LSTM Home > LSTM Research > LSTM Online Archive

New insecticide screening platforms indicate that Mitochondrial Complex I inhibitors are susceptible to cross-resistance by mosquito P450s that metabolise pyrethroids

Lees, Rosemary ORCID: https://orcid.org/0000-0002-4232-9125, Ismail, Hanafy ORCID: https://orcid.org/0000-0002-9953-9588, Logan, Rhiannon ORCID: https://orcid.org/0000-0002-4323-3213, Malone, David, Davies, Rachel, Anthousi, Amalia, Adolfi, Adriana, Lycett, Gareth ORCID: https://orcid.org/0000-0002-2422-053X and Paine, Mark ORCID: https://orcid.org/0000-0003-2061-7713 (2020) 'New insecticide screening platforms indicate that Mitochondrial Complex I inhibitors are susceptible to cross-resistance by mosquito P450s that metabolise pyrethroids'. Scientific Reports, Vol 10, p. 16232.

[img]
Preview
Text
s41598-020-73267-x.pdf - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

Fenazaquin, pyridaben, tolfenpyrad and fenpyroximate are Complex I inhibitors offering a new mode of action for insecticidal malaria vector control. However, extended exposure to pyrethroid based products such as long-lasting insecticidal nets (LLINs) has created mosquito populations that are largely pyrethroid-resistant, often with elevated levels of P450s that can metabolise and neutralise diverse substrates. To assess cross-resistance liabilities of the Complex I inhibitors, we profiled their susceptibility to metabolism by P450s associated with pyrethroid resistance in Anopheles gambiae (CYPs 6M2, 6P3, 6P4, 6P5, 9J5, 9K1, 6Z2) and An. funestus (CYP6P9a). All compounds were highly susceptible. Transgenic An. gambiae overexpressing CYP6M2 or CYP6P3 showed reduced mortality when exposed to fenpyroximate and tolfenpyrad. Mortality from fenpyroximate was also reduced in pyrethroid-resistant strains of An. gambiae (VK7 2014 and Tiassalé 13) and An. funestus (FUMOZ-R). P450 inhibitor piperonyl butoxide (PBO) significantly enhanced the efficacy of fenpyroximate and tolfenpyrad, fully restoring mortality in fenpyroximate-exposed FUMOZ-R. Overall, results suggest that in vivo and in vitro assays are a useful guide in the development of new vector control products, and that the Complex I inhibitors tested are susceptible to metabolic cross-resistance and may lack efficacy in controlling pyrethroid resistant mosquitoes.

Item Type: Article
Subjects: QX Parasitology > Insects. Other Parasites > QX 510 Mosquitoes
WA Public Health > Preventive Medicine > WA 240 Disinfection. Disinfestation. Pesticides (including diseases caused by)
WC Communicable Diseases > Tropical and Parasitic Diseases > WC 750 Malaria
Faculty: Department: Biological Sciences > Vector Biology Department
IVCC
Digital Object Identifer (DOI): https://doi.org/10.1038/s41598-020-73267-x
Depositing User: Samantha Sheldrake
Date Deposited: 05 Oct 2020 10:42
Last Modified: 26 Mar 2024 12:02
URI: https://archive.lstmed.ac.uk/id/eprint/15711

Statistics

View details

Actions (login required)

Edit Item Edit Item