LSTM Home > LSTM Research > LSTM Online Archive

Measuring Air Quality for Advocacy in Africa (MA3): Feasibility and Practicality of Longitudinal Ambient PM2.5 Measurement Using Low-Cost Sensors

Downloads

Downloads per month over past year

Awokola, Babatunde, Okello, Gabriel, Mortimer, Kevin ORCID: https://orcid.org/0000-0002-8118-8871, Jewell, Christopher P., Erhart, Annette and Semple, Sean (2020) 'Measuring Air Quality for Advocacy in Africa (MA3): Feasibility and Practicality of Longitudinal Ambient PM2.5 Measurement Using Low-Cost Sensors'. International Journal of Environmental Research and Public Health, Vol 17, Issue 19, p. 7243.

[img]
Preview
Text
ijerph-17-07243-v2.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

Ambient air pollution in urban cities in sub-Saharan Africa (SSA) is an important public health problem with models and limited monitoring data indicating high concentrations of pollutants such as fine particulate matter (PM2.5). On most global air quality index maps, however, information about ambient pollution from SSA is scarce. We evaluated the feasibility and practicality of longitudinal measurements of ambient PM2.5 using low-cost air quality sensors (Purple Air-II-SD) across thirteen locations in seven countries in SSA. Devices were used to gather data over a 30-day period with the aim of assessing the efficiency of its data recovery rate and identifying challenges experienced by users in each location. The median data recovery rate was 94% (range: 72% to 100%). The mean 24 h concentration measured across all sites was 38 µg/m3 with the highest PM2.5 period average concentration of 91 µg/m3 measured in Kampala, Uganda and lowest concentrations of 15 µg/m3 measured in Faraja, The Gambia. Kampala in Uganda and Nnewi in Nigeria recorded the longest periods with concentrations >250 µg/m3. Power outages, SD memory card issues, internet connectivity problems and device safety concerns were important challenges experienced when using Purple Air-II-SD sensors. Despite some operational challenges, this study demonstrated that it is reasonably practicable and feasible to establish a network of low-cost devices to provide data on local PM2.5 concentrations in SSA countries. Such data are crucially needed to raise public, societal and policymaker awareness about air pollution across SSA.

Item Type: Article
Subjects: WA Public Health > Health Problems of Special Population Groups > WA 395 Health in developing countries
WA Public Health > Air pollution > WA 750 Air sanitation and hygiene
WA Public Health > Air pollution > WA 754 Pollution and pollutants (incl. tobacco pollution; passive smoking)
Faculty: Department: Clinical Sciences & International Health > Clinical Sciences Department
Digital Object Identifer (DOI): https://doi.org/10.3390/ijerph17197243
Depositing User: Stacy Murtagh
Date Deposited: 16 Oct 2020 16:14
Last Modified: 16 Oct 2020 16:14
URI: https://archive.lstmed.ac.uk/id/eprint/15855

Statistics

View details

Actions (login required)

Edit Item Edit Item