LSTM Home > LSTM Research > LSTM Online Archive

The Automatic Classification of Pyriproxyfen-Affected Mosquito Ovaries.

Fowler, Mark, Lees, Rosemary ORCID: https://orcid.org/0000-0002-4232-9125, Fagbohoun, Josias, Matowo, Nancy S, Ngufor, Corine, Protopopoff, Natacha and Spiers, Angus (2021) 'The Automatic Classification of Pyriproxyfen-Affected Mosquito Ovaries.'. Insects, Vol 12, Issue 12, p. 1134.

[img]
Preview
Text
PMC8703609.pdf - Published Version
Available under License Creative Commons Attribution.

Download (982kB) | Preview

Abstract

Pyriproxyfen (PPF) may become an alternative insecticide for areas where pyrethroid-resistant vectors are prevalent. The efficacy of PPF can be assessed through the dissection and assessment of vector ovaries. However, this reliance on expertise is subject to limitations. We show here that these limitations can be overcome using a convolutional neural network (CNN) to automate the classification of egg development and thus fertility status. Using TensorFlow, a resnet-50 CNN was pretrained with the ImageNet dataset. This CNN architecture was then retrained using a novel dataset of 524 dissected ovary images from <i>An. gambiae</i> s.l. <i>An. gambiae</i> Akron, and <i>An. funestus</i> s.l., whose fertility status and PPF exposure were known. Data augmentation increased the training set to 6973 images. A test set of 157 images was used to measure accuracy. This CNN model achieved an accuracy score of 94%, and application took a mean time of 38.5 s. Such a CNN can achieve an acceptable level of precision in a quick, robust format and can be distributed in a practical, accessible, and free manner. Furthermore, this approach is useful for measuring the efficacy and durability of PPF treated bednets, and it is applicable to any PPF-treated tool or similarly acting insecticide.

Item Type: Article
Subjects: QX Parasitology > QX 20 Research (General)
QX Parasitology > Insects. Other Parasites > QX 510 Mosquitoes
QX Parasitology > Insects. Other Parasites > QX 600 Insect control. Tick control
Faculty: Department: Biological Sciences > Vector Biology Department
Digital Object Identifer (DOI): https://doi.org/10.3390/insects12121134
SWORD Depositor: JISC Pubrouter
Depositing User: JISC Pubrouter
Date Deposited: 24 Mar 2022 13:02
Last Modified: 24 Mar 2022 13:02
URI: https://archive.lstmed.ac.uk/id/eprint/19868

Statistics

View details

Actions (login required)

Edit Item Edit Item