LSTM Home > LSTM Research > LSTM Online Archive

An external sensing system in Plasmodium falciparum-infected erythrocytes

Wu, Yang, Cruz, Laura N, Szestak, Tadge, Laing, Gavin, Molyneux, Gemma, Garcia, Celia R S and Craig, Alister ORCID: https://orcid.org/0000-0003-0914-6164 (2016) 'An external sensing system in Plasmodium falciparum-infected erythrocytes'. Malaria Journal, Vol 15, Issue 103.

[img]
Preview
Text
Malar_J_15_103_An external sensing system.pdf - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

Background
A number of experiments have previously indicated that Plasmodium falciparum-infected erythrocytes (pRBC) were able to sense host environment. The basis of this ability to detect external cues is not known but in screening signalling molecules from pRBC using commercial antibodies, a 34 kDa phosphorylated molecule that possesses such ability was identified.

Methods
The pRBC were exposed to different culture conditions and proteins were extracted for 1D or 2D gel electrophoresis followed by Western blot. The localization of 34 kDa protein was examined by biochemical fractionation followed by Western blot. High-resolution mass spectrometric analysis of immune precipitants was used to identify this protein and real-time quantitative reverse transcriptase polymerase chain reaction was used for detecting mRNA expression level.

Results
The 34 kDa protein was called PfAB4 has immediate responses (dephosphorylation and rapid turnover) to host environmental stimuli such as serum depletion, osmolality change and cytokine addition. PfAB4 is expressed constitutively throughout the erythrocytic lifecycle with dominant expression in trophozoites 30 h post-infection. Tumour necrosis factor (TNF) treatment induced a transient detectable dephosphorylation of PfAB4 in the ItG strain (2 min after addition) and the level of expression and phosphorylation returned to normal within 1–2 h. PfAB4 localized dominantly in pRBC cytoplasm, with a transient shift to the nucleus under TNF stimulation as shown by biochemical fractionation. High-resolution mass spectrometric analysis of immune precipitants of AB4 antibodies revealed a 34 kDa PfAB4 component as a mixture of proliferating cellular nuclear antigen-1 (PCNA1) and exported protein-2 (EXP2), along with a small number of other inconsistently identified peptides. Different parasite strains have different PfAB4 expression levels, but no significant association between mRNA and PfAB4 levels was seen, indicating that the differences may be at the post-transcriptional, presumably phosphorylation, level. A triple serine phosphorylated PCNA1 peptide was identified from the PfAB4 high expression strain only, providing further evidence that the identity of PfAB4 is PCNA1 in P. falciparum.

Conclusion
A protein element in the human malaria parasite that responds to external cues, including the pro-inflammatory cytokine TNF have been discovered. Treatment results in a transient change in phosphorylation status of the response element, which also migrates from the parasite cytoplasm to the nucleus. The response element has been identified as PfPCNA1. This sensing response could be regulated by a parasite checkpoint system and be analogous to bacterial two-component signal transduction systems.

Item Type: Article
Subjects: QX Parasitology > Protozoa > QX 135 Plasmodia
WC Communicable Diseases > Tropical and Parasitic Diseases > WC 750 Malaria
WH Hemic and Lymphatic Systems > Hematologic Diseases. Immunologic Factors. Blood Banks > WH 150 Erythrocytes
Faculty: Department: Biological Sciences > Department of Tropical Disease Biology
Digital Object Identifer (DOI): https://doi.org/10.1186/s12936-016-1144-6
Depositing User: Jessica Jones
Date Deposited: 08 Mar 2016 10:49
Last Modified: 17 Jul 2019 14:14
URI: https://archive.lstmed.ac.uk/id/eprint/5733

Statistics

View details

Actions (login required)

Edit Item Edit Item