LSTM Home > LSTM Research > LSTM Online Archive

Towards understanding transfluthrin efficacy in a pyrethroid-resistant strain of the malaria vector Anopheles funestus with special reference to cytochrome P450-mediated detoxification

Nolden, Melanie, Brockmann, Andreas, Ebbinghaus-Kintscher, Ulrich, Brueggen, Kai-Uwe, Horstmanna, Sebastian, Nauen, Ralf and Paine, Mark ORCID: (2021) 'Towards understanding transfluthrin efficacy in a pyrethroid-resistant strain of the malaria vector Anopheles funestus with special reference to cytochrome P450-mediated detoxification'. Current Research in Parasitology and Vector-Borne Diseases, Vol 1, Issue 2021, p. 100041.

MPaine Aug 21.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (1MB) | Preview


Malaria vector control interventions rely heavily on the application of insecticides against anopheline mosquitoes, in particular the fast-acting pyrethroids that target insect voltage-gated sodium channels (VGSC). Frequent applications of pyrethroids have resulted in resistance development in the major malaria vectors including Anopheles funestus, where resistance is primarily metabolic and driven by the overexpression of microsomal cytochrome P450 monooxygenases (P450s). Here we examined the pattern of cross-resistance of the pyrethroid-resistant An. funestus strain FUMOZ-R towards transfluthrin and multi-halogenated benzyl derivatives, permethrin, cypermethrin and deltamethrin in comparison to the susceptible reference strain FANG. Transfluthrin and two multi-fluorinated derivatives exhibited micromolar potency - comparable to permethrin - to functionally expressed dipteran VGSC in a cell-based cation influx assay. The activity of transfluthrin and its derivatives on VGSC was strongly correlated with their contact efficacy against strain FUMOZ-R, although no such correlation was obtained for the other pyrethroids due to their rapid detoxification by the resistant strain. The low resistance levels for transfluthrin and derivatives in strain FUMOZ-R were only weakly synergized by known P450 inhibitors such as piperonyl butoxide (PBO), triflumizole and 1-aminobenzotriazole (1-ABT). In contrast, deltamethrin toxicity in FUMOZ-R was synergized > 100-fold by all three P450 inhibitors. The biochemical profiling of a range of fluorescent resorufin and coumarin compounds against FANG and FUMOZ-R microsomes identified 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC) as a highly sensitive probe substrate for P450 activity. BOMFC was used to develop a fluorescence-based high-throughput screening assay to measure the P450 inhibitory action of potential synergists. Azole fungicides prochloraz and triflumizole were identified as extremely potent nanomolar inhibitors of microsomal P450s, strongly synergizing deltamethrin toxicity in An. funestus. Overall, the present study contributed to the understanding of transfluthrin efficacy at the molecular and organismal level and identified azole compounds with potential to synergize pyrethroid efficacy in malaria vectors.

Item Type: Article
Subjects: QU Biochemistry > Enzymes > QU 140 Oxidoreductases
QX Parasitology > Insects. Other Parasites > QX 510 Mosquitoes
QX Parasitology > Insects. Other Parasites > QX 515 Anopheles
QX Parasitology > Insects. Other Parasites > QX 600 Insect control. Tick control
WC Communicable Diseases > Tropical and Parasitic Diseases > WC 750 Malaria
Faculty: Department: Biological Sciences > Vector Biology Department
Digital Object Identifer (DOI):
Depositing User: Mel Finley
Date Deposited: 12 Aug 2021 09:52
Last Modified: 22 Mar 2023 15:14


View details

Actions (login required)

Edit Item Edit Item