Cooper, Lisa, Bunnefeld, Lynsey, Hearn, Jack ORCID: https://orcid.org/0000-0003-3358-4949, Cook, James M, Lohse, Konrad and Stone, Graham N (2020) 'Low coverage genomic data resolve the population divergence and gene flow history of an Australian rain forest fig wasp.'. Molecular ecology, Vol 29, Issue 19, pp. 3649-3666.
|
Text
16813981.pdf - Accepted Version Download (23MB) | Preview |
Abstract
Population divergence and gene flow are key processes in evolution and ecology. Model-based analysis of genome-wide datasets allows discrimination between alternative scenarios for these processes even in non-model taxa. We used two complementary approaches (one based on the blockwise site frequency spectrum (bSFS), the second on the Pairwise Sequentially Markovian Coalescent (PSMC)) to infer the divergence history of a fig wasp, Pleistodontes nigriventris. Pleistodontes nigriventris and its fig tree mutualist Ficus watkinsiana are restricted to rain forest patches along the eastern coast of Australia, and are separated into northern and southern populations by two dry forest corridors (the Burdekin and St. Lawrence Gaps). We generated whole genome sequence data for two haploid males per population and used the bSFS approach to infer the timing of divergence between northern and southern populations of P. nigriventris, and to discriminate between alternative isolation with migration (IM) and instantaneous admixture (ADM) models of post divergence gene flow. Pleistodontes nigriventris has low genetic diversity (π = 0.0008), to our knowledge one of the lowest estimates reported for a sexually reproducing arthropod. We find strongest support for an ADM model in which the two populations diverged ca. 196kya in the late Pleistocene, with almost 25% of northern lineages introduced from the south during an admixture event ca. 57kya. This divergence history is highly concordant with individual population demographies inferred from each pair of haploid males using PSMC. Our analysis illustrates the inferences possible with genome-level data for small population samples of tiny, non-model organisms and adds to a growing body of knowledge on the population structure of Australian rain forest taxa.
Item Type: | Article |
---|---|
Subjects: | QU Biochemistry > Genetics > QU 460 Genomics. Proteomics QX Parasitology > Insects. Other Parasites > QX 600 Insect control. Tick control |
Faculty: Department: | Biological Sciences > Vector Biology Department |
Digital Object Identifer (DOI): | https://doi.org/10.1111/mec.15523 |
Depositing User: | Samantha Sheldrake |
Date Deposited: | 29 Jun 2020 13:27 |
Last Modified: | 22 Jun 2021 01:02 |
URI: | https://archive.lstmed.ac.uk/id/eprint/14877 |
Statistics
Actions (login required)
Edit Item |