LSTM Home > LSTM Research > LSTM Online Archive

Reduced proinsecticide activation by cytochrome P450 confers coumaphos resistance in the major bee parasite Varroa destructor

Vlogiannitis, Spyridon, Mavridis, Konstantinos, Dermauw, Wannes, Snoeck, Simon, Katsavou, Evangelia, Harizanis, Paschalis, Morou, Evangelia, Swevers, Luc, Hemingway, Janet ORCID:, Feyereisen, René, Leeuwen, Thomas Van and Vontas, John (2021) 'Reduced proinsecticide activation by cytochrome P450 confers coumaphos resistance in the major bee parasite Varroa destructor'. Proceedings of the National Academy of Sciences, Vol 118, Issue 6, e2020380118.

JV Hemmingway March 21.pdf - Accepted Version

Download (342kB) | Preview


Varroa destructor is one of the main problems in modern beekeeping. Highly selective acaricides with low toxicity to bees are used internationally to control this mite. One of the key acaricides is the organophosphorus (OP) proinsecticide coumaphos, that becomes toxic after enzymatic activation inside Varroa. We show here that mites from the island Andros (AN-CR) exhibit high levels of coumaphos resistance. Resistance is not mediated by decreased coumaphos uptake, target-site resistance, or increased detoxification. Reduced proinsecticide activation by a cytochrome P450 enzyme was the main resistance mechanism, a powerful and rarely encountered evolutionary solution to insecticide selection pressure. After treatment with sublethal doses of [14C] coumaphos, susceptible mite extracts had substantial amounts of coroxon, the activated metabolite of coumaphos, while resistant mites had only trace amounts. This indicates a suppression of the P450 (CYP)-mediated activation step in the AN-CR mites. Bioassays with coroxon to bypass the activation step showed that resistance was dramatically reduced. There are 26 CYPs present in the V. destructor genome. Transcriptome analysis revealed overexpression in resistant mites of CYP4DP24 and underexpression of CYP3012A6 and CYP4EP4. RNA interference of CYP4EP4 in the susceptible population, to mimic underexpression seen in the resistant mites, prevented coumaphos activation and decreased coumaphos toxicity.

Item Type: Article
Subjects: QU Biochemistry > Genetics > QU 460 Genomics. Proteomics
QX Parasitology > QX 20 Research (General)
QX Parasitology > QX 4 General works
WA Public Health > Preventive Medicine > WA 240 Disinfection. Disinfestation. Pesticides (including diseases caused by)
Faculty: Department: Biological Sciences > Vector Biology Department
Digital Object Identifer (DOI):
Depositing User: Mel Finley
Date Deposited: 09 Mar 2021 12:38
Last Modified: 09 Aug 2021 01:02


View details

Actions (login required)

Edit Item Edit Item