in the tailpiece that facilitate noncovalent interactions in solution that would not otherwise readily occur in the presence of the sugar.

The Asn\(^{297}\) and Asn\(^{563}\) glycans are critical for the interactions of mutants with glycan receptors, and their absence can be compensated by the presence of Asn\(^{221}\).

To determine which N-linked glycan in the double cysteine knockout mutants (Fig. 2) contributes to receptor binding, we \(Q_{25}\) investigated their interaction with soluble recombinant glycan receptors by ELISA (Fig. 4, Table 1). In stark contrast to the IgG1–Fc control, mutants in which both Asn\(^{297}\) and Asn\(^{563}\) are \(R_{11}\) present (e.g., C309L/C575A) bound all 12 glycan receptors investigated (Fig. 4). Removal of the tailpiece glycan Asn\(^{563}\), as in C309L/N563A/C575A or C309L/N297A/N563A/C575A,

![Table 1. Summary of mutants and their interactions with glycan receptors](image-url)
abolished binding to these same receptors, showing that Asn\(^{563}\) is required for glycan receptor binding.

Removal of the glycan at Asn\(^{297}\), as in C309L/N297A/C575A, also abolished binding to all glycan receptors with the exception of Siglec-1. Taken together, the data show that both Asn\(^{297}\) and Asn\(^{563}\) are required for the broad glycan receptor binding seen with the C309L/C575A mutant (Fig. 4 and Table I).

With the exception of MBL, MMR, and DC-SIGN, binding by the double aglycosylated knockout C309L/N297A/N563A/C575A could be reinstated by the addition of sialylated glycans at Asn\(^{221}\), creating the mutant D221N/C309L/N297A/N563A/C575A. The Asn\(^{221}\) glycan contributes all the sialylated sugars that are required to explain the marked improvements in binding to other glycan receptors, compared with all equivalent mutants lacking Asn\(^{221}\) (Supplemental Figs. 2–4). This is in agreement with our previous work in which we demonstrated in fully cysteine-competent multimers that Asn\(^{221}\) is >75\% terminally sialylated (24).

The C309L mutant that can form cysteine-linked multimers because of the retention of Cys\(^{575}\) in the tailpiece (Fig. 3D, F and Supplemental Fig. 1C) was unable to bind to any glycan receptors with the exception of CD23 (Fig. 4). Thus, the Asn\(^{563}\) glycans are only available for binding when attached to lower valency molecules and are buried within multimers that form either through Cys\(^{575}\)-driven covalent bridging or by noncovalent clustering through multiple hydrophobic amino acids located in the tailpiece (e.g., C309L/N563A/C575A).

We next investigated binding of the panel of C575A mutants in which Cys\(^{309}\) is still present (Fig. 1) and that we had shown to have the tendency to form dimers and laddered multimers (Fig. 3A, C and Supplemental Fig. 1C). This panel of molecules, in which disulfide binding mediated by Cys\(^{309}\) could still occur, bound less well to all the glycan receptors investigated (Fig. 5). With the sole exception of Siglec-1, the presence of the Asn\(^{221}\) glycan was unable to improve binding, in contrast to the double cysteine knockouts. We conclude that N-glycans at all three attachment sites (Asn\(^{221}\), Asn\(^{297}\), and Asn\(^{563}\)) are more predisposed to binding to glycan receptors when expressed on monomers and that the presence of Asn\(^{221}\) as the only glycan is sufficient to impart this broad specificity of binding, as exemplified by D221N/N297A/N563A/C575A and D221N/C309L/N297A/N563A/C575A (Figs. 4, 5).

We observed that the aglycosylated mutant N297A/N563A/C575A had a propensity to bind glycan receptors (Fig. 5). We do not have a simple answer for this observation, although the lack of binding by its counterpart C309L/N297A/N563A/C575A in which Cys\(^{309}\) is absent suggests that it may be glycan independent and a consequence of increased avidity interactions through multimerization (compare Fig. 3A v 3D).

Glycan receptor binding is critically dependent on the presence of N-linked glycans.

To be certain that glycan receptor binding was dependent on the presence of N-linked carbohydrates, and more specifically sialic acid, these sugars were removed from the triglycan D221N/C309L/C575A mutant using either PNGase F or neuraminidase (Supplemental Fig. 1B). As expected, the D221N/C309L/C575A mutant treated with PNGase F was unable to bind any of the receptors investigated, whereas treatment with neuraminidase inhibited binding to the sialic acid–dependent receptors (Supplemental Fig. 1B).
FIGURE 6. Binding of C309L (A–C) and the C575A (D–F) glycosylation mutants to classical FcγRs. The D221N/C309L/N563A/C575A mutant shows enhanced binding to FcγRI, FcγRIIB, and FcγRIIIA, whereas C309L/N563A/C575A only shows enhanced binding to FcγRI and FcγRIIIA. Mutant N563A/C575A with a predisposition to multimerize via Cys309 interactions (as shown in Fig. 3A, 3C) binds strongly to FcγRI and FcγRIIIA as is also seen with C309L/N563A/C575A that carries the same N563A mutation. The D221N/N563A/C575A mutant shows enhanced binding to FcγRI and FcγRIIIA. In multimers, the presence of Asn221 constrains interactions with FcγRIIB that are enhanced when Asn221 is attached to monomers (E). No improvement in binding was observed to FcγRIIA or FcγRIIIB for any of the mutants tested (data not shown). Error bars represent SD around the mean value; n = 2 independent experiments.
Table II. Summary of mutants and their interactions with Fcy receptors

<table>
<thead>
<tr>
<th>Fcy Receptors</th>
<th>Complex Sialylated Glycans Detected</th>
<th>FcγRI</th>
<th>FcγRIIA</th>
<th>FcγRIIB</th>
<th>FcγRIIA</th>
<th>FcγRIIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>C309L/N297A/N563A/C575A</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IgG1-Fc</td>
<td>—</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N297A/C575A</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D221N/N297A/C575A</td>
<td>+++</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C309L/N297A/C575A</td>
<td>+++</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D221N/C309L/N297A/C575A</td>
<td>+++</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C575A</td>
<td>—/−</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D221N/C575A</td>
<td>+++</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C309L/C575A</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D221N/C309L/C575A</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C309L/N563A/C575A</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D221N/C309L/N563A/C575A</td>
<td>++</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D221N/C575A</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Hexa-Fc</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>D221N/N563A/C575A</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C309L</td>
<td>++</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N297A/N563A/C575A</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N563A/C575A</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Asn²²¹-based monomers show differential binding to low-affinity human FcyRs

Given the remarkable binding to glycan receptors seen with some of the glycan-modified mutants, we tested the impact that this extra glycosylation conferred on binding to the classical human FcyRs (Fig. 6, Table II). The presence of Asn²²¹, for example in the D221N/C309L/N297A/N563A/C575A mutant, imparted improved binding to FcγRIIB (CD32B) even in the absence of both Asn²⁹⁷ and Asn⁵⁶³ when compared with the IgG1–Fc and controls in which Asn²²¹ was absent (Fig. 6, for FcγRIIB compare filled symbols versus unfilled symbols). However, the presence of Asn²²¹ did not improve binding to FcγRIIA (compare D221N/C309L/N563A/C575A and C309L/N563A/C575A), although binding of both mutants was considerably stronger than the IgG1–Fc monomer control (Figs. 6, 7B). We hypothesize that the enhanced binding observed with the N563A-deficient mutants is a consequence of increased tailpiece-mediated assembly by all the Asn²²¹-deficient proteins (Supplemental Fig. 1C). Improved binding to FcγR1 was also observed with these two mutants against the IgG1–Fc control (Fig. 6, 7A), although no improvements were seen with respect to either FcγRIIA or FcγRIIB for any of the mutants tested.

Both the double cysteine knockouts, C309L/N563A/C575A and D221N/C309L/N563A/C575A, that form multimers in solution and bound FcγRI and FcγRIIA (Val¹⁷⁶) strongly in ELISAs were tested for binding FcγRs receptors by surface plasmom resonance analysis (Fig. 7). Both mutants displayed slower apparent off rates compared with the control Fc monomer, consistent with avidity effects either through binding to multiple immobilized FcγRs molecules or rebinding effects (Fig. 7). The loss of Asn²⁹⁷ in the C309L/N297A/C575A and D221N/C309L/N297A/C575A mutants resulted in molecules that were unable to bind FcγRs, as previously shown by ELISA (Figs. 6, 7).

We next investigated binding of the multimers formed through Cys³⁰⁹ (Figs. 1, 3A, 3C). In multimers, the presence of Asn²²¹ reduced binding to all FcγRs (Fig. 6, Table II), whereas binding to the glycan receptors, although lower than that seen with monomers, was retained (Fig. 5). Mutimers in which Asn⁵⁶³ and Cys⁵⁷⁵ are both mutated to alanine, as in N563A/C575A, bound very strongly to FcγRI and FcγRIIA, with improved binding to FcγRIIB when compared with either the hexa-Fc or IgG1–Fc controls (Fig. 6). The aglycosylated multimer N297A/N563A/C575A bound very well to the inhibitory FcγRIIB receptor while retaining binding to FcγRI (Fig. 6).

Asn²²¹-based monomers and multimers show reduced complement activation

Binding of Clq and activation of the classical complement pathway by complex monomers (Fig. 8A) and multimers (Fig. 8B) was assessed using ELISA and summarized in Table III (24, 30). With the exception of D221N/C309L/N563A/C575A, all Asn²²¹-containing monomers bound Clq less well than the IgG1–Fc or q²⁷ Asn²²¹-deficient controls (Fig. 8A), and all four Asn²²¹-containing proteins were unable to activate the classical complement pathway to its terminal components (Fig. 8A). These findings were recapitulated with the Cys³⁰⁹ mutants (Fig. 8B), including those proteins shown to form multimers (e.g., D221N/N297A/N563A/C575A against N297A/N563A/C575A). As previously shown by other groups, we have identified mutants capable of forming multimers (e.g., C309L and D221N/N563A/C575A) that avidly bind Clq but were unable to fix C5b-9 when compared with hexa-Fc (Fig. 8B) (33).

Asn²²¹-based monomers and multimers exhibit complex sialylation patterns

The structure of the N-glycan on the Fc of IgG Abs has been shown to influence multiple receptor interactions. For example, the interaction of IVIG with glycan receptors has been attributed to direct and/or indirect effects of N-glycan sialic acid on the Fc (29, 34, 35). Therefore, we investigated the nature of the N-glycans on the two panels of glycosylation- and cysteine-deficient mutants by MALDI-TOF mass spectrometry–based glycomic analysis (Fig. 9, Supplemental Fig. 2–4).

We previously demonstrated that N-glycans from both IgG1–Fc and clinical IVIG preparations are dominated by biantennary N-glycans with 0, 1, or 2 galactose residues (2). A minority of these complex structures are also monosialylated (23). Representative glycomic data are presented in Fig. 9 for N297A/C575A and D221N/N297A/N563A/C575A.

In both samples, the spectra demonstrate a higher level of N-glycan processing with enhanced levels of biantennary galactosylation and sialylation. In addition, larger tri- and tetra-antennary complex N-glycans are also observed, which can be fully sialylated (for example, peaks at m/z 3776 and 4587). Therefore, the glycomic analysis revealed that both Asn-221...
and Asn-575 contained larger, more highly processed N-glycans that are not observed on the IgG1–Fc control (Fig. 9 and Supplemental Figs. 2–4). As predicted, no glycans could be detected on the glycosylation-deficient double mutants (N297A/N563A/C575A and C309L/N297A/N563A/C575A).

The Asn221 glycan imparts enhanced binding to influenza HA

To determine if any of the hypersialylated Fc mutants possessed biologically useful properties, we investigated their binding to HA, a prototypic viral sialic acid–binding ligand (Fig. 10A, 10B). We used clinically available IVIG as a positive control because IVIG...
is known to contain high concentrations of IgG Abs against a diverse range of influenza HAs (36).

As expected, IVIG bound strongly to recombinant HA from both influenza A and B viruses (Fig. 10A, 10B). With the exception of the aglycosylated mutants (C309L/N297A/N563A/C575A and N297A/N563A/C575A) and the IgG1–Fc control, all the glycan-modified Fc fragments bound recombinant HA from both group A and B viruses. Binding was also reflected in the abundance of
sialylated N-glycans of the mutant proteins (Supplemental Figs. 2–4). Thus, mutants containing Asn221 bound more strongly than their equivalents in which Asn221 was absent (Fig. 10A, 10B).

Although binding to native inactivated influenza strain A New Caledonia/20/99 virus (H1N1) was poorer than binding to either recombinant HAs from influenza A (Shantou) or influenza B (Florida), respectively, two mutants (D221N/C309L/N297A/C575A and D221N/C575A) showed superior binding to the native virus compared with either IVIG or their equivalent mutants in which Asn221 was absent (compare C575A with D221N/C575A) (Fig. 10A, 10B).

Asn221-containing mutants inhibit hemagglutination by influenza

To test if the binding to HA has any functional relevance, we used the World Health Organization–based hemagglutination inhibition protocol to quantify influenza-specific inhibitory titers of the mutants that bound the native virus strongly (Fig. 10C). Both D221N/C309L/N297A/C575A and D221N/C575A prevented hemagglutination by New Caledonia/20/99 virus (H1N1) at concentrations as low as 0.1 μM and were demonstrably more effective than molar equivalents of either IVIG or anti-H1N1 polyclonal IgG.

In contrast, the equivalent molecules that lack Asn221 (i.e., C309L/N297A/C575A and C575A) failed to inhibit hemagglutination although partial inhibition was observed with the C575A mutant at the highest concentrations in some experiments (Fig. 10C). Hence, receptor binding of influenza A viruses is competed out only by mutants in which Asn221 and Asn563 are present. That both mutants run entirely as monomers by SEC-HPLC (Supplemental Fig. 1C) shows that the disposition of the glycans at the N terminus and C terminus of the Fc are more favorably oriented for binding native viral HA in monomers than multimers.

Discussion

Many groups have postulated that multivalent Fc constructs have potential for the treatment of immune conditions involving pathogenic Abs (2, 5, 37, 38), and a recent study has shown that hexavalent Fcs can block FcγRs leading to their downmodulation and prolonged disruption of FcγR effector functions both in vitro and in vivo (39, 40). Hexameric Fcs have also been shown to inhibit platelet phagocytosis in mouse models of idiopathic thrombocytopenic purpura (39, 41).

Although disulfide-bonded hexameric Fcs may provide exciting new treatment approaches to control autoimmune diseases, they are more difficult to manufacture than smaller simpler Fc molecules. Their beneficial effects must also be carefully balanced with the acute risk of proinflammatory responses observed upon FcγR crosslinking and the increased risk from infection or cancers due to long-term immune suppression. These potential drawbacks with multimeric Fcs led us to investigate if complex monomers may be developed that retain the advantages of multimers (e.g., high-avidity binding to low-affinity receptors) but that are also more readily manufactured to scale.

Although Fc engineering by mutagenesis and/or direct modification to the Asn221 glycan have yielded modified affinity and/or selectivity for FcγRs (1, 18, 42–47), interactions with glycan receptors have largely been ignored despite a large body of literature demonstrating their importance in controlling unwanted inflammation (48–51). However, such approaches that show enhanced receptor

Table III. Summary of mutants and their interactions with complement and influenza HA

<table>
<thead>
<tr>
<th>Complex Glycans Detected</th>
<th>Binds Native Influenza Virus (Caledonia A/H1N1)</th>
<th>Binds Recombinant HA (Shantou A/H1N8)</th>
<th>Binds Recombinant HA (Florida B)</th>
<th>Inhibits Influenza Virus (Caledonia A/H1N1) Agglutination</th>
</tr>
</thead>
<tbody>
<tr>
<td>C309L/N297A/C575A</td>
<td>—/+</td>
<td>—</td>
<td>—</td>
<td>No</td>
</tr>
<tr>
<td>N563A/C575A</td>
<td>—/+</td>
<td>—</td>
<td>—</td>
<td>No</td>
</tr>
<tr>
<td>IgG1-Fc</td>
<td>—/+</td>
<td>—</td>
<td>—</td>
<td>n.d.</td>
</tr>
<tr>
<td>N297A/C575A</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>No</td>
</tr>
<tr>
<td>D221N/C309L/C575A</td>
<td>+++</td>
<td>—</td>
<td>—</td>
<td>n.d.</td>
</tr>
<tr>
<td>C575A</td>
<td>—/+</td>
<td>—</td>
<td>—</td>
<td>No</td>
</tr>
<tr>
<td>D221N/C575A</td>
<td>+++</td>
<td>—</td>
<td>—</td>
<td>No</td>
</tr>
<tr>
<td>N297A/C575A</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td>n.d.</td>
</tr>
<tr>
<td>Hexa-Fc</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Table adapted from the manuscript.
We took an alternative approach to glycan modification by introducing, in various combinations, two additional N-linked glycosylation sites (Asn^{162} and Asn^{563}) into our hexa-Fc (2, 24). To investigate the effects of this additional glycosylation, hexa-Fc was further mutated to remove one (Fig. 1) or both of the cysteine residues (Cys^{160} and Cys^{775}) (Fig. 2) that are required for interdisulfide bond formation between individual Fc moieties in hexa-Fc. This approach yielded complex glycosylated molecules (Figs. 3, 9 and Supplemental Figs. 2–4), including the monomeric D221N/C309L/C575A mutant that has all three glycans attached and which showed improved binding to FcγRIIB, DC-SIGN, and DCIR; these receptors being implicated in the efficacy of IVIG (Table I) (8, 17, 20, 58, 59). The triglycan mutant (D221N/C309L/C575A) also bound more strongly and broadly to all the glycan receptors investigated, including receptors recently implicated in IVIG efficacy [e.g., CD23 (60), CD22 (35), and DCIR (clec4a) (34)] when compared with monoglycosylated (e.g., IgG1-Fc) or nonglycosylated (C309L/N297A/N563A/C575A) controls (Fig. 4, Table I).

The observed binding to CD22 was particularly surprising as this receptor prefers α-2,6 linked neuraminic acid and not α-2,3 linkages attached by CHO-K1 cells, although proximity-labeling experiments have recently shown that glycan-independent interactions of CD22/Siglec-2 with Ig in the BCR is possible (61).

We also observed marked binding of D221N/C309L/C575A to decins (Fig. 4), receptors that more typically recognize β-1,3-glucans expressed by fungal pathogens (62). Although dectin-1 is known to bind variably glycosylated human tetraspanins CD37 and CD63 (63), the anti-inflammatory activity of IgG1 immune complexes may be mediated by Fc galactosylation and associations with dectin-1 and FcγRIIB (64).

The insertion of multiple glycan sites into the Fc, in particular at Asn^{221}, enables new receptor interactions that are not possible with solely Asn^{297}-directed approaches (Fig. 11A). For example, we generated the di-glycan D221N/C309L/N297A/C575A mutant that displayed marked binding to Siglec-1 and Siglec-4 (MAG), both receptors being clinically implicated in the control of neuropathy (15, 25). This mutant showed no observable binding to either FcγRs or complement proteins (Tables II, III) yet was...
FIGURE 10. Impact of Fc glycosylation. (A) ELISA binding of the C309L/C575A panel and (B) the C575A panel of Fc glycosylation mutants to HA. (C) Impact of Fc glycosylation on hemagglutination inhibition. A constant amount of influenza A New Caledonia/20/99 virus H1N1 was incubated with titrated amounts of the Fc glycan mutants and added to human O+ erythrocytes that were then allowed to sediment at room temperature for 1 h. Nonagglutinated RBCs form a small halo. Dashed lines indicate splicing from the original plate images deposited with the journal to allow for clearer visualization of pelleted cells in each duplicated well. n = 2 independent experiments.
highly effective at blocking hemagglutination by influenza A virus (Fig. 10C).

As glycamin-mediated binding is essential for the influenza virus to infect cells of the respiratory tract, mutations in HA that lead to loss of receptor binding are unlikely to survive any neutralizing Abs induced during an immune response (Fig. 11B). Modeling of the D221N/C575A mutant shows that the distance from the N-terminal to the C-terminal tips of the Fc is ~60 Å (Fig. 11B), which is the same distance between the sialic acid–binding domain on the HA trimers (65). The Asn221 and Asn563 sugars located at the tips of the Fc are not constrained by their location within the Fc, as with Asn297, and would therefore be expected to be highly mobile and flexible with respect to searching out the HA-binding pocket.

Alternative anti-influenza therapeutic strategies are urgently needed. The use of IVIG during the 2009 and 1918 pandemics reduced mortality from influenza by 26 and 50%, respectively (66, 67), and a recent randomized, placebo-controlled study suggests these figures may be improved by enhancing influenza-specific Abs in IVIG (Flu-IVIG) preparations (36). As Flu-IVIG is manufactured in advance of future epidemics, there may be modest or no neutralizing activity against emerging strains. Combinations of Flu-IVIG or neuraminidase inhibitor drugs with Fc sialic acid–binding domain blockers may enhance the efficacy of Flu-IVIG or neuraminidase inhibitor-based medicines. Neither the D221N/C575A nor D221N/C575A/C575A mutants that inhibited hemagglutination so effectively (Fig. 10C) bind FcyRIIA (Fig. 6 and Table II) and would thus not be expected to interfere with FcyRIIIA-dependent Ab-dependent cellular cytotoxicity toward influenza-infected cells by neutralizing IgG present in Flu-IVIG.

As well as direct HA binding, the molecules may shield sialic acid receptor-binding sites on epithelial cells or act as decoy receptors through receptor mimicry, thereby preventing binding of the virus to epithelial target cells. Similarly, being rich in sialic acid, the molecules may also act as decoy substrates for neuraminidase. Intranasal delivery of Fc fragments may therefore be feasible, as Fc-fused IL-7 can provide long-lasting prophylaxis against lethal influenza virus after intranasal delivery (68). We have previously shown that Fc multimers can bind the neonatal Fc receptor (FcRn) (69). Thus, binding to the FcRn may act to increase the residence time of Fc blockers delivered to the lung (70, 71).

A potential drawback to the hypersialylation approach with respect to blocking HA may be the susceptibility of Fc glycans to viral neuraminidase. Although neuraminidase from *Clostridium perfringens* could catalyze the hydrolysis of sialic acid residues from our soluble Fc fragments and thus block interactions with glycamin receptors (Supplemental Fig. 1B), it remains to be tested if HA-bound Fcs are susceptible to catalysis by the influenza neuraminidase. We believe that metabolic oligosaccharide engineering with alkyne sialic acids could create neuraminidase-resistant Fc blockers (72).

In another example, multiple mutants were shown to bind DEC-205 (Figs. 4, 5, Table I), the major endocytic receptor expressed by dendritic cells, which suggests that these constructs may be useful for the targeted delivery of Ags in vaccines. Current approaches to deliver Ag to DEC-205 rely on DEC-205–specific delivery, often with Ags fused to anti–DEC-205 mAbs (73–75), whereas approaches that target multiple dendritic cell receptors, including q3 DEC-205, may make for more effective Ag delivery.

To be useful in vaccines, an Ag must cluster through the binding of multiple Fc regions to type 2 glycamin receptors or (B) influenza HA. The glycan at Asn297 in the wild-type IgG1 Fc is buried and unable to interact directly with receptors. However, monomers with glycans located at both the N terminus and C terminus of the Fc (Asn297 and Asn563), as in D221N/C575A, are exposed and therefore allow crosslinking of sialic acid–dependent receptors (including Siglec-1 or HA) (48).

FIGURE 11. Model showing proposed cis interactions of the triglycan D221N/C575A mutant with (A) glycan receptors or (B) influenza HA. The glycan at Asn297 in the wild-type IgG1 Fc is buried and unable to interact directly with receptors. However, monomers with glycans located at both the N terminus and C terminus of the Fc (Asn297 and Asn563), as in D221N/C575A, are exposed and therefore allow crosslinking of sialic acid–dependent receptors (including Siglec-1 or HA) (48).
As summarized in Tables I–III, we identified the following: 1) mutant Fc molecules that are capable of binding C1q and activating complement but that show little or no detectable interaction with either FcyRs or glycan receptors; 2) molecules with enhanced activation of complement, improved binding to FcyRs, and little engagement of glycan receptors; 3) molecules with enhanced binding to C1q but little Csb9 deposition that retain interaction with both Fcy and glycan receptors; and 4) monomeric molecules with enhanced binding to a subset of sialic acid–dependent glycan receptors, in particular Siglec-1, Siglec-4, and HA, with little or no interaction with either FcyRs or complement.

Consequently, by adding or removing glycosylation and/or disulfide-bonding sites within our original hexameric Fc platform (2, 5, 24), new repertoires of desirable binding attributes can be made. These molecules may be useful in the control of other pathogens, including Newcastle disease virus, group B streptococci, Streptococcus pneumoniae, and Mycoplasma genitalium, in which sialic acid–dependent interactions are also crucially important (79).

Acknowledgments

This manuscript is dedicated to our mothers who died in 2017. The following reagents were obtained through BEI Resources, National Institute of Allergy and Infectious Diseases, National Institutes of Health as part of the Human Protein Reference Project: 1) H3 HA protein from influenza virus, A/duck/Shanxou/1283/2001 (H3N8), recombinant from Baculovirus influenza A virus (item NR-28916) and 2) HA protein from influenza virus, B/Florida/4/2006, recombinant from Baculovirus influenza B virus (item NR-15169). We thank Abzena for running the surface plasmon resonance analysis.

Disclosures

The authors have no financial conflicts of interest.

References

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

1—Per journal style, the running head (short title) should be 60 characters or fewer (including spaces). The running head in the manuscript was 63 characters, so a short title that appeared in information received with the manuscript has been used instead. Please confirm that this change is acceptable or provide a short title that is 60 characters or fewer.

2—Please confirm that “MRC” was expanded correctly in the grant footnote. Also, should the word “Grant” or some other word be added after Institutional Strategic Support Fund?

3—A response to this query is REQUIRED: ORCID (Open Researcher and Contributor ID) is a unique number used by researchers to unambiguously assign published work to the correct person. More information can be found here: http://orcid.org/. Each author has the option to add his/her ORCID number to his/her profile in The JI online manuscript submission system, and it will be automatically added in the proof. Each author(s) must confirm his/her ORCID number is correct in the proof. Incorrect ORCIDs must be deleted but cannot be deleted without that author’s approval. ORCIDs cannot be added or corrected in the proof.

4—Please verify that the title, footnotes, author names, and affiliations are correct as set. In particular, please note that Fc is a standard abbreviation used without expansion in the journal, so “Fragment Crystallizable” has been deleted from the title. Please confirm or amend. Also, should the word “to” in the title please replaced with the word “with”?

5—Please indicate the correct surname (family name) of each author for indexing purposes.

6—Please verify that the mailing address and e-mail address for correspondence are correct as set.

7—if your article includes supplementary material, please confirm that all supplementary material is cited in the text.

8—if your article includes links to Web sites, please verify that the links are valid and will direct readers to the correct Web page.

9—PLEASE CONFIRM: You have chosen to pay $2500 for members* or $3000 for non-members, in addition to Publication Charges (Page, Color and Supplemental Data charges), to have the article made freely available online** immediately after publication through The JI Author Choice option. *Corresponding Authors who are regular, emeritus, or honorary AAI members in good standing on the date of manuscript acceptance. **In addition to being freely available on The JI web site immediately upon publication, under The JI Author Choice option AAI will also deposit the published version of the article to PubMed Central for availability at the time of publication.

10—Please confirm that the author contribution footnote is correct as presented.

11—Please confirm that all of the abbreviations and expansions are correct as they appear in the abbreviations footnote. If any changes are needed, please ensure that the abbreviations and their expansions in the footnote are consistent with those that are used in the text.
12—Any alternations between capitalization and/or italics in genetic nomenclature have been retained per the original manuscript. Please confirm that all genetic nomenclature has been formatted properly throughout.

13—Please check the proof carefully throughout to verify that the edits have preserved your intent.

14—The original Ref. 25 was a duplicate of Ref. 15, so the duplicate reference was deleted, and the subsequent references were renumbered. Please check the text citations of Ref. 25 and all subsequent references against the References list to ensure that the renumbering was done properly.

15—Please confirm or amend the edits made to “European Collection of Authenticated Cell Cultures” in the sentence beginning “CHO-K1 cells (European…”.

16—Please confirm or amend the edits made to “The Jackson Laboratory” in the sentence beginning “Plates were washed as above and incubated…”.

17—Please confirm or amend the edits made to “SIGMAFAST” in the sentence beginning “Plates were washed and developed…”.

18—In the sentence beginning “Plates were washed five times with TSM…”., please expand “TSM” and “TMS” and add “TSM” and its expansion to the abbreviations footnote unless you are referring to a gene, protein, cell line, chemical, strain, or designation.

19—Please confirm or amend the edits made to “Thermo Fisher Scientific” in the sentence beginning “To determine the optimal…”.

20—Please confirm or amend the expansion of “RT” in the sentence beginning “The same volume…”.

21—Please confirm or amend the edits made to “GAMMAGARD” and “Bio-Rad Laboratories” in the sentence beginning “After quantifying the…”.

22—Please confirm that “NEB” was expanded correctly in the sentence beginning “Briefly, the N-glycans…” or amend as needed.

23—Please confirm that “MS” was expanded correctly in the sentence beginning “The released N-glycans…” and throughout or amend as needed.

24—Please expand “RU” in the sentence beginning “Recombinantly expressed FcγRs…” unless you are referring to a gene, protein, cell line, chemical, strain, or designation.

25—In Tables I, II, and III, please provide footnotes explaining the symbols used in the table body. Also, do nd and n.d. stand for not determined? If so, ND should be used instead, as this is a standard abbreviation used in the journal without expansion.

26—In the sentence beginning “We do not have…” should “Cys309” be changed to “Cys^{309}” for consistency?
27—In Table III, please add a heading for the first column if desired.

28—The original Ref. 37 was a duplicate of Ref. 2, so the duplicate reference was deleted, and the subsequent references were renumbered. Please check the text citations of Refs. 37 and all subsequent references against the References list to ensure that the renumbering was done properly.

29—The original Ref. 54 was a duplicate of Ref. 3, so the duplicate reference was deleted, and the subsequent references were renumbered. Please check the text citations of Refs. 54 and all subsequent references against the References list to ensure that the renumbering was done properly.

30—Please confirm that “ADCC” was expanded correctly in the sentence beginning “Neither the D221N/C575A…” or amend as needed.

31—Please confirm that “DC” was expanded correctly in the sentence beginning “Current approaches to…” or amend as needed.

32—A response to this query is REQUIRED: Please confirm that all potential conflicts of interest have been disclosed.

33—Please confirm that “NIAID” was expanded correctly in the sentence beginning “The following reagents…” in the Acknowledgments or amend as needed.

34—Please confirm that “SPR” was expanded correctly in the sentence beginning “We thank Abzena…” in the Acknowledgments and throughout or amend as needed.

35—Please confirm that all publication details for Ref. 17 are correct, including for the erratum.

36—The original Ref. 25 was a duplicate of Ref. 15, so the duplicate reference was deleted, and the subsequent references were renumbered. Please check the text citations of Ref. 25 and all subsequent references against the References list to ensure that the renumbering was done properly.

37—The original Ref. 37 was a duplicate of Ref. 2, so the duplicate reference was deleted, and the subsequent references were renumbered. Please check the text citations of Refs. 37 and all subsequent references against the References list to ensure that the renumbering was done properly.

38—Please replace “No Title” with the title and date for the conference in Ref. 41 or delete “No Title,” and provide any other details that are needed so a reader can access this material.

39—The original Ref. 54 was a duplicate of Ref. 3, so the duplicate reference was deleted, and the subsequent references were renumbered. Please check the text citations of Refs. 54 and all subsequent references against the References list to ensure that the renumbering was done properly.

40—Please confirm that all publication details for Ref. 59 are correct, including for the erratum.

41—If your article includes figures, please check the figures in your proof carefully. If any changes are needed, please provide a revised figure file.
42—In the legend for Fig. 2, please check the sentence beginning “Schematic showing the...” to ensure that the edits preserve your intent.

43—In the legend for Fig. 3, please provide the stain(s) used, if applicable.

44—Please confirm or amend the edits made to “Sigma-Aldrich” in the sentence beginning “All proteins were...” in the legend for Fig. 3F.

45—Please add an explanation of the colors used in Fig. 7 to the figure legend if it would be appropriate to do so.