LSTM Home > LSTM Research > LSTM Online Archive

Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control

Barnes, Kayla, Weedall, Gareth ORCID: https://orcid.org/0000-0002-8927-1063, Ndula, Miranda, Irving, Helen, Mzihalowa, Themba, Hemingway, Janet ORCID: https://orcid.org/0000-0002-3200-7173 and Wondji, Charles ORCID: https://orcid.org/0000-0003-0791-3673 (2017) 'Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control'. PLoS Genetics, Vol 13, Issue 2, e1006539.

[img]
Preview
Text
Plos_Genetics_13_2_e1006539.pdf - Published Version
Available under License Creative Commons Attribution.

Download (3MB) | Preview

Abstract

Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the ‘resistance curve’ and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistance-associated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised.

Item Type: Article
Subjects: QU Biochemistry > Genetics > QU 460 Genomics. Proteomics
QX Parasitology > Insects. Other Parasites > QX 600 Insect control. Tick control
QX Parasitology > Insects. Other Parasites > QX 650 Insect vectors
WA Public Health > Preventive Medicine > WA 240 Disinfection. Disinfestation. Pesticides (including diseases caused by)
WC Communicable Diseases > Tropical and Parasitic Diseases > WC 750 Malaria
WC Communicable Diseases > Tropical and Parasitic Diseases > WC 765 Prevention and control
Faculty: Department: Biological Sciences > Vector Biology Department
Digital Object Identifer (DOI): https://doi.org/10.1371/journal.pgen.1006539
Depositing User: Carmel Bates
Date Deposited: 24 Feb 2017 16:06
Last Modified: 13 Sep 2019 15:48
URI: https://archive.lstmed.ac.uk/id/eprint/6805

Statistics

View details

Actions (login required)

Edit Item Edit Item