LSTM Home > LSTM Research > LSTM Online Archive

Larviciding to prevent malaria transmission

Choi, Leslie, Majambere, Silas and Wilson, Anne ORCID: https://orcid.org/0000-0001-7387-353X (2019) 'Larviciding to prevent malaria transmission'. Cochrane Database of Systematic Reviews, Vol 8, Issue CD012736.

[img]
Preview
Text
Choi_et_al-2019-Cochrane_Database_of_Systematic_Reviews (4).pdf - Published Version
Available under License Creative Commons Attribution Non-commercial.

Download (742kB) | Preview

Abstract

Background
Larviciding refers to the regular application of chemical or microbial insecticides to water bodies or water containers to kill the aquatic immature forms of the mosquito (the larvae and pupae).

Objectives
To summarize research evidence evaluating whether larviciding with chemical or microbial insecticides prevents malaria transmission.

Search methods
We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE; Embase; CAB Abstracts; LILACS; the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP); ClinicalTrials.gov; and the ISRCTN registry up to 6 June 2019.

Selection criteria

We included cluster‐randomized controlled trials (cRCTs), interrupted time series (ITS), randomized cross‐over studies, non‐randomized cross‐over studies, and controlled before‐and‐after studies (CBAs) that compared larviciding with no larviciding.

Data collection and analysis

We independently assessed trials for eligibility and risk of bias, and extracted data. We assessed the certainty of evidence using the GRADE approach.

Main results

Four studies (one cRCT, two CBAs, and one non‐randomized cross‐over design) met the inclusion criteria. All used ground application of larvicides (people hand‐delivering larvicides); one evaluated chemical and three evaluated microbial agents. Studies were carried out in The Gambia, Tanzania, Kenya, and Sri Lanka. Three studies were conducted in areas where mosquito aquatic habitats were less extensive (< 1 km²), and one where habitats were more extensive (> 1 km²; a cross‐over study from The Gambia).

For aquatic habitats of less than 1 km², one cRCT randomized eight villages in Sri Lanka to evaluate chemical larviciding using insect growth regulator; and two CBA studies undertaken in Kenya and Tanzania evaluated microbial larvicides. In the cRCT, larviciding across all villages was associated with lower malaria incidence (rate ratio 0.24, 4649 participants, low‐certainty evidence) and parasite prevalence (risk ratio (RR) 0.26, 5897 participants, low‐certainty evidence) compared to no larviciding. The two CBA studies reported lower malaria prevalence during the intervention period (parasite prevalence RR 0.79, 95% confidence interval (CI) 0.71 to 0.89; 70,902 participants; low‐certainty evidence). The Kenyan study also reported a reduction in the incidence of new malaria cases (RR 0.62, 95% CI 0.38 to 1.01; 720 participants; very low‐certainty evidence).

For aquatic habitats of more than 1 km², the non‐randomized cross‐over trial using microbial larvicides did not detect an effect for malaria incidence (RR 1.58, 95% CI 0.94 to 2.65; 4226 participants), or parasite prevalence (RR 1.15, 95% CI 0.41 to 3.20; 3547 participants); both were very low‐certainty evidence. The Gambia trial also reported the mean haemoglobin level, and there was no difference across the four comparisons (mean difference –0.13, 95% CI –0.40 to 0.13; 3586 participants).

We were unable to summarize or pool entomological outcomes due to unreported and missing data.

Authors' conclusions

Most controlled studies on larviciding have been performed with microbial agents. Ground larviciding for non‐extensive larval habitats may have an effect on malaria transmission, and we do not know if there is an effect in large‐scale aquatic habitats. We found no studies using larviciding application techniques that could cover large aquatic habitats, such as aerial spraying using aircraft.

Item Type: Article
Subjects: QX Parasitology > Insects. Other Parasites > QX 515 Anopheles
QX Parasitology > Insects. Other Parasites > QX 600 Insect control. Tick control
WA Public Health > Preventive Medicine > WA 110 Prevention and control of communicable diseases. Transmission of infectious diseases
WA Public Health > Preventive Medicine > WA 240 Disinfection. Disinfestation. Pesticides (including diseases caused by)
WC Communicable Diseases > Tropical and Parasitic Diseases > WC 750 Malaria
WC Communicable Diseases > Tropical and Parasitic Diseases > WC 755 Epidemiology
WC Communicable Diseases > Tropical and Parasitic Diseases > WC 765 Prevention and control
Faculty: Department: Biological Sciences > Vector Biology Department
Clinical Sciences & International Health > Clinical Sciences Department
IVCC
Digital Object Identifer (DOI): https://doi.org/10.1002/14651858.CD012736.pub2
Depositing User: Christianne Esparza
Date Deposited: 16 Aug 2019 11:48
Last Modified: 06 Sep 2019 08:54
URI: https://archive.lstmed.ac.uk/id/eprint/11440

Statistics

View details

Actions (login required)

Edit Item Edit Item