Subramaniam, Krishanthi, Skinner, Jeff, Ivan, Emil, Mutimura, Eugene, Kim, Ryung S., Feintuch, Catherine M., Portugal, Silvia, Anastos, Kathryn, Crompton, Peter D. and Daily, Johanna P. (2015) 'HIV Malaria Co-Infection Is Associated with Atypical Memory B Cell Expansion and a Reduced Antibody Response to a Broad Array of Plasmodium falciparum Antigens in Rwandan Adults'. PLoS ONE, Vol 10, Issue 4, e0124412.
|
Text
Plos_ONE_10_4_e0124412.pdf - Published Version Available under License Creative Commons Public Domain Dedication. Download (793kB) |
Abstract
HIV infected individuals in malaria endemic areas experience more frequent and severe malaria episodes compared to non HIV infected. This clinical observation has been linked to a deficiency in antibody responses to Plasmodium falciparum antigens; however, prior studies have only focused on the antibody response to <0.5% of P. falciparum proteins. To obtain a broader and less-biased view of the effect of HIV on antibody responses to malaria we compared antibody profiles of HIV positive (HIV+) and negative (HIV-) Rwandan adults with symptomatic malaria using a microarray containing 824 P. falciparum proteins. We also investigated the cellular basis of the antibody response in the two groups by analyzing B and T cell subsets by flow cytometry. Although HIV malaria co-infected individuals generated antibodies to a large number of P. falciparum antigens, including potential vaccine candidates, the breadth and magnitude of their response was reduced compared to HIV- individuals. HIV malaria co-infection was also associated with a higher percentage of atypical memory B cells (MBC) (CD19+CD10-CD21-CD27-) compared to malaria infection alone. Among HIV+ individuals the CD4+ T cell count and HIV viral load only partially explained variability in the breadth of P. falciparum-specific antibody responses. Taken together, these data indicate that HIV malaria co-infection is associated with an expansion of atypical MBCs and a diminished antibody response to a diverse array of P. falciparum antigens, thus offering mechanistic insight into the higher risk of malaria in HIV+ individuals.
Statistics
Actions (login required)
Edit Item |