LSTM Home > LSTM Research > LSTM Online Archive

Detection of a reduced susceptibility to chlorfenapyr in the malaria vector Anopheles gambiae contrasts with full susceptibility in Anopheles funestus across Africa

Tchouakui, Magellan, Assatse, Tatiane, Tazokong, Hervé R., Oruni, Ambrose, Menze, Benjamin D., Nguiffo-Nguete, Daniel, Mugenzi, Leon M. J., Kayondo, Jonathan, Watsenga, Francis, Mzilahowa, Themba, Osae, Michael and Wondji, Charles ORCID: https://orcid.org/0000-0003-0791-3673 (2023) 'Detection of a reduced susceptibility to chlorfenapyr in the malaria vector Anopheles gambiae contrasts with full susceptibility in Anopheles funestus across Africa'. Scientific Reports, Vol 13, Issue 1, e2363.

[img]
Preview
Text
41598_2023_Article_29605.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

New insecticides have recently been produced to help control pyrethroid-resistant malaria vectors including the pyrrole, chlorfenapyr. Monitoring the susceptibility of mosquito populations against this new product and potential cross-resistance with current insecticides is vital for better resistance management. In this study, we assessed the resistance status of the major malaria vectors Anopheles gambiae and Anopheles funestus to chlorfenapyr across Africa and explored potential cross-resistance with known pyrethroid resistance markers. Efficacy of chlorfenapyr 100 µg/ml against An. gambiae and An. funestus from five Cameroonian locations, the Democratic Republic of Congo, Ghana, Uganda, and Malawi was assessed using CDC bottle assays. Synergist assays were performed with PBO (4%), DEM (8%) and DEF (0.25%) and several pyrethroid-resistant markers were genotyped in both species to assess potential cross-resistance between pyrethroids and chlorfenapyr. Resistance to chlorfenapyr was detected in An. gambiae populations from DRC (Kinshasa) (mortality rate: 64.3 ± 7.1%) Ghana (Obuasi) (65.9 ± 7.4%), Cameroon (Mangoum; 75.2 ± 7.7% and Nkolondom; 86.1 ± 7.4). In contrast, all An. funestus populations were fully susceptible. A negative association was observed between the L1014F-kdr mutation and chlorfenapyr resistance with a greater frequency of homozygote resistant mosquitoes among the dead mosquitoes after exposure compared to alive (OR 0.5; P = 0.02) whereas no association was found between GSTe2 (I114T in An. gambiae; L119F in An. funestus) and resistance to chlorfenapyr. A significant increase of mortality to chlorfenapyr 10 µg/ml was observed in An. funestus after to PBO, DEM and DEF whereas a trend for a decreased mortality was observed in An. gambiae after PBO pre-exposure. This study reveals a greater risk of chlorfenapyr resistance in An. gambiae populations than in An. funestus. However, the higher susceptibility in kdr-resistant mosquitoes points to higher efficacy of chlorfenapyr against the widespread kdr-based pyrethroid resistance.

Item Type: Article
Subjects: QX Parasitology > QX 20 Research (General)
QX Parasitology > Insects. Other Parasites > QX 515 Anopheles
QX Parasitology > Insects. Other Parasites > QX 600 Insect control. Tick control
QX Parasitology > Insects. Other Parasites > QX 650 Insect vectors
Faculty: Department: Biological Sciences > Vector Biology Department
Digital Object Identifer (DOI): https://doi.org/10.1038/s41598-023-29605-w
SWORD Depositor: JISC Pubrouter
Depositing User: JISC Pubrouter
Date Deposited: 14 Mar 2023 14:51
Last Modified: 14 Mar 2023 14:51
URI: https://archive.lstmed.ac.uk/id/eprint/21938

Statistics

View details

Actions (login required)

Edit Item Edit Item