Goldstein, Eyal, Erinjery, Joseph J, Martin, Gerardo, Kasturiratne, Anuradhani, Ediriweera, Dileep Senajith, Janaka de Silva, Hithanadura, Diggle, Peter, Lalloo, David ORCID: https://orcid.org/0000-0001-7680-2200, Murray, Kris A and Iwamura, Takuya (2021) 'Integrating human behavior and snake ecology with agent-based models to predict snakebite in high risk landscapes'. PLoS Neglected Tropical Diseases.
|
Text
journal.pntd.0009047.pdf - Published Version Available under License Creative Commons Attribution. Download (1MB) | Preview |
Abstract
Abstract
Snakebite causes more than 1.8 million envenoming cases annually and is a major cause of death in the tropics especially for poor farmers. While both social and ecological factors influence the chance encounter between snakes and people, the spatio-temporal processes underlying snakebites remain poorly explored. Previous research has focused on statistical correlates between snakebites and ecological, sociological, or environmental factors, but the human and snake behavioral patterns that drive the spatio-temporal process have not yet been integrated into a single model. Here we use a bottom-up simulation approach using agent-based modelling (ABM) parameterized with datasets from Sri Lanka, a snakebite hotspot, to characterise the mechanisms of snakebite and identify risk factors. Spatio-temporal dynamics of snakebite risks are examined through the model incorporating six snake species and three farmer types (rice, tea, and rubber). We find that snakebites are mainly climatically driven, but the risks also depend on farmer types due to working schedules as well as species present in landscapes. Snake species are differentiated by both distribution and by habitat preference, and farmers are differentiated by working patterns that are climatically driven, and the combination of these factors leads to unique encounter rates for different landcover types as well as locations. Validation using epidemiological studies demonstrated that our model can explain observed patterns, including temporal patterns of snakebite incidence, and relative contribution of bites by each snake species. Our predictions can be used to generate hypotheses and inform future studies and decision makers. Additionally, our model is transferable to other locations with high snakebite burden as well.
Item Type: | Article |
---|---|
Subjects: | WA Public Health > Health Problems of Special Population Groups > WA 395 Health in developing countries WC Communicable Diseases > Tropical and Parasitic Diseases > WC 680 Tropical diseases (General) WD Disorders of Systemic, Metabolic or Environmental Origin, etc > Animal Poisons > WD 410 Reptiles |
Faculty: Department: | Clinical Sciences & International Health > Clinical Sciences Department |
Digital Object Identifer (DOI): | https://doi.org/10.1371/journal.pntd.0009047 |
Depositing User: | Debbie Jenkins |
Date Deposited: | 10 Feb 2021 16:22 |
Last Modified: | 10 Feb 2021 16:22 |
URI: | https://archive.lstmed.ac.uk/id/eprint/16925 |
Statistics
Actions (login required)
Edit Item |